Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów."

Transkrypt

1 Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa wartość oczekiwana. Definicja: Niech Ω, F, P ) będzie przestrzenią probabilistyczną. Warunkową wartością oczekiwaną w.w.o.) zmiennej losowej X względem σ-ciała G F nazywamy zmienną losową EX G), która jest G-mierzalna oraz spełnia warunek EX G) dp X dp G G. G G Twierdzenie: Jeżeli E X <, to warunkowa wartość oczekiwana EX G) jest dobrze określona z tw. Radona-Nikodyma. Własności warunkowej wartości oczekiwanej: Przy założeniu, że E X < a) EEX G)) EX; b) jeżeli X p.n., to EX G) p.n.; c) EaX +by G) aex G) + bey G) p.n., gdzie a, b są dowolnymi stałymi. d) jeżeli X jest G-mierzalna, to EX G) X p.n.; e) jeżeli X jest niezależna od G, to EX G) EX p.n. f) dla G 1 G F mamy EEX G 1 ) G) EEX G) G 1 ) EX G 1 ) p.n. g) E EX G) E X ; h) jeżeli X n L 1 X, to EX n G) L1 EX G). i) jeżeli X n X p.n., X n Y dla pewnej Y L 1 P ), to EX n G) EX G) p.n.; j) jeżeli X n tworzą ciąg niemalejący, X n X p.n. dla X L 1 P ), to EX n G) EX G) p.n. k) jeżeli X jest G-mierzalna, E XY <, to EXY G) XEY G) p.n.; l) jeżeli X jest G-mierzalna, gx, y) jest funkcją borelowską, E gx, Y ) <, to EgX, Y ) G) Egx, Y ) G) xx p.n. 1

2 Niech Y będzie zmienną losową, σy ) σy 1 B), B B R }, gdzie B R to σ-ciało zbiorów borelowskich. Wówczas EX σy )) oznaczamy krótko EX Y ). Fakt: Istnieje funkcja borelowska m, taka że EX Y ) my ) p.n.; Uwaga: Często podajemy warunkową wartość oczekiwana tylko poprzez wzór na funkcję my), przy czym zapis ma postać: EX Y y) my). Funkcja my) zwana jest funkcją regresji I rodzaju. Fakt: Jeżeli D 2 Y <, D 2 X <, to min f EX fy )) 2 EX my )) 2 dla f - funkcji borelowskich). Przykłady: Niech X i Y będą niezależnymi zmiennymi losowymi, przy czym E X <, E Y <. Wtedy 1. EX + Y Y ) EX + y Y ) yy EX + y) yy EX + y) yy EX + Y my) y + EX) 2. EXY Y ) EXy Y ) yy yex Y ) yy yex yy Y EX my) EX y). Rozkłady warunkowe. Definicja: Niech B będzie zbiorem borelowskim, a X pewną zmienną losową. Definiujemy nową zmienną losową Z 1I X B}. Rozkładem warunkowym zmiennej losowej X względem σ-ciała G nazywamy P X B G) : EZ G) E1I X B} G), jako funkcję borelowskiego zbioru B. Zauważmy, że E Z EZ P X B) < dla dowolnego B, zatem warunkowa wartość oczekiwana EZ G) czyli rozkład warunkowy Y względem G) jest dobrze zdefiniowana. Dla G σy ), gdzie Y jest pewną zmienną losową, P X B G) P X B Y ) nazywamy rozkładem warunkowym zmiennej losowej X pod warunkiem Y. Przy ustalonym y takim, który jest wartością istotnie przyjmowaną przez Y ) rozkład warunkowy P X B Y y) jako funkcja zbioru borelowskiego B jest pewnym rozkładem prawdopodobieństwa. Rozkład ten ma dystrybuantę zwaną dystrybuantą warunkową). F x y) P X < x Y y) Rozkład warunkowy X pod warunkiem Y możemy zatem opisać podając rodzinę dystrybuant warunkowych F x y) po wszystkich wartościach y istotnie przyjmowanych przez Y. 2

3 Dla dowolnej funkcji borelowskiej h takiej, że E hx) < mamy EhX) Y y) hx) F dx y). W szczególności, warunkowa wartość oczekiwana EX Y y) przy ustalonym y to zwykła wartość oczekiwana rozkładu warunkowego P X B Y y). Jeżeli wektor losowy X, Y ) ma rozkład dyskretny zadany ciągiem x n, y k, p nk ), n T 1, k T 2 }, to rozkład warunkowy X pod warunkiem Y y k też jest dyskretny i opisać możemy go także podając rodzinę ciągów x n, p ) ) } yk nk, n T 1 p k po wszystkich tych wartościach y k, dla których p k P Y y k ) >, czyli po wartościach istotnie przyjmowanych przez Y. Zauważmy, że p nk warunkowe.) p k R P X x n Y y k ) to zwykłe prawdopodobieństwo Jeżeli wektor losowy X, Y ) ma rozkład ciągły o gęstości f X,Y x, y), to rozkład warunkowy X pod warunkiem Y y też jest ciągły o gęstości fx y) f X,Y x, y) f Y y) dla wszystkich takich y, dla których f Y y) f X,Y x, y)dx >, czyli po wartościach istotnie przyjmowanych przez Y. Rozkład warunkowy opisujemy zatem wtedy także podając rodzinę gęstości warunkowych fx y) po wszystkich wartościach y, dla których f Y y) >. Wzór na prawdopodobieństwo całkowite: P X B) P X B Y y)df Y y). gdzie F Y to dystrybuanta rozkładu zmiennej losowej Y. Jeśli znamy rozkład zmiennej losowej Y i rozkład warunkowy X pod warunkiem Y, to znamy też rozkład łączny wektora losowego X, Y ): F X,Y x, y) y Dla rozkładu dyskretnego p nk P X x n Y y k )p k ; dla rozkładu ciągłego f X,Y x, y) fx y)f Y y). F x y )df Y y ). 1) Jeżeli X i Y są niezależnymi zmiennymi losowymi, to P X B Y ) P X B) z prawd. 1, tzn. wtedy rozkład warunkowy jest taki sam jak rozkład zmiennej losowej X. Wtedy wzór 1) sprowadza się do znanego wzoru F X,Y x, y) F X x)f Y y). 3

4 Przykłady: 1. Wektor losowy X, Y ) ma następujący rozkład łączny: x n 2 r.brzeg. y k Y 2, 1, 2, 3, 2, 2 1, 2, 3, 5 r.brzeg.x, 3, 7 1 Rozkład warunkowy Y pod warunkiem X i warunkowa wartość oczekiwana EY X) ma postać: dla x n : P Y 2 X ) P X, Y 2) P X ), 1, 3 1 3, Podobnie P Y X ), P Y 1 X ) 2 3, Mamy zatem dla x n y k p nk /p n 2 1/3 1 2/3 Stąd EY X ) 2) dla x n 2: P Y 2 X 2) 2 7, P Y X 2) 2 7, P Y 1 X 2) 3 7, Mamy zatem dla x n 2 y k p nk /p n 2 2/7 2/7 1 3/7 Stąd EY X 2) 1 7. Zatem EY X) X) 4

5 2. Wektor losowy X, Y ) ma rozkład o gęstości f X,Y x, y) Wtedy X ma rozkład o gęstości: f X x) 2x + y) dla x 1, y x, poza tym x 2x + y)dy 3x 2 dla < x 1, f X,Y x, y)dy dla pozostalych x. Gęstość warunkowa rozkładu Y pod warunkiem X ma zatem postać: fy x) f X,Y x, y) f X x) 2x + y) 3x 2 dla y x, dla pozostalych y, gdzie < x 1 są to wartości istotnie przyjmowane przez X). Warunkowa wartość oczekiwana wynosi: EY X x) Zatem yfy x)dy x 2x + y) y dy 5/9)x dla < x 1. 3x 2 EY X) 5/9)X 3. Czas pracy τ urządzenia ma rozkład wykładniczy Expλ 1). Koszt użytkowania urządzenia, które uległo awarii w chwili t, ma rozkład jednostajny U1, 3 e t ). Jaka jest wartość oczekiwana kosztów K użytkowania urządzenia? W zadaniu mamy podany rozkład brzegowy zmiennej losowej τ: jest to rozkład Expλ 1). Mamy także podany rozkład warunkowy zmiennej losowej K pod warunkiem τ t: jest to rozkład U1, 3 e t ). Stąd EK τ t) e t e t Zatem EK EEK τ)) E 2 1 ) 2 e τ 2 1 e t f τ t)dt e 2t dt e 2t e t e t dt 5

6 Suma losowa. Niech X 1, X 2,... będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie. Niech N będzie indeksem losowym tzn. zmienną losową dyskretną przyjmującą tylko wartości naturalne 1, 2,...) niezależną od ciągu X k, k 1, 2,...}. Sumą losową nazywamy zmienną losową N to losowa ilość składników w sumie.) N S X k X 1 + X X N. Załóżmy, że istnieją skończone wartości oczekiwane EX 1 i EN. Korzystając z techniki warunkowej wartości oczekiwanej obliczymy wartość oczekiwaną ES: )) N N n ) ) N ES EES N)) E E X k E E X k nn n ) ) ) E E X k E nex 1 ) EN EX 1 ) EN EX 1. nn nn Otrzymaliśmy zatem, że ES EN EX 1. Załóżmy teraz, że D 2 X 1 < i D 2 N <. Obliczymy wariancję D 2 S: ) N 2 ES 2 EES 2 N)) E E N n ) 2 N ) ) X k E E X k nn n ) ) 2 E E X k E nn E n Xk 2 + n n X k X j j1 nn ) j k E nex1 2 + nn 1)EX 1 ) 2 ) EN EX NN 1)EX 1 ) 2 ) nn EN EX1 2 EX 1 ) 2 ) + EN 2 EX 1 ) 2 EN D 2 X 1 + EN 2 EX 1 ) 2. Zatem D 2 S EN D 2 X 1 + EN 2 EX 1 ) 2 EN EX 1 ) 2 EN D 2 X 1 + EN 2 EN) 2 ) EX 1 ) 2 EN D 2 X 1 + D 2 N EX 1 ) 2. Otrzymaliśmy zatem, że D 2 S EN D 2 X 1 + D 2 N EX 1 ) 2. 6

7 Możemy też określić rozkład S za pomocą funkcji charakterystycznej ϕ S t). Niech ϕ X t) oznacza funkcję charakterystyczną zmiennych losowych X k, a g N z) - funkcję tworzącą losowego indeksu N. Wtedy ϕ S t) g N ϕ X t)) Uzasadnienie: ϕ S t) Ee its EEe its N)) E E exp it n ) N ) ) X k nn E E exp it n ) ) ) ) X k E ϕ X1+...+Xn nn nn t) E ϕ X t)) nn n E ϕ X t)) N g N ϕ X t)) Przykład: Niech X k ma rozkład wykładniczy Expλ), λ >, a N - rozkład ujemny dwumianowy N Bm, p), m N, < p < 1. Wtedy EX 1 1 λ, D2 X 1 1 λ 2 oraz EN m p, D2 N i stąd Mamy też ϕ X t) Zatem m1 p) p 2 ES m p 1 λ m pλ D 2 S m ) p 1 m1 p) m λ2 p 2 λ p 2 λ 2 1 it ) 1 ) m pz oraz g N z) λ 1 1 p)z ϕ S t) p ) 1 1 it λ 1 1 p) 1 it λ m ) 1 Jest to funkcja charakterystyczna rozkładu gamma Gpλ, m) Zatem S ma taki właśnie rozkład. Otrzymane wcześniej ES i D 2 S zgadzają się.) 1 it ) m pλ 7

8 Mieszanina rozkładów. Definicja: Niech N będzie zmienną losową dyskretną przyjmującą wartości naturalne indeksem n losowym), przy czym p n P N n) dla n 1, 2,..., n, p n 1. Y 1, Y 2,..., Y n to ciąg zmiennych losowych niezależnych od N, o dystrybuantach odpowiednio F 1, F 2,..., F n. Rozkład zmiennej losowej Z Y N nazywamy mieszaniną rozkładów F 1, F 2,..., F n, przy czym p 1, p 2,..., p n to udziały tych rozkładów w mieszaninie. Uwaga: Mamy P Z Y n ) P N n) p n oraz F Z z) P Z < z) n P Z < z, N n) n P Y n < z, N n) [z niezależności N i Y n ] n P Y n < z)p N n) n p n F n z), czyli F Z z) p 1 F 1 z) p n F n z). Natomiast EZ EEZ N)) EEY n ) nn ) n p n EY n, czyli EZ p 1 EY p n EY n. Przykład: Do systemu obsługi zgłasza się 1% klientów uprzywilejowanych i 9% nieuprzywilejowanych. Rozkład czasu w minutach) obsługi klienta uprzywilejowanego jest wykładniczy Exp1/2), a klienta nieuprzywilejowanego - Exp1/1). Jaki jest rozkład czasu obsługi klienta wybranego losowego. Jaki jest jego średni czas obsługi? Czas obsługi klienta oznaczmy przez Z, klienta uprzywilejowanego przez Y 1, klienta nieuprzywilejowanego przez Y 2. dla z, Zmienna losowa Y 1 ma rozkład Exp1/2) o dystrybuancie F 1 z) 1 e 1/2)z dla z >. dla z, Natomiast Y 2 ma rozkład Exp1/1) o dystrybuancie F 2 z) 1 e 1/1)z dla z >. Z Y N, gdzie P N 1) p 1, 1, P N 2) p 2, 9, N niezależna od Y 1 i Y 2. Zatem Z ma rozkład, który jest mieszaniną rozkładów wykładniczych Exp1/2) i Exp1/1) o udziałach odpowiednio p 1, 1 i p 2, 9. Dystrybuanta tego rozkładu ma postać dla z, F Z z) p 1 F 1 z) + p 2 F 2 z), 11 e 1/2)z ) +, 91 e 1/1)z )) dla z >. dla z, 1, 1e 1/2)z, 9e 1/1)z dla z >. dla z, Jest to rozkład ciągły o gęstości f Z z), 5e 1/2)z +, 9e 1/1)z dla z >. Średni czas obsługi to EZ, 1EY 1 +, 9EY 2, 1 2 +, 9 1 9, 2. 8

9 Rozkład mieszany Twierdzenie: Każdy rozkład prawdopodobieństwa jest mieszaniną rozkładu dyskretnego, rozkładu ciągłego i rozkładu osobliwego, tzn. dowolną dystrybuantę F x) można w jednoznaczny sposób przedstawić jako F x) p d F d x) + p c F c x) + p o F o x) dla pewnych stałych p d, p c, p o takich, że p d + p c + p o 1, oraz pewnych dystrybuant F d, F c, F o odpowiednio rozkładu dyskretnego, ciągłego, osobliwego. Definicja: Rozkład mieszany to taki, dla którego przynajmniej dwie spośród liczb p d, p c, p o są większe od. Przykład: Niech X ma rozkład ciągły o gęstości fx) Definiujemy Y, gdy X 1, X 1, gdy X > 1. x dla x 1, 2 x dla 1 < x 2, poza tym. Zbadajmy rozkład Y : P Y ) P X 1) 1 xdx, 5. Stąd rozkład Y nie jest ciągły ani osobliwy. Dystrybuanta ma postać: dla y, F Y y) P Y < y) P Y ) + P < X 1 < y) dla y > ; dla y, dla y,, 5 + y+1 2 x)dx dla < y 1,, 5 + P 1 < X < y + 1) dla y >. 1 1 dla y > 1. dla y,, 5 +, 5y2 y) dla < y 1, 1 dla y > 1. Dystrybuanta nie jest funkcją schodkową, więc rozkład Y nie jest dyskretny. Wynika stąd, że Y ma rozkład mieszany. odpowiada zmiennej losowej Y 1 o rozkła- Zauważmy, że F Y y), 5F d y) +, 5F c y), dla y, gdzie dystrybuanta F d y) 1 dla y > dzie dyskretnym, takiej że P Y 1 ) 1, a dystrybuanta F c y) dla y, y2 y) dla < y 1, 1 dla y > 1 21 y) dla < y < 1, rozkładzie ciągłym o gęstości fx) poza tym. Udziały tych rozkładów w mieszaninie wynoszą p d p c, 5. odpowiada zmiennej losowej Y 2 o 9

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Rachunek prawdopodobieństwa. Stanisław Jaworski

Rachunek prawdopodobieństwa. Stanisław Jaworski Rachunek prawdopodobieństwa Stanisław Jaworski Rachunek prawdopodobieństwa: dział matematyki zajmujący się badaniem modeli zjawisk losowych (przypadkowych) i praw nimi rządzących (Encyklopedia Popularna

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Siedem wykładów wprowadzających do statystyki matematycznej

Siedem wykładów wprowadzających do statystyki matematycznej RYSZARD ZIELIŃSKI Siedem wykładów wprowadzających do statystyki matematycznej Zadania zweryfikowała oraz wskazówkami i rozwiązaniami uzupełniła Agata Boratyńska WARSZAWA 2004 Siedem wykładów wprowadzających

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska 18.06.2014 Spis treści Wstęp 2 1 Funkcja kopuła 4 1.1 Podstawowe pojęcia................................... 4 1.2 Pochodne kopuł......................................

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz Szkice do wykładu z Rachunku prawdopodobieństwa 1 II rok matematyki finansowej III roku matematyki ogólnej III roku matematyki z metodami informatycznymi dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA A.

RACHUNEK PRAWDOPODOBIEŃSTWA A. RACHUNEK PRAWDOPODOBIEŃSTWA A. Semestr letni 2014. Poniedziałki 12:15-15:00, sala HS. Wykładowca: Ryszard Szekli, pok. 514, konsultacje: poniedziałki 10-12, terminy egzaminów: I termin 18.06.2014, (ŚRODA)

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Ę ę ę ę ę Ó Ę ę ż ę ż ę ż ę ż Ę ę ż ę ę ę Ś ź Ó ż Ę ę Ź Ę ż ż Ę ć Ę ź ę ź ż ę Ó ę ż ę ę Ę ę Ę ź ż Ę Ó ę Ś Ę ę ę ęż ęż ę Ó ż ż Ó ę ę ż ęż ęż ż ę Ę ę ź ę ż Ę Ę ę Ś ż ź Ś ż ę ż Ę ęę ź ż ź Ó ż ę ż Ś Ź Ę ż

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombinatorycznych 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? 2. Na szachownicy o wymiarach n n umieszczamy 8 nierozróżnialnych wież szachowych

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Procesy stochastyczne

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N Marek Beśka, Statystyka matematyczna 1 Mat. Fin. i Bio., Gdańsk, 26.09.2016 Zestaw zadań ze statystyki matematycznej Zestaw 1 Zad. 1. Wykazać, że jeśli X 1, X 2,... są zmiennymi losowymi o jednakowych

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Ł Ś ź ź ź ć ć ć Ń ć ź ź ć ć Ń Ń ź Ą ź ć ć Ę ć Ń ź ć ć ć ć ź ć ć ć ć ć Ę ć ć ć ć ć ć Ą ć ć ć ć Ń ć ć ć ć Ę Ą ć ć ć ć ć Ń ć ć ć Ę ć ć ź ć ć ć ć ć ć ć Ż ć Ź ć ć Ź ć ć Ż ć Ą ć Ą ć Ź Ę Ę ĘĘĘ ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu MIARY NIERÓWNOŚCI Charakterystyka miar nierówności 2 Własności miar nierówności 3 Miary nierówności oparte o funkcję Lorenza 3 Współczynnik Giniego 32 Współczynnik Schutza 4 Miary nierówności wykorzystujące

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wielomiany jednej zmiennej rzeczywistej algorytmy

Wielomiany jednej zmiennej rzeczywistej algorytmy Rozdział 15 Wielomiany jednej zmiennej rzeczywistej algorytmy 15.1 Algorytm dzielenia Definicja 15.1 Niech dany będzie niezerowy wielomian f K[x] (K jest ciałem) f = a 0 x m + a 1 x m 1 +... + a m, gdzie

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo