Statystyka i eksploracja danych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka i eksploracja danych"

Transkrypt

1 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja danych Repetytorium z teorii prawdopodobieństwa Adam Jakubowski UMK Toruń 2011 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

2

3 Spis treści Wstęp 1 1 Charakterystyki zmiennych losowych 3 Słowniczek teorii prawdopodobieństwa Rozkład i dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Charakterystyki liczbowe zmiennych losowych Mediana i kwantyle Klasyfikacja rozkładów na prostej 7 Rozkłady dyskretne Rozkłady absolutnie ciągłe Przykłady Rozkłady wielowymiarowe 11 Wektory losowe Rozkłady łączne a rozkłady brzegowe Niezależność stochastyczna 13 Niezależność Kryteria niezależności Niezależność zdarzeń Całka iloczynu niezależnych zmiennych losowych Charakterystyki wektorów losowych 17 Korelacja Wartość oczekiwana i macierz kowariancji i

4 ii Spis treści 6 Istnienie procesów stochastycznych 21 Schemat Bernoullego Funkcje Rademachera Rozwinięcia dwójkowe Idea ogólna Prawa wielkich liczb 23 Słabe prawo wielkich liczb Markowa Mocne prawo wielkich liczb Centralne twierdzenie graniczne 25 Twierdzenie de Moivre a-laplace a Centralne twierdzenie graniczne O przestrzeniach Hilberta 27 Przestrzenie prehilbertowskie Twierdzenia o rzucie ortogonalnym Literatura 31

5 Wstęp Suplement do wykładu Statystyka i eksploracja danych gromadzi podstawowe definicje i rezultaty z teorii prawdopodobieństwa, w zakresie niezbędnym do zrozumienia treści przekazywanych podczas wykładu. Materiał zawarty w Suplemencie będzie omawiany i ilustrowany przykładami rachunkowymi i liczbowymi oraz zadaniami podczas zajęć wyrównawczych prowadzonych równolegle do wykładu w semestrze zimowym. W trakcie egzaminu milcząco będę zakładał, że zdający ten materiał znają. Tylko w ten sposób będzie możliwe zrealizowanie bardziej ambitnego programu przedmiotu Statystyka i eksploracja danych. Adam Jakubowski 1

6 2 Wstęp

7 1. Charakterystyki zmiennych losowych Słowniczek teorii prawdopodobieństwa 1.1 Definicja Przestrzenią probabilistyczną nazywamy trójkę (Ω, F, P ), gdzie Ω jest zbiorem zdarzeń elementarnych (inaczej: elementy ω zbioru Ω nazywamy zdarzeniami elementarnymi). F jest σ-algebrą podzbiorów zbioru Ω. Elementy F nazywamy zdarzeniami. P : F [0, 1] jest prawdopodobieństwem na (Ω, F). 1.2 Uwaga Stwierdzenie F jest σ-algebrą oznacza, że: 1. F, Ω F. 2. Jeżeli A F, to również A c F. 3. Jeżeli A 1, A 2,... F, to j=1 A j F. 1.3 Uwaga Stwierdzenie P : F [0, 1] jest prawdopodobieństwem oznacza, że: 1. P (Ω) = Jeżeli A 1, A 2,..., są parami rozłączne, to P ( A j ) = P (A j ). j=1 j=1 (prawdopodobieństwo jest σ- addytywne). 1.4 Definicja Zmienną losową na przestrzeni probabilistycznej (Ω, F, P ) nazywamy funkcję X : Ω IR 1 o własności X 1 ((, u]) F, u IR 1. 3

8 4 1. Charakterystyki zmiennych losowych 1.5 Uwaga Będziemy używać równoważnych zapisów X 1 ((, u]) = {ω ; X(ω) (, u]} = {ω ; X(ω) u} = {X u}. 1.6 Uwaga Jeżeli X jest zmienną losową na (Ω, F, P ), to określone są prawdopodobieństwa P (X > u) = P ({ω ; X(ω) > u}), u IR 1, a także prawdopodobieństwa P (X u) = P ({ω ; X(ω) u}), u IR 1, Rozkład i dystrybuanta zmiennej losowej 1.7 Definicja Rozkładem zmiennej losowej X nazywamy prawdopodobieństwo P X na IR 1 zadane na odcinkach wzorem P X ((a, b]) := P (a < X b) = P ({ω ; X(ω) (a, b]}). 1.8 Uwaga P X ((a, b]) = P X ((, b]) P X ((, a]). 1.9 Definicja Dystrybuantą zmiennej losowej X nazywamy funkcję F X : IR 1 [0, 1] zadaną wzorem F X (x) = P (X x), x IR Uwaga Dystrybuanta zmiennej losowej jest w istocie funkcją rozkładu zmiennej losowej. Dlatego wystarczy badać tylko dystrybuanty rozkładów na IR Definicja Prawdopodobieństwa na IR 1 nazywamy rozkładami (lub rozkładami prawdopodobieństwa) na IR Definicja Dystrybuantą rozkładu (prawdopodobieństwa) µ na IR 1 nazywamy funkcję F µ : IR 1 [0, 1] zadaną wzorem F µ (x) = µ((, x]), x IR Uwaga Jeżeli µ jest rozkładem na IR 1, to fakt, że zmienna losowa X ma rozkład µ zapisujemy często w postaci X µ Twierdzenie Niech µ i ν będą rozkładami na IR 1. Jeżeli F µ = F ν, to µ = ν.

9 Wartość oczekiwana zmiennej losowej Twierdzenie Niech µ będzie rozkładem na IR 1. Dystrybuanta F µ ma następujące własności: 1. F µ jest funkcją niemalejącą; 2. F µ jest prawostronnie ciągła; 3. lim x F µ (x) = 0, lim x + F µ (x) = Definicja Dystrybuantą nazywamy funkcję F : IR 1 [0, 1] spełniającą warunki z poprzedniego twierdzenia Twierdzenie Niech F będzie dystrybuantą. Istnieje dokładnie jeden rozkład µ na IR 1 taki, że F = F µ. Wartość oczekiwana zmiennej losowej 1.18 Definicja Wartością oczekiwaną nieujemnej zmiennej losowej X nazywamy całkę EX := + 0 P (X > u) du [0, + ] Uwaga Niech f będzie funkcją o wartościach rzeczywistych. Częścią dodatnią f + (ujemną f ) funkcji f nazywamy złożenie tej funkcji z funkcją h + (x) = 0 x (z funkcją h (x) = 0 ( x)) Definicja Niech X będzie zmienna losową i niech EX + < + i EX < + (tzn. X jest całkowalna). Wartością oczekiwaną zmiennej losowej X nazywamy (całkę) EX := EX + EX (, + ) Twierdzenie Wartość oczekiwana nieujemnych zmiennych losowych ma następujące własności. 1. Jeżeli 0 X Y, to EX EY. 2. Jeżeli X 0, to EX = 0 wtedy i tylko wtedy, gdy P (X > 0) = Jeżeli X, Y 0 i a, b IR +, to E(aX + by ) = aex + bey Twierdzenie Wartość oczekiwana całkowalnych zmiennych losowych ma następujące własności.

10 6 1. Charakterystyki zmiennych losowych 1. Jeżeli X jest całkowalna, to P ( X = + ) = Jeżeli X, Y są całkowalne i a, b IR 1, to całkowalna jest zmienna ax + by i ma miejsce równość E(aX + by ) = aex + bey. Charakterystyki liczbowe zmiennych losowych 1.23 Definicja Momentem absolutnym rzędu p > 0 zmiennej losowej X nazywamy liczbę m p = m p (X) = E X p Definicja Wariancją całkowalnej z kwadratem zmiennej losowej X nazywamy liczbę D 2 (X) = Var (X) := E(X EX) 2 = EX 2 (EX) Definicja Odchyleniem standardowym całkowalnej z kwadratem zmiennej losowej X nazywamy liczbę D(X) := Var (X) = E(X EX) 2. Mediana i kwantyle 1.26 Definicja Medianą zmiennej losowej X (właściwie: rozkładu zmiennej losowej) nazywamy taką liczbę x 1/2, że P (X x 1/2 ) 1/2, P (X x 1/2 ) 1/ Definicja Kwantylem rzędu p, p (0, 1), rozkładu zmiennej losowej X nazywamy taką liczbę x p, że P (X x p ) p, P (X x p ) 1 p Zadanie Przypuśćmy, że znamy dystrybuantę F X zmiennej losowej X. Jak znaleźć medianę i kwantyle tej zmiennej?

11 2. Klasyfikacja rozkładów na prostej Rozkłady dyskretne 2.1 Definicja Zmienna losowa X ma rozkład dyskretny, jeśli istnieją liczby x 1, x 2,... IR 1 i prawdopodobieństwa p 1, p 2,... 0, j=1 p j = 1, takie, że P (X = x j ) = p j, j = 1, 2, Fakt Jeżeli X ma rozkład dyskretny, to dla dowolnej funkcji f : IR 1 IR 1 Ef(X) = f(x i )P (X = x i ) = f(x i )p i, i=1 i=1 przy czym całka istnieje dokładnie wtedy, gdy i=1 f(x i ) p i < Fakt P X {x} = P (X = x) > 0 wtedy i tylko wtedy, gdy dystrybuanta F X ma skok w punkcie x i F X (x) F X (x ) = P (X = x). Dowód. Rozkłady absolutnie ciągłe 2.4 Definicja Zmienna losowa X ma rozkład absolutnie ciągły o gęstości p(x), jeśli dla każdych a < b P (a < X b) = b (Wtedy p(x) 0 l-prawie wszędzie i p(x) dx = 1). a p(x) dx. 2.5 Fakt Gęstość rozkładu absolutnie ciągłego jest wyznaczona jednoznacznie z dokładnością do równości l-prawie wszędzie. 2.6 Uwaga Można pokazać, że każda dystrybuanta F jest prawie wszędzie różniczkowalna i pochodna F (określona l-prawie wszędzie) spełnia warunek F (x) F (x) dx. (,x] 7

12 8 2. Klasyfikacja rozkładów na prostej Może się więc zdarzyć, że IR 1 F (x) dx < 1 (przykład!). Jeżeli IR 1 F (x) dx = 1, to rozkład odpowiadający dystrybuancie F jest absolutnie ciągły z gęstością p(x) = F (x). 2.7 Fakt Jeżeli X ma rozkład absolutnie ciągły o gęstości p(x), to dla dowolnej funkcji borelowskiej f : IR 1 IR 1 Ef(X) = + f(x)p(x) dx, przy czym całka istnieje dokładnie wtedy, gdy + f(x) p(x) dx < +. Przykłady 2.8 Przykłady rozkładów dyskretnych. 1. Rozkład zdegenerowany w punkcie C IR 1 albo miara delta Diraca δ C : 2. Rozkład 0 1 lub Bernoullego: 3. Rozkład dwumianowy: 4. Rozkład Poissona: P (X = k) = 5. Rozkład geometryczny: P (X = C) = 1. P (X = 1) = p = 1 P (X = 0). ( ) N p k (1 p) N k, k = 0, 1, 2,..., N. k P (X = k) = e λ λk, k = 0, 1, 2,.... k! P (X = k) = p(1 p) k 1, k = 1, 2, Przykłady rozkładów absolutnie ciągłych. 1. Rozkład jednostajny na odcinku (a, b): p(x) = 1 b a I (a,b)(x).

13 Przykłady 9 2. Rozkład normalny N (m, σ 2 ) z parametrami m IR 1 i σ 2 > 0: p(x) = 1 2πσ e (x m)2 2σ Rozkład wykładniczy z parametrem λ > 0. p(x) = λe λx I (0,+ ) (x). 4. Rozkłady gamma z parametrami α, λ > 0: p(x) = αλ Γ(λ) xλ 1 e αx I (0,+ ) (x). 5. Rozkład χ 2 z n stopniami swobody (χ 2 n), to rozkład gamma z parametrami α = n/2, λ = 1/ Zadanie Pokazać, że jeśli X N (0, 1), to X 2 χ Zadanie Niech zmienna losowa X ma rozkład absolutnie ciągły o gęstości p(x). Jakie warunki musi spełniać funkcja f : IR 1 IR 1, aby zmienna losowa f(x) miała rozkład absolutnie ciągły? Znaleźć postać gęstości Zadanie Znaleźć wartości oczekiwane i wariancje rozkładów wymienionych w przykładach 2.8 i 2.9.

14 10 2. Klasyfikacja rozkładów na prostej

15 3. Rozkłady wielowymiarowe Wektory losowe 3.1 Definicja Wektorem losowym nazywamy odwzorowanie X = (X 1, X 2,..., X d ) T : (Ω, F, P ) IR d, którego składowe X 1, X 2,..., X d są zmiennymi losowymi. 3.2 Definicja Rozkład P X wektora losowego X, to prawdopodobieństwo na IR d zadane wzorem P X ((a 1, b 1 ] (a 2, b 2 ]... (a d, b d ]) = = P (a 1 < X 1 b 1, a 2 < X 2 b 2,..., a d < X d b d ). 3.3 Uwaga Podobnie jak w przypadku jednowymiarowym, znajomość rozkładu wektora losowego pozwala obliczać wartości oczekiwane funkcji od wektora losowego Ef( X). 3.4 Definicja 1. Wektor losowy X ma rozkład dyskretny, jeśli istnieją x 1, x 2,... IR d i prawdopodobieństwa p 1, p 2,... 0, j=1 p j = 1, takie, że P ( X = x j ) = p j, j = 1, 2, Wektor losowy X ma rozkład absolutnie ciągły o gęstości p(x), jeśli dla każdego A postaci (a 1, b 1 ] (a 2, b 2 ]... (a d, b d ] P ( X A) = A p(x) dx. (Wtedy p(x) 0 l d -prawie wszędzie i p(x) dx = 1). 11

16 12 3. Rozkłady wielowymiarowe Rozkłady łączne a rozkłady brzegowe 3.5 Definicja Rozkład P X wektora losowego X = (X 1, X 2,..., X d ) T nazywamy rozkładem łącznym zmiennych losowych X 1, X 2,..., X d. Rozkłady (jednowymiarowe) P X1, P X2,..., P Xd składowych wektora losowego nazywamy rozkładami brzegowymi rozkładu P X. 3.6 Uwaga Na ogół rozkłady brzegowe nie determinują rozkładu łącznego, tzn. istnieje wiele rozkładów na IR d o tych samych rozkładach brzegowych (przykład!).

17 4. Niezależność stochastyczna Niezależność 4.1 Definicja Zmienne losowe X 1, X 2,..., X d są niezależne (lub stochastycznie niezależne), jeśli Ef 1 (X 1 )f 2 (X 2 ) f d (X d ) = Ef 1 (X 1 ) Ef 2 (X 2 ) Ef d (X d ). dla dowolnego układu f 1, f 2,..., f d funkcji ograniczonych na IR 1 i takich, że f 1 (X 1 ), f 2 (X 2 ),..., f d (X d ) są zmiennymi losowymi. Rodzina zmiennych losowych {X i } i II jest niezależna, jeśli każda jej skończona podrodzina składa się ze zmiennych losowych niezależnych. 4.2 Twierdzenie Niech X 1, X 2,..., X d będą zmiennymi losowymi określonymi na tej samej przestrzeni probabilistycznej (Ω, F, P ). Następujące warunki są równoważne: (i) Zmienne X 1, X 2,..., X d są niezależne. (ii) Dla dowolnych liczb x 1, x 2,..., x d ma miejsce równość P (X 1 x 1, X 2 x 2,..., X d x d ) = P (X 1 x 1 )P (X 2 x 2 ) P (X d x d ). Kryteria niezależności 4.3 Definicja Dystrybuantą wektora losowego X nazywamy funkcję IR d x = (x 1, x 2,..., x d ) T F X (x) = P (X 1 x 1, X 2 x 2,..., X d x d ). 4.4 Uwaga Na mocy warunku (ii) twierdzenia 4.2, zmienne losowe są niezależne dokładnie wtedy, gdy dystrybuanta ich rozkładu łącznego jest iloczynem dystrybuant rozkładów brzegowych. W dalszym ciągu nie będziemy jednak zajmować się dystrybuantami rozkładów na IR d, gdyż są one znacznie mniej wygodnym narzędziem niż dystrybuanty na IR 1. 13

18 14 4. Niezależność stochastyczna 4.5 Fakt Jeżeli zmienne losowe X 1, X 2,..., X d są niezależne, to dla (prawie) dowolnych funkcji g 1, g 2,..., g d, zmienne losowe też są niezależne. g 1 (X 1 ), g 2 (X 2 ),..., g d (X d ) 4.6 Twierdzenie Niech rozkłady zmiennych X 1, X 2,..., X d będą dyskretne. Zmienne losowe X 1, X 2,..., X d są niezależne dokładnie wtedy, gdy dla dowolnych x 1, x 2,..., x d IR 1 ma miejsce związek P (X 1 = x 1, X 2 = x 2,..., X d = x d ) = P (X 1 = x 1 )P (X 2 = x 2 ) P (X d = x d ). 4.7 Twierdzenie Niech rozkłady zmiennych X 1, X 2,..., X d będą absolutnie ciągłe z gęstościami p 1 (x), p 2 (x),..., p d (x). Zmienne losowe X 1, X 2,..., X d są niezależne dokładnie wtedy, gdy rozkład łączny tych zmiennych jest absolutnie ciągły i jego gęstość ma postać p X (x 1, x 2,..., x d ) = p 1 (x 1 )p 2 (x 2 ) p d (x d ). Niezależność zdarzeń 4.8 Definicja Rodzina zdarzeń {A i } i II jest niezależna, jeśli funkcje charakterystyczne {I Ai } i II tych zdarzeń są niezależne. 4.9 Twierdzenie Zdarzenia {A i } i II są niezależne dokładnie wtedy, gdy dla dowolnego skończonego podzbioru II 0 II ( ) P A i = Π i II0 P (A i ). i II Definicja Zmienne losowe {X i } i II są niezależne parami, jeśli dla każdych i, j II, i j, zmienne X i i X j są niezależne. Podobnie, zdarzenia {A i } i II sa niezależne parami, jeśli każde dwa zdarzenia A i i A j, i j są niezależne Zadanie Podać przykład zdarzeń niezależnych parami, ale zależnych zespołowo (np. przykład Bernsteina).

19 Całka iloczynu niezależnych zmiennych losowych 15 Całka iloczynu niezależnych zmiennych losowych 4.12 Twierdzenie (O mnożeniu wartości oczekiwanych) Jeżeli zmienne losowe X i Y są niezależne i całkowalne, to iloczyn XY jest całkowalną zmienną losową i Dowód. EXY = EX EY Uwaga Bez założenia o niezależności warunek dostateczny dla całkowalności iloczynu XY odwołuje się do tzw. nierówności Höldera Wniosek Niech X 1, X 2,..., X d będą niezależne. Jeżeli funkcje f i sa takie, że E f i (X i ) < +, i = 1, 2,..., d, to Ef 1 (X 1 )f 2 (X 2 ) f d (X d ) = Ef 1 (X 1 ) Ef 2 (X 2 ) Ef d (X d ).

20 16 4. Niezależność stochastyczna

21 5. Charakterystyki wektorów losowych Korelacja 5.1 Definicja Kowariancją zmiennych losowych X i Y nazywamy liczbę cov (X, Y ) := E(X EX)(Y EY ) = EXY EX EY. 5.2 Definicja Zmienne losowe X i Y są nieskorelowane, jeśli cov (X, Y ) = Uwaga Kowariancja istnieje, jeśli X i Y są całkowalne z kwadratem. Jeżeli X i Y są całkowalne i niezależne, to kowariancja istnieje i jest równa 0. Niezależne i całkowalne zmienne losowe są więc nieskorelowane. Istnieją jednak nieskorelowane zmienne losowe, które są zależne (przykład!). 5.4 Fakt Niech całkowalne z kwadratem zmienne losowe X 1, X 2,..., X n będą nieskorelowane. Wówczas Var (X 1 + X X n ) = Var (X 1 ) + Var (X 2 ) + + Var (X n ). W szczególności, powyższy wzór ma miejsce dla całkowalnych z kwadratem, parami niezależnych zmiennych losowych. 5.5 Definicja Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i y nazywamy liczbę cov (X, Y ) jeśli D(X) D(Y ) 0, r(x, Y ) = D(X)D(Y ) 1 jeśli D(X) D(Y ) = 0. Niektórzy autorzy oznaczają współczynnik korelacji symbolem ρ(x, Y ). 17

22 18 5. Charakterystyki wektorów losowych 5.6 Fakt 1. 1 r(x, Y ) r(x, Y ) = 0 wtedy i tylko wtedy, gdy X i Y są nieskorelowane. 3. r(x, Y ) = 1 wtedy i tylko wtedy, gdy istnieją stałe α, β IR 1 takie, że X = βy +α lub Y = βx + α. Wartość oczekiwana i macierz kowariancji 5.7 Definicja Niech X = (X 1, X 2,..., X d ) T będzie wektorem losowym. 1. Niech każda składowa wektora X będzie całkowalna (równoważnie: E X < + ). Wartością oczekiwaną wektora X nazywamy wektor wartości oczekiwanych jego składowych: E X = (EX 1, EX 2,..., EX d ) T. 2. Niech każda składowa wektora X będzie całkowalna z kwadratem (równoważnie: E X 2, + ). Macierzą kowariancji wektora X nazywamy macierz o współczynnikach σ jk = cov (X j, X k ). Macierz kowariancji oznaczać będziemy symbolem Cov ( X). Ten sam symbol używany będzie również dla oznaczenia operatora kowariancji zadawanego w oczywisty sposób przez macierz kowariancji. W napisie x, Cov ( X)y mamy więc do czynienia z operatorem kowariancji, a w napisie x T Cov ( X)y z macierzą kowariancji. 3. Wariancją wektora X nazywamy liczbę Var ( X) := E X EX d 2 = Var (X j ). j=1 5.8 Twierdzenie Niech E X < +. Wartość oczekiwana wektora X to jedyny wektor m IR d taki, że E x, X = x, m, x IR d. 5.9 Twierdzenie Niech E X 2 < +. Macierz kowariancji wektora X jest jedyną symetryczną macierzą Σ wymiaru d d wyznaczoną przez formę kwadratową E x, X E X 2 = Var ( x, X ) = x, Σ x, x IR d.

23 Wartość oczekiwana i macierz kowariancji 19 Cov ( X) jest więc jedyną macierzą Σ spełniającą związek E x, X E X y, X E X = cov ( x, X, y, X ) = x, Σ y, x, y IR d Twierdzenie Macierz kowariancji wektora losowego X jest symetryczna i nieujemnie określona. Na odwrót, dla dowolnej symetrycznej i nieujemnie określonej macierzy Σ rozmiaru d d istnieje d-wymiarowy wektor losowy X taki, że Cov ( X) = Σ.

24 20 5. Charakterystyki wektorów losowych

25 6. Istnienie procesów stochastycznych Schemat Bernoullego 6.1 Definicja Schematem Bernoullego z prawdopodobieństwem sukcesu p (0, 1) nazywamy ciąg X 1, X 2,... niezależnych zmiennych losowych o jednakowym rozkładzie P (X n = 1) = p = 1 P (X n = 0). Łatwo jest skonstruować skończony schemat Bernoullego (nie wykraczając poza dyskretne przestrzenie probabilistyczne). Nie jest jednak oczywiste, czy istnieją nieskończone schematy Bernoullego. Oto dwa klasyczne przykłady dające twierdzącą odpowiedź na to pytanie. Funkcje Rademachera 6.2 Przykład Niech Niech Ω = [0, 1], F = B 1 [0, 1] i niech P będzie miarą Lebesgue a l obciętą do [0, 1] (tzw. standardowa przestrzeń probabilistyczna). Funkcje Rademachera określamy wzorem: r n (ω) = sign (sin 2πnω), n = 1, 2,.... Są one niezależne (jak to sprawdzić?). Wzór X n (ω) = 1 2 (r n(ω) + 1) zadaje schemat Bernoullego z prawdopodobieństwem sukcesu p = 1/2. Rozwinięcia dwójkowe 6.3 Przykład Niech (Ω, F, P ) będą jak wyżej. Dla ω [0, 1] niech X n (ω) będzie n-tą cyfrą rozwinięcia dwójkowego liczby ω: ω = X n (ω)2 n. n=1 Dla poprawności definicji przyjmujemy dodatkowo umowę, że liczby dwójkowowymierne zapisujemy z użyciem nieskończonej liczby jedynek, czyli n=1 X n (ω) = dla wszystkich ω prócz 0. 21

26 22 6. Istnienie procesów stochastycznych Idea ogólna 6.4 Twierdzenie (Kołmogorowa o istnieniu procesu stochastycznego) Niech dla każdego n IN ν n będzie rozkładem na IR n. Jeżeli rozkłady ν n są zgodne, tzn. ν n+1 (Π n+1 n ) 1 = ν n, n IN, (gdzie Π n+1 n : IR n+1 IR n jest naturalnym rzutem na pierwszych n współrzędnych), to istnieje przestrzeń probabilistyczna (Ω, F, P ) oraz zmienne losowe X 1, X 2,..., określone na tej przestrzeni i takie, że dla każdego n IN P (X1,X 2,...,X n) = ν n. 6.5 Wniosek Dla każdego ciągu {µ j } j IN rozkładów na IR 1 istnieje ciąg niezależnych zmiennych losowych X 1, X 2,..., takich że rozkład X j jest równy µ j (X j µ j ).

27 7. Prawa wielkich liczb Słabe prawo wielkich liczb Markowa 7.1 Definicja Mówimy,że ciąg zmiennych losowych X 1, X 2,... spełnia słabe prawo wielkich liczb, jeśli istnieje stała C taka, że według prawdopodobieństwa X 1 + X X n n P C, gdy n +. Stwierdzenie według prawdopodobieństwa oznacza, że dla każdego ε > 0 ( ) X 1 + X X n P C n > ε 0, gdy n +. Mocne prawo wielkich liczb jest spełnione, jeśli dla pewnej stałej C X 1 + X X n n C, Stwierdzenie P -prawie na pewno oznacza, że P P prawie na pewno. { ω ; X } 1(ω) + X 2 (ω) + + X n (ω) C = 1. n 7.2 Twierdzenie (Słabe prawo wielkich liczb Markowa) Niech X 1, X 2,... będzie ciągiem nieskorelowanych zmiennych losowych o wspólnie ograniczonych wariancjach: sup D 2 (X k ) M < +. k Wówczas (X 1 EX 1 ) + (X 2 EX 2 ) +... (X n EX n ) n P Wniosek (Słabe prawo wielkich liczb - Jakub Bernoulli, 1713) Niech X 1, X 2,... będzie schematem Bernoullego z prawdopodobieństwem sukcesu p. Wówczas X 1 + X X n n P p, gdy n +. 23

28 24 7. Prawa wielkich liczb 7.4 Wniosek Wielomiany Bernsteina ciągłej funkcji f : [0, 1] IR 1, określone wzorem w n (x) = jednostajnie zbiegają do f. ( ) n n f( k n ) x k (1 x) n k, k k=0 Mocne prawo wielkich liczb 7.5 Twierdzenie (Mocne prawo wielkich liczb dla schematu Bernoullego) Niech X 1, X 2,... będzie schematem Bernoullego z prawdopodobieństwem sukcesu p. Wówczas P -prawie wszędzie X 1 + X X n n p, gdy n Zadanie Wyjaśnić związek mocnego prawa wielkich liczb dla schematu Bernoullego z interpretacją częstościową prawdopodobieństwa. 7.7 Twierdzenie (Mocne prawo wielkich liczb, Chińczyn, Kołmogorow, Etemadi) Niech X 1, X 2,... będzie ciągiem parami niezależnych zmiennych losowych o jednakowych rozkładach. Jeżeli E X 1 < +, to P -prawie wszędzie Na odwrót, jeśli X 1 + X X n n EX 1. P ( lim sup n X 1 + X X n n < + ) > 0, to E X 1 < + i średnie są zbieżne prawie wszędzie do EX Zadanie Czy średnia z pomiarów jest lepszym przybliżeniem mierzonej wielkości od pojedynczego pomiaru?

29 8. Centralne twierdzenie graniczne Twierdzenie de Moivre a-laplace a 8.1 Twierdzenie (de Moivre-Laplace) Nich X 1, X 2,..., będzie schematem Bernoullego z prawdopodobieństwem sukcesu p (0, 1). Wówczas dla dowolnych a < b, gdy n +, ( P a < X ) 1 + X X n np < b 1 b e (1/2)u2 du. np(1 p) 2π 8.2 Uwaga Teza powyższego twierdzenia oznacza, że liczba sukcesów S n w schemacie Bernoullego scentrowana przez np = ES n i unormowana przez np(1 p = Var (S n ) zmierza według rozkładu do standardowego rozkładu normalnego. Centralne twierdzenie graniczne 8.3 Twierdzenie (P. L evy) Niech X 1, X 2,..., będzie ciągiem niezależnych zmiennych losowych o jednakowych rozkładach i skończonej i niezerowej wariancji: 0 < Var (X k ) < +. Wówczas dla dowolnych a < b, gdy n +, ( P a < X ) 1 + X X n nex 1 < b 1 b e (1/2)u2 du. nvar (X1 ) 2π a a 25

30 26 8. Centralne twierdzenie graniczne

31 9. O przestrzeniach Hilberta Przestrzenie prehilbertowskie 9.1 Definicja Niech E będzie przestrzenią liniową. Formę, : E E IR 1 (lub C) nazywamy iloczynem skalarnym, jeśli spełnione są następujące warunki: IS1) x + y, z = x, z + y, z, x, y, z E. IS2) αx, z = α x, z, α IR 1 (C), x, z E. IS3) y, x = x, y, x, y E. IS4) x, x 0, x E, oraz x, x = 0 dokładnie wtedy, gdy x = Definicja Przestrzenią prehilbertowską nazywamy przestrzeń liniową z iloczynem skalarnym,. 9.3 Fakt W przestrzeni prehilbertowskiej E mają miejsce następujące związki: 1. Wzór x = x, x zadaje normę na E, tzn. spełnione są związki x + y x + y ; αx = α x ; Jeśli x = 0, to x = Zachodzi tożsamość równoległoboku: 3. Zachodzi nierówność Schwartza: x + y 2 + x y 2 = 2( x 2 + y 2 ), x, y E. x, y x y, x, y E. 27

32 28 9. O przestrzeniach Hilberta 4. Zachodzą wzory polaryzacyjne: x, y E, x, y = 1 ( x + y 2 x y 2), nad IR 1, 4 x, y = 1 ( x + y 2 x y 2 + i x + iy 2 i x iy 2), nad C Wniosek Z nierówności Schwartza wynika, że iloczyn skalarny jest ciągłą funkcją obu argumentów. 9.5 Definicja Niech x, y E. Kąt θ, θ [0, π) miedzy wektorami określony jest dla x, y 0 wzorem x, y cos θ = x y, a jeśli x = 0 lub y = 0, to z definicji θ = 0. Mówimy, że wektory x i y są ortogonalne, jeśli x, y = 0 (czyli θ = 0). 9.6 Twierdzenie (Pitagorasa) Jeżeli wektory x 1, x 2,..., x n E są parami ortogonalne (tzn. x i, x j = 0 dla i j), to x 1 + x x n 2 = x x x n Uwaga W przypadku przestrzeni nad IR 1 x 1 + x 2 2 = x x 2 2 pociąga ortogonalność: x, y = 0. W przypadku przestrzeni nad C tak nie jest (przykład?). Twierdzenia o rzucie ortogonalnym 9.8 Definicja Przestrzeń prehilbertowską H nazywamy przestrzenią Hilberta, jeśli jest zupełna w metryce d(x, y) = x y = x y, x y. 9.9 Twierdzenie (O rzucie na zbiór wypukły) Niech H będzie przestrzenią Hilberta, a C H niech będzie jej podzbiorem wypukłym i domkniętym. Dla każdego x H istnieje dokładnie jeden wektor x C C taki, że x x C = inf x u =: d(x, C). u C 9.10 Twierdzenie (O rzucie na podprzestrzeń domkniętą) Niech V będzie domkniętą podprzestrzenią przestrzeni Hilberta H. Dla każdego x H istnieje dokładnie jeden wektor x V V taki, że x x V = d(x, V).

33 Twierdzenia o rzucie ortogonalnym 29 i Wektor x V jest jedynym wektorem z spełniającym jednocześnie dwa warunki: z V x z, u = 0, u V Definicja Niech V H będzie podprzestrzenią domkniętą. Odwzorowanie x x V nazywamy rzutem ortogonalnym na V i oznaczamy Π V Fakt Rzut ortogonalny Π V jest odwzorowaniem liniowym Twierdzenie (O rozkładzie ortogonalnym) Niech V będzie domkniętą podprzestrzenią przestrzeni Hilberta H. Dla każdego x H istnieje dokładnie jeden rozkład gdzie x V i x V. x = x + x, 9.14 Uwaga Symbolicznie powyższy rozkład zapisujemy w sposób następujący: H = V V, gdzie V = {y H ; y, u = 0, u V}.

34 30 9. O przestrzeniach Hilberta

35 Literatura 1. A.A. Borowkow, Rachunek prawdopodobieństwa, PWN, Warszawa J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa, Wyd. II, Script, Warszawa 2001, 31

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Repetytorium z przedmiotu Miara i Prawdopodobieństwo. Adam Jakubowski

Repetytorium z przedmiotu Miara i Prawdopodobieństwo. Adam Jakubowski Repetytorium z przedmiotu Miara i Prawdopodobieństwo Adam Jakubowski Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Toruń, 1999 Spis treści Wstęp 1 1 Przestrzenie mierzalne i przestrzenie

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Rachunek prawdopodobieństwa II

Rachunek prawdopodobieństwa II Leszek Słomiński achunek prawdopodobieństwa II Materiały dydaktyczne dla studentów matematyki przygotowane w ramach projektu IKS - Inwestycja w Kierunki Strategiczne na Wydziale Matematyki i Informatyki

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Procesy stochastyczne

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz Szkice do wykładu z Rachunku prawdopodobieństwa 1 II rok matematyki finansowej III roku matematyki ogólnej III roku matematyki z metodami informatycznymi dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Pojęcie przestrzeni probabilistycznej

Pojęcie przestrzeni probabilistycznej Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo