1 Gaussowskie zmienne losowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Gaussowskie zmienne losowe"

Transkrypt

1 Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych.. (Eg 48/6) Niech X, X,..., X n,... będą niezależnymi zmiennymi losowymi o identycznym rozkładzie o gęstości f(x) = x (0,)(x). Niech U n = (X...X n ) n. Wtedy: (asymptotyka U n e )? Odp: B-> lim P((U n e ) n < 4e ) = 0, 977. Rozwiązanie. Zadanie polega na umiejętnym zastosowaniu CTG. Zauważmy, że Y i = log X i, i {,..., n} oraz P(Y i > t) = P(X i < e t ) = e t, t 0. Czyli Y i ma rozkład Exp( ), w szczególności EY i =, VarY i = 4. (U n e ) n = e (exp( n (Y i ) ) n. Z mocnego prawa wielkich liczb wynika, że lim n n i= (Y i ) = 0. (exp( n Czyli w sensie rozkładu (Y i ) ) n = n i= gdzie Z ma rozkład N (0, ). Stąd n i= lim (U n e ) n = e lim i= (Y i )( + O( n n n i= (Y i )). i= (Y i ) = e Z, lim P((U n e ) n < 4e ) = P(Z < ) 0, (Eg 50/6) Rozważmy następujące zagadnienie testowania hipotez statystycznych. Dysponujemy próbką X,..., X n z rozkładu normalnego o nieznanej średniej µ i znanej wariancji równej 4. Przeprowadzamy najmocniejszy test hipotezy H 0 : µ = 0 przeciwko alternatywie H : µ = na poziomie istotności α = /. Niech β n oznacza prawdopodobieństwo błędu drugiego rodzaju, dla rozmiaru próbki n. Wybierz poprawne stwierdzenie: (asymptotyka β n ) Odp: D-> lim β n e n 8 πn =. Rozwiązanie. Najpierw znajdujemy błąd drugiego rodzaju czyli akceptacja hipotezy H 0 w sytuacji gdy zachodzi H. Test najmocniejszy oparty jest na konstrukcji obszaru krytycznego wynikającej z Twierdzenia Neymana-Pearsona (o porównywaniu gęstości). Niech µ 0 = 0, µ = oraz niech f µ0, f µ będą gęstościami rozkładu wektora (X,..., X n ) niezależnych zmiennych losowych o tym samym rozkładzie co zmienna X, odpowiednio X N (µ 0, 4), X N (µ, 4). W metodzie Neymana-Pearsona badamy iloraz wiarygodności, to znaczy f µ (x,..., x n )/f µ0 (x,..., X n ). W przypadku rozkładów ciągłych nie potrzeba randomizacji, a obszar krytyczny ma postać K = {(x,..., x n ) R n : f µ (x,..., x n )/f µ0 (x,..., x n ) > C} dla stałej C dobranej tak aby P µ0 ((X,..., X n ) K) = α. W naszym przypadku oznacza to konieczność znalezienia stałej C takiej, że P µ0 (X X n < C) =.

2 Oczywiście C = 0. Błąd drugiego rodzaju wynosi β n = P µ (X X n > C) = P( n + nz > 0), gdzie Z ma rozkład N (0, ). zostaje zbadać asymptmpotykę n β n = P(Z > ). Oczywiście P(Z > t) πt e t stąd πn lim β n e n 8 =. 3. (Eg 5/4) Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach normalnych, przy tym EX = EY = 0, VarX = 3 i VarY =. Oblicz P( X < Y ). Odp: A-> P( X < Y ) = 0, Rozwiązanie. To zadanie ma czysto geometryczne rozwiązanie. Wystarczy wykorzystać rotacyjną niezmienniczość standardowego rozkładu normalnego nadto zauważyć, że X = 3 X, gdzie X ma rozkład N (0, ). ( X, Y ) ma standardowy rozkład normalny na R oraz P( X < Y ) = P( 3 X < Y ) = µ S ({α S : tg α < 3 }), gdzie µ S jest miarą Lebesgue a na okręgu jednostkowym unormowaną do. Oczywiście {α S : tg α < 3 } = {α S : α π 6 lub π α π 6 } µ S ({α S : tg α < 3 }) = (Eg 5/5) Załóżmy, że X, Y są zmiennymi o łącznym rozkładzie normalnym, EX = EY = 0, VarX =, VarY = 4 i Cov(X, Y ) =. Oblicz E(XY X Y = t), Odp: C-> t. Rozwiązanie. Potrzebujemy metody znajdowania bazy niezależnych liniowych funkcji od X, Y zawierającej X Y. Szukamy α takiego, że X αy będzie niezależne od X Y. Wystarczy sprawdzić kowariancję Cov(X Y, X αy ) = α + 4α = + 3α. Stąd α = 3. Wystarczy teraz rozpisać X, Y w znalezionej bazie. Mamy { X = 4 [(X Y ) + 3(X + 3 Y )] Y = 3 4 [ (X Y ) + (X + 3 Y )] Niech Z = (X + 3Y ), zmienną X Y możemy traktować jako parametr t przy wyliczaniu warunkowej wartości oczekiwanej (bo jest niezależna od Z). E(XY X Y = t) = E( 4 (t + 3Z)3 3 ( t + Z)) = 4 6 ( t + 3tEZ + 3EZ ). Oczywiście EZ = 0. Natomiast z dwuliniowości kowariancji i EZ = VarZ = = 8 9. Czyli E(XY X Y = t) = 3 6 t

3 5. (Eg 53/9) Mamy próbą prostą ((X, Y ), (X, Y ),..., (X 0, Y 0 )) z rozkładu normalnego dwuwymiarowego o nieznanych parametrach Niech EX i = EY i = µ, VarX i = VarY i = σ, Cov(X i, Y i ) = σ ρ. Z i = X i + Y i, R i = X i Y i, S Z = 9 0 i= (Z i Z), S R = 9 0 i= (R i R), gdzie Z oraz R to odpowiednie średnie z próbki. Do testowania hipotezy H 0 : ρ = 3 przeciwko alternatywie H : ρ 3 możemy użyć testu o obszarze krytycznym postaci: SZ SR < k, lub S Z SR > k, przy czym liczby k i k dobrane są tak, aby przy założeniu, że H 0 jest prawdziwa Liczby k i k są równe:? Odp: D-> k = 0, 69 i k = 6, 358. P( S Z SR < k ) = P( S Z SR > k ) = 0, 05. Rozwiązanie. Zauważmy, że (X i + Y i ) jest niezależne od (X i Y i ), istotnie Cov(X i + Y i, X i Y i ) = VarX i Cov(X i, Y i ) + Cov(Y i, X i ) Var(Y i ) = 0. To oznacza, że SZ i S R są niezależne. Wystarczy wyznaczyć ich rozkłady. Mamy Analogicznie Var(X i + Y i ) = σ + ρσ = ( + ρ)σ. Var(X i Y i ) = σ ρσ = ( ρ)σ. To oznacza, że Z i = [( + ρ)] σẑi, R i = [( ρ)] ˆRi, gdzie Ẑi, ˆR i są niezależne z rozkładu N (0, ). SZ SR = + ρ ŜZ. ρ Ŝ R To oznacza, że aby wyznaczyć k, k należy wziąć wartości dla F 9,9 i pomnożyć je przez +ρ ρ, które przy H 0 wynosi. Czyli k = 3, 789 6, 358 oraz k = (/3, 789) 0, (Eg 54/9) Zmienne losowe X i Y są niezależne i zmienna X ma rozkład logarytmiczno-normalny LN(µ, σ ), gdzie µ = i σ =, a zmienna Y ma rozkład wykładniczy o wartości oczekiwanej. Niech S = X + Y. Wtedy E(S X > e) jest równa? Odp: E-> 4, 6. Rozwiązanie. Przypomnijmy definicję E(S X > e) = ES X>e P(X > e). Teraz zauważmy, że X = e Y, gdzie Y ma rozkład N (, 4), czyli Y = + Z, gdzie Z N (0, ). P(X > e) = P( + Z > ) = P(Z > 0) =. 3

4 Obliczamy Należy obliczyć ES X>e = EX X>e + P(X > e)ey = Ee +Z Z>0 + = + eeez Z>0. Ostatecznie Ee Z Z>0 = Ee Z Z>0 = e 0 e x e x dx = e e (x ). π π π e x dx = e P(Z > ). E(S X > e) = + e 3 P(Z > ) 4, (Eg 55/4) Załóżmy, że zmienne losowe X, Y mają łączny rozkład normalny taki, że Oblicz Cov(X, Y ). Odp: D-> 8. EX =, EY = 0, Var(X) =, Var(Y ) = 9, i Cov(X, Y ) = 3. Rozwiązanie. Przypomnijmy, że ogólny wzór na k-ty moment zmiennej V rozkładzie N (0, σ ) ma postać EV k = σ k (k )(k 3)...3, EV k+ = 0 Aby obliczyć Cov(X, Y ) potrzebujemy policzyć EX Y. Po raz kolejny należy posłużyć się bazą złożoną z liniowych względem X, Y zmiennych niezależnych. Ściślej szukamy α takiego, że X αy jest nieskorelowane z Y, a przez to niezależne bo (X, Y ) tworzą wektor gaussowski. Mamy Cov(Y, X αy ) = 3 9α, stąd α = 3. Niech Z = X 3 Y, zachodzi EZ =, VarZ = =. Dalej mamy rozkład X = Z + 3 Y, stąd EX Y = E(Z + 3 Y ) Y = EZ EY + 3 EZEY EY 4. Drugi składnik powyżej jest zerem bo EY = 0, a stąd EY 3 = 0. Zauważmy jeszcze, że podobnie EX EY = (EZ + 9 EY )EY. Dlatego Cov(X, Y ) = 9 (EY 4 (EY ) ). Pozostaje zauważyć, że EY 4 = 3 9 oraz EY = 9. Cov(X, Y ) = 9 (3 9 9 ) = 9 = 8. 4

5 8. (Eg 57/3) Niech X, X,..., X n będą niezależnymi zmiennymi losowymi z rozkładu normalnego o wartości oczekiwanej 0 i nieznanej wariancji σ. Rozważmy estymatory odchylenia standardowego σ postaci ˆσ c = c n i= X i. Niech ˆσ c oznacza estymator o najmniejszym błędzie średniokwadratowym w klasie rozważanych estymatorów. Wtedy c jest równe? Odp: D-> π π+n. Rozwiązanie. Niech X ma rozkład N (0, σ ). Oczywiście E X = π σ, zatem f(c) = E(ˆσ c σ) = Var(ˆσ) + (Eˆσ σ) = nc Var( X ) + (cn ) σ = π = nc ( π )σ + (cn ). π Aby obliczyć punkt minimum znajdujemy z równania f (c) = 0. Zachodzi f (c) = nc( π )σ + (n c π n π )σ. stąd f (c) = 0 dla n( π π (n ) + )c = n czyli c = π π + n. 9. (Eg 58/4) Niech X, X,..., X n,..., N będą zmiennymi losowymi. Zmienne X, X,..., X n,... mają rozkład logarytmiczno-normalny LN(µ, σ ), gdzie µ =, σ = 4. Zmienna N ma rozkład Poissona o wartości oczekiwanej. Niech S N = N i= X i dla N > 0 oraz S N = 0 dla N = 0. Wtedy współczynnik asymetrii E(S N ES N ) 3 (VarS N jest równy? ) 3/ Odp: D-> e6. Rozwiązanie. Niech X ma rozkład LN(µ, σ ), najpierw zauważmy, że E(S N ES N ) 3 = EE[(S N ES N ) 3 N] = EE[(S N NEX + (N EN)EX) 3 N] = Zauważmy, że = ENE(X EX) 3 + 3EN(N EN)EXE(X EX) + E(N EN) 3 (EX) 3. = EN = VarN = E(N EN) = EN(N EN) = E(N EN) 3 (scentrowane momenty drugi i trzeci dla rozkładu Poissona są równe wartości oczekiwanej). E(S N ES N ) 3 = (E(X EX) 3 + 3EXE(X EX) + (EX) 3 ) = EX 3. Z definicji X = exp(y ), gdzie Y ma rozkład N (µ, σ ), a dalej Y = σz + µ, gdzie Z ma rozkład N (0, ). Przypomnijmy wzór n transformatę Laplace cea dla rozkładu N (0, ) Stąd E exp(λz) = exp( λ ). EX 3 = E exp(3σz + 3µ) = e 9σ +3µ = e 4. E(S N ES N ) 3 = e 4. Analogicznie pokazujemy VarS N = E(S N ES N ) = ENE(X EX) + VarN(EX) = EX. 5

6 Mamy EX = E exp(σz + µ) = e σ +µ = e. czyli VarS N = E(S N ES N ) = e. Obliczamy E(S N ES N ) 3 (VarS N ) 3/ = e4 (e ) 3 = e6. 0. (Eg 59/) Zmienna losowa X rozkład logarytmiczno-normalny LN(µ, σ ), gdzie µ = i σ = 4. Wyznacz E(X e X>e) EX. Odp: C->, 8. Rozwiązanie. Zauważmy, że X = e Y, gdzie Y ma rozkład N (µ, σ ), nadto Y = σz +µ = Z +, gdzie Z pochodzi z rozkładu N (0, ). Z definicji E(X e X > e) = E X>e(X e). P(X > e) Obliczamy P(X > e) = P(Z + > ) = P(Z > 0) =. E X>e (X e) = ee Z>0 (e Z ) = e(e Z>0 e Z ). Nadto a stąd Otrzymujemy E Z>0 e Z = 0 e x e x E Z>0 e Z = e z drugiej strony z transformaty Laplace a dx = e π e x 0 e (x ) π dx = e P(Z > ). E(X e X > e) = e 3 P(Z > ) e EX = E exp(z + ) = e 3. π dx Czyli E(X e X > e) EX = P(Z > ) e, 8.. (Eg 60/6) Zmienne losowe X, X,..., X 0 są niezależne o jednakowym rozkładzie normalnym o wartości oczekiwanej i wariancji 4. Niech S 5 = 5 i= X i i E(S5 S 0 = 4) jest równa? Odp: D-> 5. Rozwiązanie. Niech S 5 = 0 i=6 X i. Z jednej strony S 0 = S 5 + S 5 nadto szukamy α takiego, że 0 = Cov(S 5 + S 5, S 5 αs 5 ) = Var(S 5 ) αvar(s 5 ) = 5 4 α5 4 = 0( α3). Stąd α = 3. Oczywiście S 5 = 4 [(S 5 + S 5 ) + 3(S 5 3 S 5)] = 4 [S 0 + 3(S 5 3 S 5)]. 6

7 Sprawdzamy E(S 5 S 0 = 4) = E ( 6 [ ) S 0 + 3(S 5 5)] 3 S S 0 = = 6 S S 0E(S 5 3 S 5) E(S 5 3 S 5). E(S 5 3 S 5) = 0, E(S 5 3 S 5) = = E(S5 S 0 = 4) = 6 S = = 5.. (Eg 6/6) Rozważmy następujące zagadnienie testowania hipotez statystycznych. Dysponujemy próbką X,..., X n z rozkładu normalnego o nieznanej średniej µ i znanej wariancji równej. Przeprowadzamy najmocniejszy test hipotezy H 0 : µ = 0 przeciwko alternatywie H : µ = na poziomie istotności α =. Niech β n oznacza prawdopodobieństwo błędu drugiego rodzaju, dla rozmiaru próbki n. Wybierz poprawne stwierdzenie: (asymptotyka β n ). β Odp: E-> lim n e n / =. 4πn Rozwiązanie. Niech f 0, f będą gęstościami odpowiednio N (0, ), N (, ). Przypomnijmy, że test najmocniejszy Neymana Pearsona polega na porównaniu gęstości, czyli zbiór krytyczny ma postać K = {(x,..., x n ) R n : f (x,..., x n ) f 0 (x,..., x n ) > C}, gdzie C jest stałą taką, że P µ=0 ((X,..., X n ) K) =. Łatwo zauważyć, że Stąd szukamy stałej C takiej, że K = {(x,..., x n ) : x i > C}. i= P µ=0 (X X n > C) = stąd C = 0. Błąd drugiego rodzaju to akceptacja hipotezy H 0 podczas, gdy zachodzi H. Oznacza to, że β n = P µ= (X X n 0). Przy µ = zachodzi X i = Z i +, gdzie Z, Z i, i =,,... będą niezależne z rozkładu N (0, ). Stąd β n = P( (Z Z n ) n) = P( nz n) = P(Z n). Ponieważ P(Z > t) πt e t, więc lim β n e n / 4πn =. 7

8 3. (Eg 6/) Niech X, X, X 3,... będą niezależnymi zmiennymi losowymi o tym samym rozkładzie logarytmiczno normalnym parametrami µ R i σ > 0. Niech T n oznacza estymator największej wiarygodności wariancji V w tym modelu w oparciu o próbę X, X,..., X n. Niech µ = 0, 5 i σ =. Wtedy P( T n V n > 0, 73) =? Odp: A-> 0, 34. Rozwiązanie. Zachodzi X i = e Yi, i =,,..., n, gdzie Y, Y, Y,..., Y n są niezależne i pochodzą z rozkładu N (µ, σ ). Trzeba przypomnieć estymatory największej wiarygodności dla rozkładu normalnego µ n = Ȳ = n (Y Y n ), σ n = Y (Ȳ ) = n (Y i Ȳ ). Powyższe estymatory wykorzystujemy aby znaleźć estymator wariancji V. Mamy Nadto z powyższego wzory wynika, że i= V = VarY = EY (EY ) = e σ +µ e σ +µ = e. T n = e µn (e σ n e σ n ). Należy pamiętać, że µ n i σ n są niezależne. Mamy T n V = (e µn e )(e σ n e σ n )+ + e (e σ n e e σ n e). Z mocnego prawa wielkich liczb wynika, że µ n µ, σ n σ prawie na pewno. Nadto n(e µ n e ) = ne (e µn+ ) = ne ( µ n + )( + O( µ n + )). Oczywiście w sensie słabej zbieżności Stąd lim n( µn + ) = N (0, 4). lim n(e µ n e )(e σ n e σ n ) = A N (0, [(e )] ) Ściślej korzystając z σ n σ lim n(e µ n e )(e σ n e σ n ) = lim n(e µ n e )(e e) = A. Analogicznie W sensie słabej zbieżności e σ n e + e σ n e = (e e) n( σ n )( + O( σ n )). lim n( σ n ) = N (0, ). lim e (e σ n e e σ n e) = B N (0, [e ] ). Ostatecznie korzystając z niezależności µ n oraz σ n dostajemy dla niezależnych A i B n(tn V ) = A + B N (0, [(e ) ] + [e )] ). lim Niech Z będzie z N (0, ) otrzymujemy lim P( T n V 0, 73 n > 0, 73) = P( Z > ) = 0, 34. [(e ) ] + [(e )] Przedstawiona metoda ma swoją nazwę jako metoda delta. Powyższy przypadek szczególny można zebrać w ogólne twierdzenie. 8

9 Twierdzenie (Metoda delta) Jeżeli dla ciągu zmiennych T n mamy n(t n µ) N (0, σ ) przy n i h : R R jest funkcją różniczkowalną w punkcie µ, to n(h(tn ) h(µ)) N (0, σ (h (µ)) ), w sensie zbieżności według rozkładu. 4. (Eg 63/7) Zmienna losowa (X, Y, Z) ma rozkład normalny z wartością oczekiwaną EX = 0, EY = EZ = i macierzą kowariancji Obliczyć Var(X(Y + Z)). Odp: D-> 7. Rozwiązanie. Stosujemy metodę z uniezależnianiem zmiennych. Z założenia wynika, że Cov(X, Y ) = oraz Cov(X, Z) = 0, Cov(Y, Z) =. zmienne X i Z są niezależne, Wystarczy dobrać α i β tak aby Y αx βz było niezależne (czyli równoważnie nieskorelowane) ze zmiennymi X i Z. Sprawdzamy, że Cov(Y αx βz, X) = α, czyli α = nadto Cov(Y αx βz, Z) = 4β, czyli β =. baza liniowa składa się ze zmiennych niezależnych X, Ȳ = Y X Z, Z, gdzie X ma rozkład N (0, ), zmienna Ȳ ma rozkład N (, ), a zmienna Z rozkład N (, 4). Obliczamy Var(X(Y + Z)) = Var(XY ) + Cov(XY, XZ) + Var(XZ) = = Var(XȲ ) + Cov(XȲ, X(X + Z)) + Var(X(X + Z))+ + Cov(XȲ, XZ) + Cov(X(X + Z), XZ) + Var(XZ) = = EX EȲ + EX EȲ EZ + EX4 (EX ) + 4 EX EZ + + EX EȲ EZ + EX EZ = ( + 4 ) = (Eg 64/9) Niech Y, Y,..., Y n będą niezależnymi zmiennymi losowymi, przy czym zmienna Y i, i =,,..., n, ma rozkład logarytmiczno-normalny LN(bx i, ), gdzie x, x,..., x n są znanymi liczbami, a b jest nieznanym parametrem. Załóżmy, że n i= x i = 4. Niech b będzie estymatorem największej wiarogodności parametru b, a ḡ = exp(b) estymatorem funkcji g(b) = exp(b). Wtedy obciążenie estymatora ḡ E b ḡ g(b) jest równe Odp: B-> e b ( e ). Rozwiązanie. Najpierw obliczamy wiarygodność dla zmiennych Z, Z,..., Z n, gdzie Z i = ln Y i, czyli Z i ma postać N (bx i, ). Obliczamy wiarygodność dla Z,..., Z n L(b, z) = (π) n exp( 9 (z i bx i ) ). i=

10 Rozwiązujemy równanie f (b) = 0 dla f(b) = ln L(b, z). Wówczas Stąd x, z (z i bx i )x i = 0, czyli b = x, x = x, z. 4 i= b = 4 x i Z i. i= Pozostaje zauważyć, że b ma rozkład N (b, 4 ). Stąd E b ḡ g(b) = E b exp( b) e b = e b (e ). 0

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym. Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.

Bardziej szczegółowo

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2. Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz. Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL MNK z losową macierzą obserwacji Równanie modelu y = X β + ε Jeżeli X zawiera elementy losowe to należy sprawdzić czy E(b β) = E[(X X ) 1 X ε]? = E[(X X ) 1 X ]E(ε) Przypomnienie: Nieskorelowane zmienne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo