Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów."

Transkrypt

1 Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa wartość oczekiwana. Definicja: Niech Ω, F, P ) będzie przestrzenią probabilistyczną. Warunkową wartością oczekiwaną w.w.o.) zmiennej losowej X względem σ-ciała G F nazywamy zmienną losową EX G), która jest G-mierzalna oraz spełnia warunek EX G) dp X dp G G. G G Twierdzenie: Jeżeli E X <, to warunkowa wartość oczekiwana EX G) jest dobrze określona z tw. Radona-Nikodyma. Własności warunkowej wartości oczekiwanej: Przy założeniu, że E X < a) EEX G)) EX; b) jeżeli X p.n., to EX G) p.n.; c) EaX +by G) aex G) + bey G) p.n., gdzie a, b są dowolnymi stałymi. d) jeżeli X jest G-mierzalna, to EX G) X p.n.; e) jeżeli X jest niezależna od G, to EX G) EX p.n. f) dla G 1 G F mamy EEX G 1 ) G) EEX G) G 1 ) EX G 1 ) p.n. g) E EX G) E X ; h) jeżeli X n L 1 X, to EX n G) L1 EX G). i) jeżeli X n X p.n., X n Y dla pewnej Y L 1 P ), to EX n G) EX G) p.n.; j) jeżeli X n tworzą ciąg niemalejący, X n X p.n. dla X L 1 P ), to EX n G) EX G) p.n. k) jeżeli X jest G-mierzalna, E XY <, to EXY G) XEY G) p.n.; l) jeżeli X jest G-mierzalna, gx, y) jest funkcją borelowską, E gx, Y ) <, to EgX, Y ) G) Egx, Y ) G) xx p.n. 1

2 Niech Y będzie zmienną losową, σy ) σy 1 B), B B R }, gdzie B R to σ-ciało zbiorów borelowskich. Wówczas EX σy )) oznaczamy krótko EX Y ). Fakt: Istnieje funkcja borelowska m, taka że EX Y ) my ) p.n.; Uwaga: Często podajemy warunkową wartość oczekiwana tylko poprzez wzór na funkcję my), przy czym zapis ma postać: EX Y y) my). Funkcja my) zwana jest funkcją regresji I rodzaju. Fakt: Jeżeli D 2 Y <, D 2 X <, to min f EX fy )) 2 EX my )) 2 dla f - funkcji borelowskich). Przykłady: Niech X i Y będą niezależnymi zmiennymi losowymi, przy czym E X <, E Y <. Wtedy 1. EX + Y Y ) EX + y Y ) yy EX + y) yy EX + y) yy EX + Y my) y + EX) 2. EXY Y ) EXy Y ) yy yex Y ) yy yex yy Y EX my) EX y). Rozkłady warunkowe. Definicja: Niech B będzie zbiorem borelowskim, a X pewną zmienną losową. Definiujemy nową zmienną losową Z 1I X B}. Rozkładem warunkowym zmiennej losowej X względem σ-ciała G nazywamy P X B G) : EZ G) E1I X B} G), jako funkcję borelowskiego zbioru B. Zauważmy, że E Z EZ P X B) < dla dowolnego B, zatem warunkowa wartość oczekiwana EZ G) czyli rozkład warunkowy Y względem G) jest dobrze zdefiniowana. Dla G σy ), gdzie Y jest pewną zmienną losową, P X B G) P X B Y ) nazywamy rozkładem warunkowym zmiennej losowej X pod warunkiem Y. Przy ustalonym y takim, który jest wartością istotnie przyjmowaną przez Y ) rozkład warunkowy P X B Y y) jako funkcja zbioru borelowskiego B jest pewnym rozkładem prawdopodobieństwa. Rozkład ten ma dystrybuantę zwaną dystrybuantą warunkową). F x y) P X < x Y y) Rozkład warunkowy X pod warunkiem Y możemy zatem opisać podając rodzinę dystrybuant warunkowych F x y) po wszystkich wartościach y istotnie przyjmowanych przez Y. 2

3 Dla dowolnej funkcji borelowskiej h takiej, że E hx) < mamy EhX) Y y) hx) F dx y). W szczególności, warunkowa wartość oczekiwana EX Y y) przy ustalonym y to zwykła wartość oczekiwana rozkładu warunkowego P X B Y y). Jeżeli wektor losowy X, Y ) ma rozkład dyskretny zadany ciągiem x n, y k, p nk ), n T 1, k T 2 }, to rozkład warunkowy X pod warunkiem Y y k też jest dyskretny i opisać możemy go także podając rodzinę ciągów x n, p ) ) } yk nk, n T 1 p k po wszystkich tych wartościach y k, dla których p k P Y y k ) >, czyli po wartościach istotnie przyjmowanych przez Y. Zauważmy, że p nk warunkowe.) p k R P X x n Y y k ) to zwykłe prawdopodobieństwo Jeżeli wektor losowy X, Y ) ma rozkład ciągły o gęstości f X,Y x, y), to rozkład warunkowy X pod warunkiem Y y też jest ciągły o gęstości fx y) f X,Y x, y) f Y y) dla wszystkich takich y, dla których f Y y) f X,Y x, y)dx >, czyli po wartościach istotnie przyjmowanych przez Y. Rozkład warunkowy opisujemy zatem wtedy także podając rodzinę gęstości warunkowych fx y) po wszystkich wartościach y, dla których f Y y) >. Wzór na prawdopodobieństwo całkowite: P X B) P X B Y y)df Y y). gdzie F Y to dystrybuanta rozkładu zmiennej losowej Y. Jeśli znamy rozkład zmiennej losowej Y i rozkład warunkowy X pod warunkiem Y, to znamy też rozkład łączny wektora losowego X, Y ): F X,Y x, y) y Dla rozkładu dyskretnego p nk P X x n Y y k )p k ; dla rozkładu ciągłego f X,Y x, y) fx y)f Y y). F x y )df Y y ). 1) Jeżeli X i Y są niezależnymi zmiennymi losowymi, to P X B Y ) P X B) z prawd. 1, tzn. wtedy rozkład warunkowy jest taki sam jak rozkład zmiennej losowej X. Wtedy wzór 1) sprowadza się do znanego wzoru F X,Y x, y) F X x)f Y y). 3

4 Przykłady: 1. Wektor losowy X, Y ) ma następujący rozkład łączny: x n 2 r.brzeg. y k Y 2, 1, 2, 3, 2, 2 1, 2, 3, 5 r.brzeg.x, 3, 7 1 Rozkład warunkowy Y pod warunkiem X i warunkowa wartość oczekiwana EY X) ma postać: dla x n : P Y 2 X ) P X, Y 2) P X ), 1, 3 1 3, Podobnie P Y X ), P Y 1 X ) 2 3, Mamy zatem dla x n y k p nk /p n 2 1/3 1 2/3 Stąd EY X ) 2) dla x n 2: P Y 2 X 2) 2 7, P Y X 2) 2 7, P Y 1 X 2) 3 7, Mamy zatem dla x n 2 y k p nk /p n 2 2/7 2/7 1 3/7 Stąd EY X 2) 1 7. Zatem EY X) X) 4

5 2. Wektor losowy X, Y ) ma rozkład o gęstości f X,Y x, y) Wtedy X ma rozkład o gęstości: f X x) 2x + y) dla x 1, y x, poza tym x 2x + y)dy 3x 2 dla < x 1, f X,Y x, y)dy dla pozostalych x. Gęstość warunkowa rozkładu Y pod warunkiem X ma zatem postać: fy x) f X,Y x, y) f X x) 2x + y) 3x 2 dla y x, dla pozostalych y, gdzie < x 1 są to wartości istotnie przyjmowane przez X). Warunkowa wartość oczekiwana wynosi: EY X x) Zatem yfy x)dy x 2x + y) y dy 5/9)x dla < x 1. 3x 2 EY X) 5/9)X 3. Czas pracy τ urządzenia ma rozkład wykładniczy Expλ 1). Koszt użytkowania urządzenia, które uległo awarii w chwili t, ma rozkład jednostajny U1, 3 e t ). Jaka jest wartość oczekiwana kosztów K użytkowania urządzenia? W zadaniu mamy podany rozkład brzegowy zmiennej losowej τ: jest to rozkład Expλ 1). Mamy także podany rozkład warunkowy zmiennej losowej K pod warunkiem τ t: jest to rozkład U1, 3 e t ). Stąd EK τ t) e t e t Zatem EK EEK τ)) E 2 1 ) 2 e τ 2 1 e t f τ t)dt e 2t dt e 2t e t e t dt 5

6 Suma losowa. Niech X 1, X 2,... będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie. Niech N będzie indeksem losowym tzn. zmienną losową dyskretną przyjmującą tylko wartości naturalne 1, 2,...) niezależną od ciągu X k, k 1, 2,...}. Sumą losową nazywamy zmienną losową N to losowa ilość składników w sumie.) N S X k X 1 + X X N. Załóżmy, że istnieją skończone wartości oczekiwane EX 1 i EN. Korzystając z techniki warunkowej wartości oczekiwanej obliczymy wartość oczekiwaną ES: )) N N n ) ) N ES EES N)) E E X k E E X k nn n ) ) ) E E X k E nex 1 ) EN EX 1 ) EN EX 1. nn nn Otrzymaliśmy zatem, że ES EN EX 1. Załóżmy teraz, że D 2 X 1 < i D 2 N <. Obliczymy wariancję D 2 S: ) N 2 ES 2 EES 2 N)) E E N n ) 2 N ) ) X k E E X k nn n ) ) 2 E E X k E nn E n Xk 2 + n n X k X j j1 nn ) j k E nex1 2 + nn 1)EX 1 ) 2 ) EN EX NN 1)EX 1 ) 2 ) nn EN EX1 2 EX 1 ) 2 ) + EN 2 EX 1 ) 2 EN D 2 X 1 + EN 2 EX 1 ) 2. Zatem D 2 S EN D 2 X 1 + EN 2 EX 1 ) 2 EN EX 1 ) 2 EN D 2 X 1 + EN 2 EN) 2 ) EX 1 ) 2 EN D 2 X 1 + D 2 N EX 1 ) 2. Otrzymaliśmy zatem, że D 2 S EN D 2 X 1 + D 2 N EX 1 ) 2. 6

7 Możemy też określić rozkład S za pomocą funkcji charakterystycznej ϕ S t). Niech ϕ X t) oznacza funkcję charakterystyczną zmiennych losowych X k, a g N z) - funkcję tworzącą losowego indeksu N. Wtedy ϕ S t) g N ϕ X t)) Uzasadnienie: ϕ S t) Ee its EEe its N)) E E exp it n ) N ) ) X k nn E E exp it n ) ) ) ) X k E ϕ X1+...+Xn nn nn t) E ϕ X t)) nn n E ϕ X t)) N g N ϕ X t)) Przykład: Niech X k ma rozkład wykładniczy Expλ), λ >, a N - rozkład ujemny dwumianowy N Bm, p), m N, < p < 1. Wtedy EX 1 1 λ, D2 X 1 1 λ 2 oraz EN m p, D2 N i stąd Mamy też ϕ X t) Zatem m1 p) p 2 ES m p 1 λ m pλ D 2 S m ) p 1 m1 p) m λ2 p 2 λ p 2 λ 2 1 it ) 1 ) m pz oraz g N z) λ 1 1 p)z ϕ S t) p ) 1 1 it λ 1 1 p) 1 it λ m ) 1 Jest to funkcja charakterystyczna rozkładu gamma Gpλ, m) Zatem S ma taki właśnie rozkład. Otrzymane wcześniej ES i D 2 S zgadzają się.) 1 it ) m pλ 7

8 Mieszanina rozkładów. Definicja: Niech N będzie zmienną losową dyskretną przyjmującą wartości naturalne indeksem n losowym), przy czym p n P N n) dla n 1, 2,..., n, p n 1. Y 1, Y 2,..., Y n to ciąg zmiennych losowych niezależnych od N, o dystrybuantach odpowiednio F 1, F 2,..., F n. Rozkład zmiennej losowej Z Y N nazywamy mieszaniną rozkładów F 1, F 2,..., F n, przy czym p 1, p 2,..., p n to udziały tych rozkładów w mieszaninie. Uwaga: Mamy P Z Y n ) P N n) p n oraz F Z z) P Z < z) n P Z < z, N n) n P Y n < z, N n) [z niezależności N i Y n ] n P Y n < z)p N n) n p n F n z), czyli F Z z) p 1 F 1 z) p n F n z). Natomiast EZ EEZ N)) EEY n ) nn ) n p n EY n, czyli EZ p 1 EY p n EY n. Przykład: Do systemu obsługi zgłasza się 1% klientów uprzywilejowanych i 9% nieuprzywilejowanych. Rozkład czasu w minutach) obsługi klienta uprzywilejowanego jest wykładniczy Exp1/2), a klienta nieuprzywilejowanego - Exp1/1). Jaki jest rozkład czasu obsługi klienta wybranego losowego. Jaki jest jego średni czas obsługi? Czas obsługi klienta oznaczmy przez Z, klienta uprzywilejowanego przez Y 1, klienta nieuprzywilejowanego przez Y 2. dla z, Zmienna losowa Y 1 ma rozkład Exp1/2) o dystrybuancie F 1 z) 1 e 1/2)z dla z >. dla z, Natomiast Y 2 ma rozkład Exp1/1) o dystrybuancie F 2 z) 1 e 1/1)z dla z >. Z Y N, gdzie P N 1) p 1, 1, P N 2) p 2, 9, N niezależna od Y 1 i Y 2. Zatem Z ma rozkład, który jest mieszaniną rozkładów wykładniczych Exp1/2) i Exp1/1) o udziałach odpowiednio p 1, 1 i p 2, 9. Dystrybuanta tego rozkładu ma postać dla z, F Z z) p 1 F 1 z) + p 2 F 2 z), 11 e 1/2)z ) +, 91 e 1/1)z )) dla z >. dla z, 1, 1e 1/2)z, 9e 1/1)z dla z >. dla z, Jest to rozkład ciągły o gęstości f Z z), 5e 1/2)z +, 9e 1/1)z dla z >. Średni czas obsługi to EZ, 1EY 1 +, 9EY 2, 1 2 +, 9 1 9, 2. 8

9 Rozkład mieszany Twierdzenie: Każdy rozkład prawdopodobieństwa jest mieszaniną rozkładu dyskretnego, rozkładu ciągłego i rozkładu osobliwego, tzn. dowolną dystrybuantę F x) można w jednoznaczny sposób przedstawić jako F x) p d F d x) + p c F c x) + p o F o x) dla pewnych stałych p d, p c, p o takich, że p d + p c + p o 1, oraz pewnych dystrybuant F d, F c, F o odpowiednio rozkładu dyskretnego, ciągłego, osobliwego. Definicja: Rozkład mieszany to taki, dla którego przynajmniej dwie spośród liczb p d, p c, p o są większe od. Przykład: Niech X ma rozkład ciągły o gęstości fx) Definiujemy Y, gdy X 1, X 1, gdy X > 1. x dla x 1, 2 x dla 1 < x 2, poza tym. Zbadajmy rozkład Y : P Y ) P X 1) 1 xdx, 5. Stąd rozkład Y nie jest ciągły ani osobliwy. Dystrybuanta ma postać: dla y, F Y y) P Y < y) P Y ) + P < X 1 < y) dla y > ; dla y, dla y,, 5 + y+1 2 x)dx dla < y 1,, 5 + P 1 < X < y + 1) dla y >. 1 1 dla y > 1. dla y,, 5 +, 5y2 y) dla < y 1, 1 dla y > 1. Dystrybuanta nie jest funkcją schodkową, więc rozkład Y nie jest dyskretny. Wynika stąd, że Y ma rozkład mieszany. odpowiada zmiennej losowej Y 1 o rozkła- Zauważmy, że F Y y), 5F d y) +, 5F c y), dla y, gdzie dystrybuanta F d y) 1 dla y > dzie dyskretnym, takiej że P Y 1 ) 1, a dystrybuanta F c y) dla y, y2 y) dla < y 1, 1 dla y > 1 21 y) dla < y < 1, rozkładzie ciągłym o gęstości fx) poza tym. Udziały tych rozkładów w mieszaninie wynoszą p d p c, 5. odpowiada zmiennej losowej Y 2 o 9

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Siedem wykładów wprowadzających do statystyki matematycznej

Siedem wykładów wprowadzających do statystyki matematycznej RYSZARD ZIELIŃSKI Siedem wykładów wprowadzających do statystyki matematycznej Zadania zweryfikowała oraz wskazówkami i rozwiązaniami uzupełniła Agata Boratyńska WARSZAWA 2004 Siedem wykładów wprowadzających

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska 18.06.2014 Spis treści Wstęp 2 1 Funkcja kopuła 4 1.1 Podstawowe pojęcia................................... 4 1.2 Pochodne kopuł......................................

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Ę ę ę ę ę Ó Ę ę ż ę ż ę ż ę ż Ę ę ż ę ę ę Ś ź Ó ż Ę ę Ź Ę ż ż Ę ć Ę ź ę ź ż ę Ó ę ż ę ę Ę ę Ę ź ż Ę Ó ę Ś Ę ę ę ęż ęż ę Ó ż ż Ó ę ę ż ęż ęż ż ę Ę ę ź ę ż Ę Ę ę Ś ż ź Ś ż ę ż Ę ęę ź ż ź Ó ż ę ż Ś Ź Ę ż

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA A.

RACHUNEK PRAWDOPODOBIEŃSTWA A. RACHUNEK PRAWDOPODOBIEŃSTWA A. Semestr letni 2014. Poniedziałki 12:15-15:00, sala HS. Wykładowca: Ryszard Szekli, pok. 514, konsultacje: poniedziałki 10-12, terminy egzaminów: I termin 18.06.2014, (ŚRODA)

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Procesy stochastyczne

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

Ł Ś ź ź ź ć ć ć Ń ć ź ź ć ć Ń Ń ź Ą ź ć ć Ę ć Ń ź ć ć ć ć ź ć ć ć ć ć Ę ć ć ć ć ć ć Ą ć ć ć ć Ń ć ć ć ć Ę Ą ć ć ć ć ć Ń ć ć ć Ę ć ć ź ć ć ć ć ć ć ć Ż ć Ź ć ć Ź ć ć Ż ć Ą ć Ą ć Ź Ę Ę ĘĘĘ ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cieciura, Janusz Zacharski PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ III RACHUNEK PRAWDOPODOBIEŃSTWA Na prawach rękopisu Warszawa, wrzesień 0 RACHUNEK PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu

Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu Jednostka Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu Moduł MF / Rachunek prawdopodobieństwa II kształcenia/ przedmiotu Kod modułu kształcenia/ przedmiotu

Bardziej szczegółowo

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji ZAGADNIENIA PRAWNE i EKONOMICZNE w TELEKOMUNIKACJI Dr inż. Jerzy Kubasik Politechnika Poznańska Instytut Elektroniki i Telekomunikacji Zagadnienia prawne i ekonomiczne w telekomunikacji Wykład XI-XII:

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane

Bardziej szczegółowo

Probabilistyka i statystyka - Teoria

Probabilistyka i statystyka - Teoria Probabilistyka i statystyka - Teoria 1 Prawdopodobieństwo 1. Aksjomatyczna definicja prawdopodobieństwa Kołmogorowa: P (E) 0 - prawdopodobieństwo dowolnego zdarzenia jest większe lub równe 0 by Antek Grzanka,

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Sympozjum Trwałość Budowli

Sympozjum Trwałość Budowli Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Head First. Statystyka. Edycja polska

Head First. Statystyka. Edycja polska Head First. Statystyka. Edycja polska Autor: Dawn Griffiths T³umaczenie: Przemys³aw Janicki ISBN: 978-83-246-2065-4 Tytu³ orygina³u: Head First Statistics Format: 200 230, stron: 452 Przekonaj siê, e statystyka

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości:

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1 Prawdopodobieństwo Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1. Czy zainwestować pieniądze na giełdzie? 2. Czy ubezpieczyć laptop przed uszkodzeniami mechanicznymi?

Bardziej szczegółowo

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO)

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli WYKŁAD (Uniwersytet Wrocławski -2012/2013) 2 Rozdział 1 Rozkłady wielkości portfela Portfel: X = {X 1,..., X N } zmienne niezależne

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo