Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych)."

Transkrypt

1 Zadanie Podaj model matematyczny uładu ja na ryunu: a w potaci tranmitancji, b w potaci równań tanu równań różniczowych. a ranmitancja operatorowa LC C b ównania tanu uładu di dt i A B du c u c dt i u C u c u gdzie: L A C L L B C [ ] Zadanie Na ryunu przedtawiono chemat ideowy generatora obcowzbudnego prądu tałego. Podać równanie różnicowe opiujące dynamię generatora oraz tranmitancję operatorową / w. Założenie: - e ϕ gdzie:

2 -tała ontrucyjna mazyny; ϕ -trumień wzbudzenia; -prędość obrotowa generatora. w w o p w Gdzie: w w w w g p L L

3 Zadanie Podaj waruni tabilności uładu przedtawionego na ryunu: Sorzytaj z ryterium tabilności Hurwitza i ryterium Nyquita gdzie: -, -, -, - [], - 4[], - []. < Gdzie: Zadanie 4. orzytając z ryterium Nyquita wyznaczyć graniczny wpółczynni wzmocnienia dla uładu >, >, >, >

4 < gdzie : gr gr Zadanie 5 Wyznaczyć błąd uchyb tatyczny uładu, gdy na wejście wprowadzono ygnał użyteczny xtt, czyli X e ut lim E lim e lim > > > Zadanie 6 Obliczyć tranmitancję uładu ja na ryunu: L C CL LC L C L L Zadanie 7 Oreślić zare przy pomocy ryterium tabilności Hurwitza: 4

5 ; ład jet tabilny dla > Zadanie 8 orzytając z ryterium Nyquita znaleźć warune jai powinny pełniać parametry uładu, aby był on tabilny: o ład jet tabilny dla > wynia to z warunu fazowego tabilności Zadanie 9 Zbadać tabilność uładu przedtawionego na ryunu orzytając z ryterium Hurwitza: Warune tabilności uładu < 5

6 Zadanie Stoując ryterium Nyquita zbadać tabilność uładu automatycznej regulacji mając dane: 5 ład jet tabilny Zadanie Znaleźć tranmitancję operatorową ryunu poniżej: Ω zepołu amplidyna - ilni prądu tałego, ja na 6

7 Iw, w Lw Eq Iw, Eq Iq, q Lq 4 Ed Iq, Ed E 5 Id, d Ld L 6 E cω, 7 Me IΩ BΩ, 8 Me c Id, Ω { I B[ d L d c L] c } w Lw q Lq Zadanie Wyznaczyć tranmitancję uładu przedtawionego na ryunu poniżej: x F x y dy Ft v dt gdzie : F t iła tarcia tłoa v y F iła prężyny Y X v v 7

8 Zadanie ranmitancja obietu regulacji ma potać: uład przedtawiony jet poniżej: X - o O O Y C Czujni c pomiarowy, przy pomocy tórego informacja na temat wielości wyjściowej podawana jet na wejście uładu ma tranmitancję: C C C Przy pomocy ryterium Hurwitza dobrać ta c, aby uład po zamnięciu był tabilny. Za dane należy uznać: o,,, C. c > o c c c Zadanie 4 ranmitancja uładu otwartego jet równa: o 4 Na podtawie ryterium Nyquita zbadać, tabilność uładu. ład tabilny dla < 4 8

9 Zadanie 5 ranmitancja uładu otwartego wynoi: o 5 Jaie powinno być, aby błąd uchyb tatyczny w tanie utalonym nie przeraczał % przy wymuzeniu tt? 54 Zadanie 6 Wyznaczyć tranmitancję uładu przedtawionego na ryunu: a toując prawa irchhoffa i Ohma b toując metodę Coltriego C C Zadanie 7 Wyznaczyć tranmitancję operatorową uładu mechanicznego przedtawionego na ryunu. Jao dane należy potratować,, v, x, y 9

10 Y X Zadanie 8 v v Stoując ryterium Hurwitza zbadać tabilność uładu automatycznej regulacji w zależności od parametru : 7 4 ład jet tabilny dla > Zadanie 9 ranmitancja uładu otwartego ma potać. Mając dane wartości parametrów 5,,[], [], 5[]. Zbadać tabilność uładu zamniętego na podtawie charaterytyi amplitudowo-fazowej uładu otwartego.

11 Po podtawieniu wartości parametrów: 5 o 6, 6, Wyrażenie oreślające charaterytyę amplitudowo-fazową j ma potać: o j P gdzie : jq 5 6, P 6, 6, 56, Q 6, 6, P o Q o 6,, ± 6, 6, 4,5 ± 6, Ponieważ uwzględniamy tylo > odrzucamy dwa rozwiązania - 6, Zgodnie z ryterium tabilności Nyquita muzą być pełnione dwa waruni: Q P > o i o i, 5-6,. P o 5 > 5 4 6, Po 4 7,44 ład po zamnięciu jet tabilny. > Zadanie ranmitancja uładu otartego jet równa: W jaim zareie można zmieniać >, aby pełnione były waruni: - tabilności uładu, - uchyb tatyczny w tanie utalonym był mniejzy od % przy wymuzeniu t t?

12 Warune tabilności uładu jet natępujący <6. Warune pełniający ograniczenia błędu tatycznego 54. Zatem aby uład pełniał powyżze wymagania mui należeć do przedziału [54,6 Zadanie Dla uładu ja na ryunu obliczyć tranmitancję : gdzie: L- inducyjność cewi - rezytancja C- pojemność ondenatora CL Zadanie L Obliczyć tranmitancję Y dla uładu ja na ryunu: F ft m y v Y F m

13 Zadanie Zbadać tabilność uładu automatycznej regulacji toując ryterium Hurwitza. ranmitancje operatorowe pozczególnych bloów ą natępujące:,,,, 4 5 y zad yt 5 4 ład znajduje ię na granicy tabilności. Zadanie 4 orzytając z ryterium Nyquta oreślić zare wartości przy tórym uład jet tabilny. ranmitancja operatorowa uładu otwartego: ład będzie tabilny przy pełnieniu warunu: < 64 Zadanie 5 ranmitancja operatorowa uładu otwartego wynoi: o Wyznaczyć wartość: C d C d I d d d I e dt przy założeniu, że t t.

14 Zadanie 6 Wyznacz zare orzytając z ryterium tabilności Hurwitza. Schemat bloowy uładu: X Y gdzie: - tranmitancja członu orecyjnego Schemat ideowy elementu orecyjnego jet natępujący: we C L wy ład będzie tabilny dla < LC. Zadanie 7 Dla uładu na ryunu wyznacz dla tórego będzie on tabilny orzytając z ryterium Nyquita: 4

15 x t y cont. e ład jet tabilny dla < 9 4. Zadanie 8 Wyznacz tranmitancję dla uładu ja na ryunu. C we L L C wy wy we L L C L L C C L Zadanie 9 Oreślić tabilność uładu o tranmitancji o za pomocą ryterium logarytmicznego. 5 5 o 5

16 Zgodnie z warunami tabilności według ryterium Nyquita: M φ > 8 φ 8 M < Oba waruni ą pełnione więc rozpatrywany uład jet tabilny Zadanie Wyznacz uchyb tatyczny uładu przy wymuzeniu xt in t: X o Y o B A e j 6

17 9 4 B Zadanie Wyznaczyć tranmitancję uładu zamniętego przedtawionego na chemacie: y zad yt em z em Zadanie Wyznaczyć tranmitancję uładu: we wy C C wy we 7

18 Zadanie Wyazać, że uład podany na chemacie jet tabilny dla dowolnego > ryterium Hurwitza: y zad / yt Schemat ideowy elementu C e u E C z C C α Gdzie: C, α Stoując ryterium Hurwitza otrzymujemy natępujące waruni tabilności: α >, α > Dla,,, > uzyuje ię α > czyli α > Ponieważ warune jet pełniony dla dowolnych, uład jet zawze tabilny. 8

19 Zadanie 4 Wyznaczyć błąd uchyb utalony uładu, z regulatorem PI, podanego na chemacie. Sygnał załócający: Zt*t, y zad t Schemat uładu: zt y zad yt 4i e ut lim i 4 r i gdzie: r, i parametry regulatora PI Zadanie 5 Zbadać za pomocą ryterium Nyquita, czy uład regulacji automatycznej jet tabilny, jeżeli: Schemat bloowy uładu : 9

20 y zad yt ład będzie tabilny przy pełnieniu warunu Zadanie 6 Podaj model matematyczny uładu ja na ryunu: a w potaci równań tanu, b w potaci tranmitancji. we c C wy - - a d C t A C t B WE t dt WY C C t D WE t Gdzie:

21 A, B C C, D C b WY WE C Zadanie 7 Schemat uładu otwartego przedtawiono na poniżzym ryunu. xt / yt /4 Zbadaj tabilność uładu zamniętego ład po zamnięciu jet tabilny Zadanie 8 orzytając z ryterium Nyquita zbadać tabilność uładu przedtawionego na ryunu, przy czym tranmitancje operatorowe mają potać:,, 4 5

22 z ryterium Nyquita formułowane jet natępująco: jeżeli uład otwarty jet tabilny to po jego zamnięciu uład też będzie tabilny jeżeli charaterytya amplitudowo-fazowa uładu otwartego nie obejmuje puntu -,j. Ponieważ wyznaczona tranmitancja jet tranmitancją uładu zamniętego, dlatego należy ją przeztałcić zgodnie ze wzorem: z z Otrzymujemy tranmitancję uładu otwartego: Natępnie pełnione muzą być waruni: } { } { > e Im j j Stąd 4 j j Q j P j j j j Oraz - i >,5 4 4 P P Q ład po zamnięciu będzie tabilny. Zadanie 9 Schemat uładu automatycznej regulacji ja na ryunu, gdzie tranmitancje operatorowe mają potać:

23 ,, Wyznaczyć błąd uchyb tatyczny uładu, gdy na wejście wprowadzono natępujące ygnały użyteczne: in5 t t t t t t a lim e S S b, lim e S S c,, j A B e gdzie:, 975,5 75, j e

24 Zadanie 4 Podać równania różniczowe opiujące dynamię ilnia w przypadu, gdy napięcie wzbudzenia w jet tałe ilni terowany tworniowo. Znaleźć tranmitancję operatorową Ω / oraz Ω /M.. i w S M. Schemat ideowy obcowzbudnego ilnia prądu tałego. Na poniżzym ryunu przedtawiono zatępczy chemat eletryczny obwodu twornia uwzględniający oporność i inducyjność L twornia oraz iłę eletromotoryczną inducji e φ, gdzie tała ontrucyjna mazyny, a φ - trumień wzbudzenia. L i e Z uwagi na tałość w, cont, a zatem: e ϕ Ω Ω M gdzie: em em M u em em 4

25 L, u, c em M J c c tała eletromagnetyczna em tała eletromechaniczna Zadanie 4 orzytając z ryterium Nyquita wyznaczyć graficznie wpółczynnii wzmocnienia dla uładu o natępującej tranmitancji w tanie otwartym >, >, >. Aby uład był tabilny, powinno zachodzić: < gr, gdzie: gr Zadanie 4 Dla elementu orecyjnego: Wyznacz odpowiedź oową uładu oraz charaterytyę amplitudowo fazową C C C C C C C C C C 5

26 Zadanie 4 ranmitancja uładu jet równa: W jaim zareie można zmienić aby pełnione były: tabilność uładu tabilnego uchyb tatyczny w tanie utalonym był mniejzy od % przy wymuzeniu t t a ład będzie tabilny dla < 6 b e l im E l im S l im 7, 7 Nie ma taiego tóre pełniałoby założenia zadania. 7 % Zadanie 44 orzytając z ryterium logarytmicznego oreślić tabilność uładu o tranmitancji Wyznaczamy charaterytyi amplitudy i fazy w zależności od czętotliwości: - Charaterytya amplitudy Mlg j lg- lg *lg 4 - Charaterytya fazy π Φ * arctg ryterium logarytmiczne jet formułowane natępująco: - uład jet tabilny jeżeli dla Φarg{ jw}8 M <. - uład jet tabilny jeżeli przy M Φ > - 8 6

27 Charaterytya odcinowa wartości przedtawione tabelarycznie M Φ, 6-9, 4-9, -9 < Ponieważ waruni tabilności nie ą pełnione rozpatrywany uład jet nietabilny Zadanie 45 Obliczyć tranmitancję uładu przedtawionego na chemacie: C C Z Z Z gdzie: C C,., C C C C C C C C C C C C Zadanie 46 7

28 Za pomocą ryterium Hurwitza obliczyć wpółczynni wzmocnienia dla uładu poiadającego w tanie otwartym o danych:,,,4 natępującą tranmitancję: Warune tabilności: < > <, 5 Zadanie 47 orzytając z ryterium Nyquita wyznaczyć waruni tabilności uładu: y - S cont. Aby uład był tabilny mui być pełniony warune: <,4. Zadanie 48 ranmitancja uładu otwartego ma potać. W jaim zareie 4 można zmieniać aby uład po zamnięciu był tabilny oraz uchyb tatyczny w tanie utalonym nie przeraczał 5% przy wymuzeniu t t?. a < 7 b e,5 68 ład będzie tabilny oraz uchyb nie będzie przeraczał 5% jeżeli będzie w przedziale: 68 < 7. 8

29 9 Zadanie 49 Obliczyć tranmitancję uładu przedtawionego na chemacie: C C C C C C C C Z Z Z Zadanie 5 Obliczyć tranmitancję uładu przedtawionego na chemacie: C L L C LC Z Z Z

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH Zadanie 1. (Charaterytyi czętotliwościowe) Problem: Wyznaczyć charaterytyi czętotliwościowe (amplitudową i fazową) członu całującego rzeczywitego

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

BADANIE SILNIKA INDUKCYJNEGO STEROWANEGO Z FALOWNIKA NAPIĘCIA

BADANIE SILNIKA INDUKCYJNEGO STEROWANEGO Z FALOWNIKA NAPIĘCIA BADANIE SILNIKA INDUKCYJNEGO SEROWANEGO Z FALOWNIKA NAPIĘCIA 1. Wprowadzenie Silni inducyjny należy do grupy mazyn aynchronicznych, tzn. taich, w tórych prędość wirnia jet różna od prędości wirowania pola

Bardziej szczegółowo

Stany awaryjne i niesymetryczne w układach napędowych z silnikami indukcyjnymi

Stany awaryjne i niesymetryczne w układach napędowych z silnikami indukcyjnymi Ćwiczenie 0 Stany awaryjne i nieymetryczne w uładach napędowych z ilniami inducyjnymi 0.. Program ćwiczenia. Poznanie tanów awaryjnych i nieymetrycznych wytępujących w uładach napędowych z ilniami inducyjnymi..

Bardziej szczegółowo

Laboratorium Napędu Elektrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falownikiem napięcia. Właściwości silnika indukcyjnego.

Laboratorium Napędu Elektrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falownikiem napięcia. Właściwości silnika indukcyjnego. Laboratorium Napędu Eletrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falowniiem napięcia. Właściwości ilnia inducyjnego. Silni inducyjny latowy I jet mazyną eletryczną zailaną napięciem prądu przemiennego.

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

Stabilność liniowych układów dyskretnych

Stabilność liniowych układów dyskretnych Akademia Morka w Gdyni atedra Automatyki Okrętowej Teoria terowania Miroław Tomera. WPROWADZENIE Definicja tabilności BIBO (Boundary Input Boundary Output) i tabilność zerowo-wejściowa może zotać łatwo

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

Statyczne charakterystyki czujników

Statyczne charakterystyki czujników Statyczne charakterytyki czujników Określają działanie czujnika w normalnych warunkach otoczenia przy bardzo powolnych zmianach wielkości wejściowej. Itotne zagadnienia: kalibracji hiterezy powtarzalności

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII POLTECHNA ŚLĄSA WYDZAŁ GÓNCTWA GEOLOG oman aula WYBANE METODY DOBOU NASTAW PAAMETÓW EGULATOA PD PLAN WYŁADU Wprowazenie ryterium Zieglera-Nichola Metoa linii pierwiatkowych ryterium minimalizacji kwaratowego

Bardziej szczegółowo

Podstawowe układy pracy tranzystora bipolarnego

Podstawowe układy pracy tranzystora bipolarnego L A B O A T O I U M U K Ł A D Ó W L I N I O W Y C H Podtawowe układy pracy tranzytora bipolarnego Ćwiczenie opracował Jacek Jakuz 4. Wtęp Ćwiczenie umożliwia pomiar i porównanie parametrów podtawowych

Bardziej szczegółowo

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych

Bardziej szczegółowo

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia Ćwiczenie 13 Układ napędowy z ilnikiem indukcyjnym i falownikiem napięcia 3.1. Program ćwiczenia 1. Zapoznanie ię ze terowaniem prędkością ilnika klatkowego przez zmianę czętotliwości napięcia zailającego..

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

STEROWANIE WG. ZASADY U/f = const

STEROWANIE WG. ZASADY U/f = const STEROWANIE WG. ZASADY U/f = cont Rozruch bezpośredni ilnika aynchronicznego (bez układu regulacji, odpowiedź na kok wartości zadanej napięcia zailania) Duży i niekontrolowany prąd przy rozruchu Ocylacje

Bardziej szczegółowo

Temat: Generatory napięć sinusoidalnych wprowadzenie

Temat: Generatory napięć sinusoidalnych wprowadzenie Temat: Generatory napięć sinusoidalnych wprowadzenie. Generator drgań eletrycznych jest to urządzenie wytwarzające drgania eletryczne w wyniu przetwarzania energii eletrycznej,zwyle prądu stałego na energię

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Mazyn Roboczych tudia inżynierkie prowadzący: mgr inż. Sebatian Korczak Poniżze materiały tylko dla tudentów uczęzczających na zajęcia. Zakaz

Bardziej szczegółowo

współczynnik proporcjonalności Jeżeli u i y są jednakowymi wielkościami fizycznymi

współczynnik proporcjonalności Jeżeli u i y są jednakowymi wielkościami fizycznymi 64 5. Liniowe człony ynamiczne 5.. Człony potawowe elementarne W złożonych ułaach automatyi zwyle można wyorębnić zereg najprotzych niepozielnych już elementów funcjonalnych. Pomimo różnoronych form ich

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu. Pomiar rezytancji. 1. Cel ćwiczenia: Celem ćwiczenia jet zapoznanie ię z najważniejzymi metodami pomiaru rezytancji, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich

Bardziej szczegółowo

P-3. Filtr aktywny z dodatnim sprzężeniem zwrotnym

P-3. Filtr aktywny z dodatnim sprzężeniem zwrotnym laboratorium z podtaw eletronii analoowej i cyfrowej - intrucje do ćwiczeń (005, p) P-. Filtr atywny z dodatnim przężeniem zwrotnym Ćwiczenie polea na zaprojetowaniu, zbudowaniu i zbadaniu filtru atywneo

Bardziej szczegółowo

s P 6.1. Silniki asynchroniczne pierścieniowe Możemy łatwo wykazać, że: Po sprowadzeniu do obwodu stojana: Maszyny indukcyjne Napęd elektryczny 6.

s P 6.1. Silniki asynchroniczne pierścieniowe Możemy łatwo wykazać, że: Po sprowadzeniu do obwodu stojana: Maszyny indukcyjne Napęd elektryczny 6. azyny inducyjne 6.. Silnii aynchroniczne pierścieniowe ożemy łatwo wyazać, że: P cu m I P ω o m ω o I Po prowadzeniu do obwodu tojana: m ω ' o I ' Napęd eletryczny 6. - azyny inducyjne Ponieważ I ' ' U

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach rękopiu do użytku łużbowego INSTYTUT ENEROELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA ĆWICZENIE Nr SPOSOBY

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI ĆWICZENIE A2 INSTRUKCJA OBSŁUGI 1. Oględziny zewnętrzne tanowika: dane ilnika (dla połączenia w gwiazdę): typ Sg90L6, nr fabr. CL805351, P n =1,1kW, n n =925obr/min, U n =230/400V, I n =5,1/2,9A, coϕ n

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Podstawy Automatyki. Karol Cupiał

Podstawy Automatyki. Karol Cupiał Poawy Automatyki Karol Cupiał Czętochowa tyczeń Kierunek Energetyka tudia tacjonarne em. 3 we 3 l3 c Kierunek Mechanika i BM tudia tacjonarne em 4 5 w 3 l Kierunek Mechatronika tudia tacjonarne em. 5 w

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Bardziej szczegółowo

A-4. Filtry aktywne rzędu II i IV

A-4. Filtry aktywne rzędu II i IV A-4. Filtry atywne rzędu II i IV Filtry atywne to ułady liniowe i stacjonarne realizowane za pomocą elementu atywnego, na tóry założono sprzężenie zwrotne zbudowane z elementów biernych i. Elementem atywnym

Bardziej szczegółowo

NAPĘD ELEKTRYCZNY (studia zaoczne)

NAPĘD ELEKTRYCZNY (studia zaoczne) NAPĘD ELEKTYCZNY (tudia zaoczne) emetr W Ć S L P VI EZ PiUEE E - - - VI EZ EE E - - - - Treść wykładów ( godz.):. Podtawowe cechy napędu elektrycznego oraz truktura układów napędowych. Definicje i klayfikacje

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013

Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013 Kolokwium poprawkowe Wariant C azyny Elektryczne i Tranormatory t. t. em. III (zima) 01/013 azyna Aynchroniczna Trójazowy ilnik indukcyjny pierścieniowy ma natępujące dane znamionowe: P 13 kw n 147 or/min

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

prof. dr hab. inż. Tadeusz Glinka Elżbieta Dorota Alicka Copyright by Politechnika Białostocka, Białystok 2017

prof. dr hab. inż. Tadeusz Glinka Elżbieta Dorota Alicka Copyright by Politechnika Białostocka, Białystok 2017 Recenzent: prof. dr hab. inż. Tadeuz Glina Redator wydawnictwa: Elżbieta Dorota Alica Copyright by Politechnia Białotoca, Białyto 07 SBN 978-83-65596-6-0 SBN 978-83-65596-7-7 (eboo) Publiacja jet udotępniona

Bardziej szczegółowo

Przykład modelowania cybernetycznego bardziej złożonych systemów biologicznych przepływ krwi. Najpierw przypomnienie kilku elementarnych faktów

Przykład modelowania cybernetycznego bardziej złożonych systemów biologicznych przepływ krwi. Najpierw przypomnienie kilku elementarnych faktów Przyład modelu rążenia rwi Modelowanie (z pomocą uperomputerów) proceu przepływu rwi w naczyniach apilarnych Wyład nr 1 z uru Biocybernetyi dla Inżynierii Biomedycznej prowadzonego przez Prof. Ryzarda

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 1 ĆWICZENIA

PODSTAWY AUTOMATYKI 1 ĆWICZENIA Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź

Bardziej szczegółowo

9. Sprzężenie zwrotne własności

9. Sprzężenie zwrotne własności 9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób

Bardziej szczegółowo

1. Wstęp teoretyczny.

1. Wstęp teoretyczny. 1. Wstęp teoretyczny. W naszym ćwiczeniu mieliśmy za zadanie zbadać pracę uładu generatora opartego na elementach biernych R i C. W generatorach ze sprzęŝeniem zwrotnym jest przewidziany obwód, dzięki

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

Ć W I C Z E N I E N R E-7

Ć W I C Z E N I E N R E-7 NSTYTT FYK WYDAŁ NŻYNER PRODKCJ TECHNOOG MATERAŁÓW POTECHNKA CĘSTOCHOWSKA PRACOWNA EEKTRYCNOŚC MAGNETYM Ć W C E N E N R E-7 WYNACANE WSPÓŁCYNNKA NDKCJ WŁASNEJ CEWK . agadnienia do przetudiowania 1. jawiko

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 5 Politechnika Wrocławka, w porównaniu z filtrami paywnymi L, różniają ię wieloma zaletami, np. dużą tabilnością pracy, dokładnością, łatwością

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

Badanie układu sterowania z regulatorem PID

Badanie układu sterowania z regulatorem PID Akademia Morka w Gdyni Katedra Automatyki Okrętowej eoria terowania Miroław omera. WPROWADZENE W układzie regulacji porównywana jet wartość pomierzona ze ygnałem zadanym i określana jet odchyłka łużąca

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 EUROELEKTRA Ogólnopolka Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok zkolny 015/016 Zadania z elektrotechniki na zawody III topnia Rozwiązania Intrukcja dla zdającego 1. Cza trwania zawodów: 10 minut..

Bardziej szczegółowo

Wzmacniacz rezonansowy

Wzmacniacz rezonansowy A B O R A T O R I U M P O D S T A W E E K T R O N I K I I M E T R O O G I I Wzmacniacz rezonanowy 3. Wtęp Ćwiczenie opracował Marek Wójcikowki na podtawie pracy dyplomowej Sławomira ichoza Ćwiczenie umoŝliwia

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

4. Schematy blokowe; algebra schematów blokowych

4. Schematy blokowe; algebra schematów blokowych 57. Schemat bloowe; algebra chematów bloowch W ażdm złożonm ładzie atomati można wodrębnić wpółpracjące ze obą element protze, tórch właściwości ą znane i formłowane np. w potaci tranmitancji operatorowej.

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 6 Politechnika Wrocławka Filtry toowanie filtrów w elektronice ma na celu eliminowanie czy też zmniejzenie wpływu ygnałów o niepożądanej czętotliwości

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ Prace Nauowe Instytutu Maszyn, Napędów i Pomiarów Eletrycznych Nr 66 Politechnii Wrocławsiej Nr 66 Studia i Materiały Nr 3 Józef NOWAK*, Jerzy BAJOREK*, Dominia GAWORSKA-KONIAREK**, omasz JANA* moc bierna,

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Cezary Ziółowsi Jan M. Kelner Instytut Teleomuniacji Wojsowa Aademia Techniczna Przestrzenne uwarunowania loalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Problematya loalizacji

Bardziej szczegółowo

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO Akademia Morka w dyni Katedra Automatyki Okrętowej Teoria terowania Miroław Tomera. ELEMENTY SCEMATU BLOKOWEO Opi układu przy użyciu chematu blokowego jet zeroko i powzechnie toowany w analizowaniu działania

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 4 Temat: Identyfiacja obietu regulacji

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

Programy CAD w praktyce inŝynierskiej

Programy CAD w praktyce inŝynierskiej Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 76/2007

Zeszyty Problemowe Maszyny Elektryczne Nr 76/2007 Zezyty roleowe Mazyny Eletryczne r 76/7 Wojciech Grzegorz Zielińi olitechnia Lela Llin RACJOALA RACA SILIKÓW ASYCHROICZYCH KLATKOWYCH RZY ZMIAIE SKOJARZEIA UZWOJEŃ Z TRÓJKĄTA W GWIAZDĘ EFFICIET OERATIO

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

ANALIZA PRACY MASZYNY SYNCHRONICZNEJ NAPĘDZANEJ SILNIKIEM TŁOKOWYM

ANALIZA PRACY MASZYNY SYNCHRONICZNEJ NAPĘDZANEJ SILNIKIEM TŁOKOWYM Zezyty Problemowe Mazyny Eletryczne Nr 3/14 (13) 17 Michał Radzi *, Tadeuz Sobczy ** * Pańtwowa Wyżza Szoła Zawodowa w Nowym Sączu, Intytut Techniczny ** Politechnia Kraowa, Intytut Eletromechanicznych

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący Podstawowe zastosowania wzmacniaczy operacyjnych. kład całkujący i różniczkujący. el ćwiczenia elem ćwiczenia jest praktyczne poznanie układów ze wzmacniaczami operacyjnymi stosownych do liniowego przekształcania

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO ELEKTRYKA 24 Zezyt 4(232) Rok LX Januz HETMAŃCZYK, Maciej SAJKOWSKI, Tomaz STENZEL, Krzyztof KRYKOWSKI Politechnika Śląka w Gliwicach MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie generatorów sinusoidalnych (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych typów generatorów sinusoidalnych.

Bardziej szczegółowo