Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna"

Transkrypt

1 Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona? 4. Co to jest cz ± rzeczywista/urojona liczby zespolonej? 5. Co oznacza ª czno± mno»enia liczb zespolonych? 6. Czym jest liczba przeciwna/odwrotna/sprz»enie/moduª/argument danej liczby zespolonej? 7. Jak podzieli liczby zespolone w postaci algebraicznej? 8. Co to jest posta trygonometryczna liczby zespolonej? 9. Jak wykona mno»enie/dzielenie liczb zespolonych w postaci trygonometrycznej? 10. Podaj wzory de Moivre'a. 11. Podaj denicj pierwiastka ntego stopnia z liczby zespolonej. Ile pierwiastków ma liczba zespolona? 12. Co to jest macierz? 13. Co to jest stopie«macierzy? 14. Co to jest macierz symetryczna? 15. Co to jest macierz sko±nosymetryczna? 16. Co to jest macierz diagonalna? 17. Co to jest macierz trójk tna? 18. Co to jest macierz osobliwa? 19. Co to jest ±lad macierzy? 20. Jaki warunek musz speªnia dwie macierze, aby móc je do siebie doda? 21. Jaki warunek musz speªnia dwie macierze, aby móc je od siebie odj? 22. Jaki warunek musz speªnia dwie macierze, aby móc je przez siebie pomno»y? 23. Jaki warunek musz speªnia dwie macierze, aby móc je przez siebie podzieli? 1

2 24. Jaki macierze mo»na transponowa? 25. Czym jest wyznacznik macierzy? Jakie macierze posiadaj wyznacznik? 26. Czym jest minor macierzy? Jakie macierze posiadaj minory? 27. Czym jest dopeªnienie algebraiczne elementu macierzy? Jakie macierze posiadaj dopeªnienia algebraiczne swoich elementów? 28. Jak operacje elementarne na wierszach macierzy wpªywaj na warto± jej wyznacznika? 29. Jak operacje elementarne na kolumnach macierzy wpªywaj na warto± jej wyznacznika? 30. Jak si zmieni wyznacznik macierzy po pomno»eniu wszystkich jej elementów przez dwa? 31. Jak si zmieni wyznacznik macierzy po pomno»eniu wszystkich jednej jej kolumny elementów przez trzy? 32. Jak si zmieni wyznacznik macierzy po pomno»eniu wszystkich jednego jej wiersza elementów przez dwa? 33. Jak wyznaczy rz d macierzy za pomoc wyznaczników? 34. Podaj tre± twierdzenia KroneckeraCapelli'ego. 35. Jakie ukªady równa«mo»na rozwi zywa metod wyznaczników? 36. Co wiadomo o liczbie rozwi zy«ukªadu równa«, je»eli wyznacznik gªówny jest równy zero? 37. W jaki sposób przy metodzie Cramera rozpozna ukªady sprzeczne? 38. Jakie macierze posiadaj macierz odwrotn? 39. Co to jest macierz doª czona? 40. Co to jest dopeªnienie algebraiczne? 41. Dla jakich macierzy mo»na wyznaczy dopeªnienia algeraiczne? 42. Kiedy ukªad n równa«z n niewiadomymi postaci jest jednoznacznie rozwi zywalny? A x = b 43. Jak dzielimy ukªady równa«liniowych ze wzgl du na liczb rozwi za«? 44. Co to jest równanie liniowe jednorodne? 2

3 45. Co to jest jednorodny ukªad równa«liniowych, co wiemy o jego rozwi zywalno±ci? 46. Co to jest rozwi zanie ukªadu równa«? 47. Co to jest macierz wspóªczynników ukªadu równa«? 48. Co to jest rozszerzona macierz wspóªczynników ukªadu równa«? 49. Wymie«operacje elementarne na wierszach macierzy rozszerzonej wspóªczynników ukªadu równa«. 50. W jaki sposób zmienia si zbiór rozwi za«ukªadu równa«przy zastosowaniu operacji elementarnych na wierszach macierzy rozszerzonej? 51. W jaki sposób zmienia si zbiór rozwi za«ukªadu równa«przy zastosowaniu operacji elementarnych na kolumnach macierzy rozszerzonej? 52. Podaj tre± twierdzenia Cayley'aHamiltona. 53. Podaj denicj ci gu. 54. Jaki ci g nazywamy malej cym (rosn cym, ograniczonym)? 55. Podaj denicj granicy (wªa±ciwej) ci gu. 56. Pod jakimi warunkami granica sumy (ró»nicy, iloczynu, ilorazu) ci gów jest równa sumie (ró»nicy, iloczynowi, ilorazowi) ich granic? 57. Podaj tre± twierdzenia o trzech ci gach. 58. Jakie ci gi arytmetyczne s zbie»ne? 59. Jakie ci gi geometryczne s zbie»ne? 60. Jakie ci gi geometryczne s zbie»ne do zera? 61. Podaj denicj granicy wªa±ciwej (granicy wªa±ciwej lewostronnej, granicy wªa±ciwej prawostronnej) funkcji. 62. Podaj tre± twierdzenia dotycz cego obliczania granicy sumy (ró»nicy, iloczynu, ilorazu) funkcji. 63. Co to s wyra»enia nieoznaczone? 64. Jakie funkcje nazywamy ci gªymi (ci gªymi w punkcie, ci gªymi w przedziale)? 65. Scharakteryzuj ci gªo± funkcji wymiernych (pot gowych, wykªadniczych, logarytmicznych, trygonometrycznych). 66. Podaj twierdzenie o ci gªo±ci funkcji zªo»onej. 67. Co nazywamy asymptot (asymptopt lewostronn, asymptot prawostronn ) wykresu funkcji? 3

4 68. Co nazywamy asymptot poziom (uko±n ) wykresu funkcji? 69. Podaj wzory do wyznaczenia równania asymptoty uko±nej wykresu funkcji. 70. Jakie funkcje wymierne posiadaj asymptoty poziome (uko±ne)? (Charakterystyka za pomoc stosunku stopni licznika i mianownika) 71. Podaj denicj pochodnej funkcji w punkcie. 72. Jakie funkcje nazywamy ró»niczkowalnymi? 73. Podaj przykªad funkcji ci gªej nieró»niczkowalnej. 74. Co to jest pochodna funkcji? 75. Podaj wzór na pochodn funkcji pot gowej, funkcji wykªadniczej, logarytmu, sinusa, cosinusa, tangensa, arcsin, arccos, arctg. 76. Podaj wzór na pochodn sumy (ró»nicy, iloczynu, ilorazu) funkcji. 77. Podaj wzór na pochodn funkcji zªo»onej (odwrotnej). 78. Co to jest druga pochodna funkcji? 79. Co to znaczy innitezymalny? 80. Podaj wzó stycznej do wykresu funkcji f w punkcie x Podaj denicj szybko±ci chwilowej. 82. Podaj tre± twierdzenia Rolle'a (Lagrange'a). 83. Jaka jest zale»no± mi dzy monotoniczno±ci funkcji ró»niczkowalnej a zachowaniem jej pochodnej? 84. Podaj denicj ekstremum lokalnego (ekstremum lokalnego ±cisªego) funkcji. 85. Podaj tre± twierdzenia Fermata. 86. Podaj warunek istnienia ekstremum (minimum, maksimum) funkcji ró»niczkowalnej (charakterystyka zachowania pochodnej). 87. Podaj warunek istnienia ekstremum (minimum, maksimum) funkcji dwukrotnie ró»niczkowalnej (charakterystyka zachowania pochodnej i drugiej pochodnej). 88. Co to jest maksimum (minimum) globalne funkcji? 89. Podaj wzór Taylora (przy speªnionych zaªo»eniach). 90. Podaj rozwini cie funkcji w szereg Taylora (przy speªnionych zaªo»eniach). 91. Podaj rozwini cie funkcji w szereg Maclaurina (przy speªnionych zaªo»eniach). 4

5 92. Podaj reguª de l'hospitala. 93. Co to jest funkcja pierwotna? 94. Jakie funkcje posiadaj funkcj pierwotn? 95. Co to jest caªka nieoznaczona funkcji? 96. Czym si ró»ni caªka nieoznaczona od funkcji pierwotnej? 97. Co otrzymamy po scaªkowaniu funkcji i zró»niczkowaniu wyniku caªkowania? 98. Co otrzymamy po zró»niczkowaniu funkcji i scaªkowaniu wyniku ró»niczkowania? 99. Co to jest staªa caªkowania? 100. Co to znaczy,»e caªkowanie jest operacj liniow? 101. Na czym polega caªkowanie przez cz ±ci? 102. Na czym polega caªkowanie przez podstawianie? 103. Co to s uªamki proste pierwszego i drugiego rodzaju? 104. Co to jest podziaª odcinka? 105. Co to jest suma caªkowa? 106. Jak deniuje si caªk oznaczon Riemanna? 107. Czym s nieci gªo±ci funkcji pierwszego rodzaju? 108. Czym s nieci gªo±ci funkcji drugiego rodzaju? 109. Jaki funkcje maj caªk oznaczon? 110. Jaki jest zwi zek mi dzy caªk oznaczon a nieoznaczon? 111. Jaki jest zwi zek mi dzy caªk oznaczon a funkcj pierwotn? 112. Co to znaczy,»e caªkowanie oznaczone jest operacj liniow? 113. Co to znaczy,»e caªkowanie oznaczone jest operacj addytywn wzgl dem przedziaªu caªkowania? 114. Na czym polega caªkowanie oznaczone przez cz ±ci? 115. Na czym polega caªkowanie oznaczone przez podstawianie? 116. Co to jest trapez krzywoliniowy i jak policzy jego pole? 117. Podaj wzór na dªugo± ªuku krzywej y = f(x). 5

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Załącznik nr 2 do SIWZ Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Zakres materiału Z-1; sem. 1 1. Funkcje jednej zmiennej i ich własności: a) Wartość bezwzględna definicja, rozwiązywanie równań

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

na egzaminach z matematyki

na egzaminach z matematyki Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymaga egzaminacyjnych Zdaj cy posiada umiej tno ci w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wykłady z matematyki - Pochodna funkcji i jej zastosowania Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Ukªady równa«liniowych PWSZ Gªogów, 2009 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P MATeMAtyka 3 Plan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

7. Nierówno Schwarza. 3. Ci gi i szeregi 1. Ci g liczbowy, zbie no, granica ci gu. 2. Tw. o granicach ci gu (sumy itd.). Tw. o zachowaniu relacji w gr

7. Nierówno Schwarza. 3. Ci gi i szeregi 1. Ci g liczbowy, zbie no, granica ci gu. 2. Tw. o granicach ci gu (sumy itd.). Tw. o zachowaniu relacji w gr Analiza Matematyczna - Informatyka Lista tematów na egzamin ustny UWAGA: W odpowiedzi nale y poda stosowne definicje i przyk ady, oraz wykaza si zrozumieniem tematu. 1. Logika, teoria mnogo ci, zbiory

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Nazwa przedmiotu MATEMATYKA I Kod CH 1.1 Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S Sposób zaliczenia E Katedra Centrum Nauczania Matematyki i Kształcenia na

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

( ) Pochodne. Załómy, e funkcja f jest okrelona w pewnym otoczeniu punktu x 0. Liczb

( ) Pochodne. Załómy, e funkcja f jest okrelona w pewnym otoczeniu punktu x 0. Liczb Pocodne Załómy, e unkcja jest okrelona w pewnym otoczeniu punktu. Liczb ( + ) ( ) nazywamy ilorazem rónicowym unkcji w punkcie dla przyrostu. Pocodn ( ) unkcji w punkcie nazywamy granic ilorazu rónicowego,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo