dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska"

Transkrypt

1 Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie się błędów, problem odwrotny teorii błędów. Przybliżone rozwiązywanie równań nieliniowych i ich układów: metoda bisekcji, metoda regula falsi, metoda siecznych, metoda Newtona. Rozwiązywanie układów równań liniowych: eliminacja Gaussa, ogólna postać metod iteracyjnych i jako szczególne przypadki metoda Jacobiego i metoda Gaussa-Seidla. Interpolacja: sformułowanie zagadnienia, interpolacja za pomocą wielomianów algebraicznych, wzór interpolacyjny Lagrange a, metoda Aitkena, oszacowanie błędu interpolacji i zbieżność procesów interpolacyjnych. Aproksymacja: sformułowanie zagadnienia, aproksymacja średniokwadratowa dyskretna i integralna. Całkowanie numeryczne: proste i złożone kwadratury Newtona-Cotesa, metoda Monte-Carlo. Metody rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych: metoda Eulera, metody typu Rungego-Kutty. 1

2 Literatura 1. Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT, Warszawa J. Stoer, R. Bulirsch, Wstęp do analizy numerycznej, PWN, Warszawa G. Dahlquist, A. Björck, Metody numeryczne, PWN, Warszawa A. Ralston, Wstęp do analizy numerycznej, PWN, Warszawa D. Kincaid, W. Cheney, Analiza numeryczna, WNT, Warszawa E. Majchrzak, B. Mochnacki, Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne i algorytmy, Wyd. Pol. Śl, Gliwice

3 Program zajęć laboratoryjnych z metod numerycznych na semestrze V stacjonarnych studiów stopnia I 1. Podstawowe instrukcje pakietu Mathematica. 2. Grafika w pakiecie Mathematica. 3. Elementy programowania w języku pakietu Mathematica(instrukcje: If, Do, Return, Module, itp.). 4. Pisanie krótkich programów(element maksymalny macierzy, sortowanielisty,itp.). 5. Sprawdzian. 6. Metoda bisekcji dla równań nieliniowych. 7. Metoda Newtona dla równań i układów równań nieliniowych. 8. Metoda Jacobiego i metoda Gaussa-Seidla. 9. Interpolacja wielomianowa i interpolacja Lagrange a. 10. Aproksymacja średniokwadratowa. 11. Metody Newtona-Cotesa. 12. Metoda Monte-Carlo. 13. Metoda Eulera. 14. Metoda Rungego-Kutty. 15. Sprawdzian. 3

4 Zasadyprzydziałupunktówwedługschematu5+[35+30]+30: ocenazzajęć:do5punktów (za każdą nieusprawiedliwioną nieobecność(począwszy od drugiej), odejmuje się po 5 punktów); dwa sprawdziany: pierwszy od 0 do 35 punktów, drugiod0do30punktów; sprawdzianzwykładów:od0do30punktów. Literatura 1. G. Drwal, R. Grzymkowski, A. Kapusta, D. Słota, Mathematica 4, WPKJS, Gliwice G. Drwal, R. Grzymkowski, A. Kapusta, D. Słota, Mathematica 5, WPKJS, Gliwice Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT, Warszawa E. Majchrzak, B. Mochnacki, Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne i algorytmy, Wyd. Pol. Śl, Gliwice

5 Laboratorium nr 1 Podstawowe instrukcje pakietu Mathematica 2. Przeznaczenie i budowa pakietu Mathematica. 3. Pakiet Mathematica jako kalkulator. 4. Obliczenia dokładne i przybliżone(instrukcja N). 5. Funkcje elementarne i specjalne. 6. Różniczkowanie i całkowanie w pakiecie Mathematica. 7. Listy, wektory i macierze w pakiecie Mathematica: (a) Sposób zapisu. (b) Działania na wektorach. (c) Działania na macierzach. (d) Rozwiązywanie równań macierzowych. 8. Równania i układy równań w pakiecie Mathematica. (a) Sposób zapisu. (b) Instrukcja Solve. (c) Instrukcja LinearSolve. 9. Zadanie zadania domowego. 5

6 Laboratorium nr 2 Grafika w pakiecie Mathematica 2. Wykresy funkcji jednej zmiennej: (a) Instrukcja Plot. (b) Opcje instrukcji Plot. (c) Instrukcja Show. 3. Wykresy funkcji dwóch zmiennych: (a) Instrukcja Plot3D. (b) Opcje instrukcji Plot3D. 4. Wykresy krzywych i powierzchni zadanych parametrycznie: (a) Instrukcja ParametricPlot. (b) Instrukcja ParametricPlot3D. (c) Opcje. 5. Wykreślanie danych liczbowych: (a) Instrukcja ListPlot. (b) Opcje instrukcji ListPlot. 6. Zadanie zadania domowego. 6

7 Laboratorium nr 3 Elementy programowania w języku pakietu Mathematica 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Definiowanie zmiennych. 4. Różnice pomiędzy operatorami = i:=. 5.PętlaDo: (a) Opis konstrukcji. (b) Podanie przykładów ilustrujących jej działanie. (c) Sformułowanie zadania, w rozwiązaniu którego należy wykorzystać omawianą instrukcję. 6. Pętla While: (a) Opis konstrukcji. (b) Różnice między pętlami Do i While. (c) Podanie przykładów ilustrujących jej działanie. (d) Sformułowanie zadania, w rozwiązaniu którego należy wykorzystać omawianą instrukcję. 7

8 7. Instrukcja warunkowa If: (a) Opis konstrukcji. (b) Podanie przykładów ilustrujących jej działanie. (c) Sformułowanie zadania, w rozwiązaniu którego należy wykorzystać omawianą instrukcję. 8. Definiowanie funkcji. 9. Instrukcja Return: (a) Opis konstrukcji. (b) Wykorzystanie omawianej instrukcji do wypisywania większej liczby wartości. 10. Instrukcja blokowa Module: (a) Opis konstrukcji. (b) Zmienne lokalne i zmienne globalne. (c) Podanie przykładów ilustrujących jej działanie. (d) Sformułowanie zadania, w rozwiązaniu którego należy wykorzystać omawianą instrukcję. 11. Zadanie zadania domowego. 8

9 Laboratorium nr 4 Pisanie krótkich programów 2. Elementy maksymalne i minimalne listy. 3. Sortowanie listy. 4. Liczba wystąpień elementu na liście. 5. Element maksymalny macierzy i liczba jego wystąpień. 6. Przekształcanie list(np. podnoszenie elementów ujemnych do kwadratu, a nieujemnych pozostawienie bez zmian). 7. Zadanie zadania domowego. 9

10 Laboratorium nr 5 Sprawdzian 10

11 Laboratorium nr 6 Metoda bisekcji dla równań nieliniowych 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody bisekcji. 4. Napisanie przez studentów programu realizującego metodę bisekcji. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania zadanegoproblemu(np.znaleźćzzadanądokładnością ). 6. Zadanie zadania domowego. 11

12 Laboratorium nr 7 Metoda Newtona dla równań i układów równań nieliniowych 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody Newtona. 4. Napisanie przez studentów programu realizującego metodę Newtona w przypadku jednego równania nieliniowego. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania zadanego problemu(np. znaleźć najmniejszy dodatni pierwiastek funkcjih(x)=e x2 sinx cosx). 6. Napisanie przez studentów programu realizującego metodę Newtona w przypadku układu równań nieliniowych. 7. Wykorzystanie przez studentów napisanego{ programu do rozwiązania x zadanego układu równań nieliniowych(np. 2 +y 2 =0, x+2xy=0 ). 8. Zadanie zadania domowego. 12

13 Laboratorium nr 8 Metoda Jacobiego i metoda Gaussa-Seidla 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody Jacobiego i metody Gaussa-Seidla. 4. Napisanie przez studentów programu realizującego metodę Jacobiego. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania zadanego układu równań liniowych oraz porównanie otrzymanego rozwiązania przybliżonego z rozwiązaniem dokładnym, 4x y=2, np. x+4y z=6, y 4z=2. 6. Napisanie przez studentów programu realizującego metodę Gaussa- Seidla. 7. Wykorzystanie przez studentów napisanego programu do rozwiązania zadanego układu równań liniowych oraz porównanie otrzymanego rozwiązania przybliżonego z rozwiązaniem dokładnym. 8. Zadanie zadania domowego. 13

14 Laboratorium nr 9 Interpolacja wielomianowa i interpolacja Lagrange a 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych interpolacji. 4. Dla zadanych punktów znalezienie wielomianu interpolacyjnego: (a) Utworzenie układu równań. (b) Rozwiązanie układu równań. (c) Narysowanie odpowiedniego rysunku. 5. Wykorzystanie powyższego podejścia do rozwiązania zadanego problemu(np.: dobrać wielomian interpolujący funkcję sin x w zadanej liczbie punktów z przedzialu[0, π], oszacować(graficznie) błąd interpolacji). 6. Napisanie przez studentów programu realizującego metodę interpolacji Lagrange a. 7. Zadanie zadania domowego. 14

15 Laboratorium nr 10 Aproksymacja średniokwadratowa dyskretna 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych aproksymacji średniokwadratowej dyskretnej. 4. Napisanie przez studentów programu realizującego aproksymację średniokwadratową dyskretną. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania(np. dla funkcji zadanej dyskretnie: f( 1) = 1, f(0)=0,f(1)=2,f(2)=2znaleźćaproksymacjęfunkcjąliniową zwagąw(x)=2 x). 6. Zadanie zadania domowego. 15

16 Laboratorium nr 11 Metody Newtona-Cotesa 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metod Newtona-Cotesa. 4. Napisanie przez studentów programu realizującego wybraną z metod Newtona-Cotesa. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania. 6. Zadanie zadania domowego. 16

17 Laboratorium nr 12 Metoda Monte-Carlo 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody Monte-Carlo. 4. Napisanie przez studentów programu realizującego całkowanie metodą Monte-Carlowprzypadkufunkcjif:[0,1] [0,1]. 5. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania. 6. Rozszerzenie działania poprzedniego programu na przypadek funkcji g:[0,1] [0,M]. 7. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania. 8. Rozszerzenie działania poprzedniego programu na przypadek funkcji h:[a,b] [0,M]. 9. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania. 17

18 10. Rozszerzenie działania poprzedniego programu na przypadek funkcji k:[a,b] [ M 1,M 2 ]. 11. Wykorzystanie przez studentów napisanego programu do rozwiązania podanego zadania. 12. Zadanie zadania domowego. 18

19 Laboratorium nr 13 Metoda Eulera 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody Eulera. 4. Napisanie przez studentów programu realizującego metodę Eulera dla równaniapierwszegorzęduzwarunkiempoczątkowym(np.y (x)= x+y(x),y(0)=2,x [0,3]). 5. Napisanie przez studentów programu realizującego metodę Eulera dla równania pierwszego rzędu z warunkiem na końcu przedziału(np. y (x)=x+y(x),y(3)=2,x [0,3]). 6. Zadanie zadania domowego. 19

20 Laboratorium nr 14 Metoda Rungego-Kutty 2. Sprawdzenie wiedzy studentów z zakresu tematu zajęć laboratoryjnych. 3. Krótkie przypomnienie podstaw teoretycznych metody Rungego-Kutty. 4. Napisanie przez studentów programu realizującego metodę Rungego- Kutty wybranego rzędu dla równania pierwszego rzędu z warunkiem początkowym(np.y (x)=x 2 1+y(x),y(0)=1,x [0,1]). 5. Zadanie zadania domowego. 20

21 Laboratorium nr 15 Sprawdzian 21

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13

Bardziej szczegółowo

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* 1,6 1,6

Egzamin / zaliczenie na ocenę* 1,6 1,6 Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

Zwięzły kurs analizy numerycznej

Zwięzły kurs analizy numerycznej Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Specjalnościowy Obowiązkowy Polski Semestr szósty

Specjalnościowy Obowiązkowy Polski Semestr szósty KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical

Bardziej szczegółowo

Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE

Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE GDAŃSK 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Z-ETI-1040 Metody numeryczne Numerical Methods

Z-ETI-1040 Metody numeryczne Numerical Methods Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

Równania nieliniowe. LABORKA Piotr Ciskowski

Równania nieliniowe. LABORKA Piotr Ciskowski Równania nieliniowe LABORKA Piotr Ciskowski przykład 1. funkcja fplot fplot ( f, granice ) fplot ( f, granice, n, linia, tol ) [ x, y ] = fplot ( )» fplot ( sin(x*x)/x, [ 0 4*pi ] )» fplot ( sin(x*x)/x,

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki

Bardziej szczegółowo

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus: Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

Algorytmy obliczeniowe

Algorytmy obliczeniowe PG WETiI Katedra Systemów Automatyki Algorytmy obliczeniowe Dr inż. Krzysztof Cisowski Tel: 583471274, email: krci@eti.pg.gda.pl Kierunek studiów Automatyka i Robotyka Zakres i treść przedmiotu (1) 1.

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie

Bardziej szczegółowo

course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN

course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN Zaawansowane metody numeryczne 4,5 ECTS Nazwa w języku angielskim: Numerical methods. Advanced dzienne magisterskie course Kod przedmiotu Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Podstawy Informatyki Computer basics

Podstawy Informatyki Computer basics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

Zajęcia nr 1: Zagadnienia do opanowania:

Zajęcia nr 1: Zagadnienia do opanowania: Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe

Bardziej szczegółowo

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Edukacja techniczno-informatyczna Nazwa przedmiotu: Metody numeryczne i elementy sztucznej inteligencji Charakter przedmiotu: kierunkowy, obowiązkowy

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) Załącznik nr 2 do zarządzenia Nr 33/2012 z dnia 25 kwietnia 2012 r. OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) 1. Nazwa przedmiotu/modułu w języku polskim Metody numeryczne 2. Nazwa przedmiotu/modułu

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra numeryczna Nazwa w języku angielskim : Numerical algebra Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku akademickiego

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 2

Obliczenia naukowe Wykład nr 2 Obliczenia naukowe Wykład nr 2 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Metody numeryczne Rok akademicki: 2014/2015 Kod: MIS-1-403-n Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH. INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i wizualizacja procesów fizycznych Nazwa modułu w języku angielskim

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

5. Twierdzenie Weierstrassa

5. Twierdzenie Weierstrassa Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka. (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Nowoczesne metody nauczania przedmiotów ścisłych

Nowoczesne metody nauczania przedmiotów ścisłych Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus Obowiązuje od roku akademickiego

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Analiza matematyczna

Analiza matematyczna Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Mathematical analysis

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B

INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów pok. 256 B INFORMATYKA W CHEMII Wykładowca: dr Piotr Szczepański, e-mail: piotrs@chem.umk.pl Katedra Chemii Fizycznej

Bardziej szczegółowo