Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych)."

Transkrypt

1 Zadanie Podaj model matematyczny uładu ja na ryunu: a w potaci tranmitancji, b w potaci równań tanu równań różniczowych. a ranmitancja operatorowa LC C b ównania tanu uładu di dt i A B du c u c dt i u C u c u gdzie: L A C L L B C [ ] Zadanie Na ryunu przedtawiono chemat ideowy generatora obcowzbudnego prądu tałego. Podać równanie różnicowe opiujące dynamię generatora oraz tranmitancję operatorową / w. Założenie: - e ϕ gdzie:

2 -tała ontrucyjna mazyny; ϕ -trumień wzbudzenia; -prędość obrotowa generatora. w w o p w Gdzie: w w w w g p L L

3 Zadanie Podaj waruni tabilności uładu przedtawionego na ryunu: Sorzytaj z ryterium tabilności Hurwitza i ryterium Nyquita gdzie: -, -, -, - [], - 4[], - []. < Gdzie: Zadanie 4. orzytając z ryterium Nyquita wyznaczyć graniczny wpółczynni wzmocnienia dla uładu >, >, >, >

4 < gdzie : gr gr Zadanie 5 Wyznaczyć błąd uchyb tatyczny uładu, gdy na wejście wprowadzono ygnał użyteczny xtt, czyli X e ut lim E lim e lim > > > Zadanie 6 Obliczyć tranmitancję uładu ja na ryunu: L C CL LC L C L L Zadanie 7 Oreślić zare przy pomocy ryterium tabilności Hurwitza: 4

5 ; ład jet tabilny dla > Zadanie 8 orzytając z ryterium Nyquita znaleźć warune jai powinny pełniać parametry uładu, aby był on tabilny: o ład jet tabilny dla > wynia to z warunu fazowego tabilności Zadanie 9 Zbadać tabilność uładu przedtawionego na ryunu orzytając z ryterium Hurwitza: Warune tabilności uładu < 5

6 Zadanie Stoując ryterium Nyquita zbadać tabilność uładu automatycznej regulacji mając dane: 5 ład jet tabilny Zadanie Znaleźć tranmitancję operatorową ryunu poniżej: Ω zepołu amplidyna - ilni prądu tałego, ja na 6

7 Iw, w Lw Eq Iw, Eq Iq, q Lq 4 Ed Iq, Ed E 5 Id, d Ld L 6 E cω, 7 Me IΩ BΩ, 8 Me c Id, Ω { I B[ d L d c L] c } w Lw q Lq Zadanie Wyznaczyć tranmitancję uładu przedtawionego na ryunu poniżej: x F x y dy Ft v dt gdzie : F t iła tarcia tłoa v y F iła prężyny Y X v v 7

8 Zadanie ranmitancja obietu regulacji ma potać: uład przedtawiony jet poniżej: X - o O O Y C Czujni c pomiarowy, przy pomocy tórego informacja na temat wielości wyjściowej podawana jet na wejście uładu ma tranmitancję: C C C Przy pomocy ryterium Hurwitza dobrać ta c, aby uład po zamnięciu był tabilny. Za dane należy uznać: o,,, C. c > o c c c Zadanie 4 ranmitancja uładu otwartego jet równa: o 4 Na podtawie ryterium Nyquita zbadać, tabilność uładu. ład tabilny dla < 4 8

9 Zadanie 5 ranmitancja uładu otwartego wynoi: o 5 Jaie powinno być, aby błąd uchyb tatyczny w tanie utalonym nie przeraczał % przy wymuzeniu tt? 54 Zadanie 6 Wyznaczyć tranmitancję uładu przedtawionego na ryunu: a toując prawa irchhoffa i Ohma b toując metodę Coltriego C C Zadanie 7 Wyznaczyć tranmitancję operatorową uładu mechanicznego przedtawionego na ryunu. Jao dane należy potratować,, v, x, y 9

10 Y X Zadanie 8 v v Stoując ryterium Hurwitza zbadać tabilność uładu automatycznej regulacji w zależności od parametru : 7 4 ład jet tabilny dla > Zadanie 9 ranmitancja uładu otwartego ma potać. Mając dane wartości parametrów 5,,[], [], 5[]. Zbadać tabilność uładu zamniętego na podtawie charaterytyi amplitudowo-fazowej uładu otwartego.

11 Po podtawieniu wartości parametrów: 5 o 6, 6, Wyrażenie oreślające charaterytyę amplitudowo-fazową j ma potać: o j P gdzie : jq 5 6, P 6, 6, 56, Q 6, 6, P o Q o 6,, ± 6, 6, 4,5 ± 6, Ponieważ uwzględniamy tylo > odrzucamy dwa rozwiązania - 6, Zgodnie z ryterium tabilności Nyquita muzą być pełnione dwa waruni: Q P > o i o i, 5-6,. P o 5 > 5 4 6, Po 4 7,44 ład po zamnięciu jet tabilny. > Zadanie ranmitancja uładu otartego jet równa: W jaim zareie można zmieniać >, aby pełnione były waruni: - tabilności uładu, - uchyb tatyczny w tanie utalonym był mniejzy od % przy wymuzeniu t t?

12 Warune tabilności uładu jet natępujący <6. Warune pełniający ograniczenia błędu tatycznego 54. Zatem aby uład pełniał powyżze wymagania mui należeć do przedziału [54,6 Zadanie Dla uładu ja na ryunu obliczyć tranmitancję : gdzie: L- inducyjność cewi - rezytancja C- pojemność ondenatora CL Zadanie L Obliczyć tranmitancję Y dla uładu ja na ryunu: F ft m y v Y F m

13 Zadanie Zbadać tabilność uładu automatycznej regulacji toując ryterium Hurwitza. ranmitancje operatorowe pozczególnych bloów ą natępujące:,,,, 4 5 y zad yt 5 4 ład znajduje ię na granicy tabilności. Zadanie 4 orzytając z ryterium Nyquta oreślić zare wartości przy tórym uład jet tabilny. ranmitancja operatorowa uładu otwartego: ład będzie tabilny przy pełnieniu warunu: < 64 Zadanie 5 ranmitancja operatorowa uładu otwartego wynoi: o Wyznaczyć wartość: C d C d I d d d I e dt przy założeniu, że t t.

14 Zadanie 6 Wyznacz zare orzytając z ryterium tabilności Hurwitza. Schemat bloowy uładu: X Y gdzie: - tranmitancja członu orecyjnego Schemat ideowy elementu orecyjnego jet natępujący: we C L wy ład będzie tabilny dla < LC. Zadanie 7 Dla uładu na ryunu wyznacz dla tórego będzie on tabilny orzytając z ryterium Nyquita: 4

15 x t y cont. e ład jet tabilny dla < 9 4. Zadanie 8 Wyznacz tranmitancję dla uładu ja na ryunu. C we L L C wy wy we L L C L L C C L Zadanie 9 Oreślić tabilność uładu o tranmitancji o za pomocą ryterium logarytmicznego. 5 5 o 5

16 Zgodnie z warunami tabilności według ryterium Nyquita: M φ > 8 φ 8 M < Oba waruni ą pełnione więc rozpatrywany uład jet tabilny Zadanie Wyznacz uchyb tatyczny uładu przy wymuzeniu xt in t: X o Y o B A e j 6

17 9 4 B Zadanie Wyznaczyć tranmitancję uładu zamniętego przedtawionego na chemacie: y zad yt em z em Zadanie Wyznaczyć tranmitancję uładu: we wy C C wy we 7

18 Zadanie Wyazać, że uład podany na chemacie jet tabilny dla dowolnego > ryterium Hurwitza: y zad / yt Schemat ideowy elementu C e u E C z C C α Gdzie: C, α Stoując ryterium Hurwitza otrzymujemy natępujące waruni tabilności: α >, α > Dla,,, > uzyuje ię α > czyli α > Ponieważ warune jet pełniony dla dowolnych, uład jet zawze tabilny. 8

19 Zadanie 4 Wyznaczyć błąd uchyb utalony uładu, z regulatorem PI, podanego na chemacie. Sygnał załócający: Zt*t, y zad t Schemat uładu: zt y zad yt 4i e ut lim i 4 r i gdzie: r, i parametry regulatora PI Zadanie 5 Zbadać za pomocą ryterium Nyquita, czy uład regulacji automatycznej jet tabilny, jeżeli: Schemat bloowy uładu : 9

20 y zad yt ład będzie tabilny przy pełnieniu warunu Zadanie 6 Podaj model matematyczny uładu ja na ryunu: a w potaci równań tanu, b w potaci tranmitancji. we c C wy - - a d C t A C t B WE t dt WY C C t D WE t Gdzie:

21 A, B C C, D C b WY WE C Zadanie 7 Schemat uładu otwartego przedtawiono na poniżzym ryunu. xt / yt /4 Zbadaj tabilność uładu zamniętego ład po zamnięciu jet tabilny Zadanie 8 orzytając z ryterium Nyquita zbadać tabilność uładu przedtawionego na ryunu, przy czym tranmitancje operatorowe mają potać:,, 4 5

22 z ryterium Nyquita formułowane jet natępująco: jeżeli uład otwarty jet tabilny to po jego zamnięciu uład też będzie tabilny jeżeli charaterytya amplitudowo-fazowa uładu otwartego nie obejmuje puntu -,j. Ponieważ wyznaczona tranmitancja jet tranmitancją uładu zamniętego, dlatego należy ją przeztałcić zgodnie ze wzorem: z z Otrzymujemy tranmitancję uładu otwartego: Natępnie pełnione muzą być waruni: } { } { > e Im j j Stąd 4 j j Q j P j j j j Oraz - i >,5 4 4 P P Q ład po zamnięciu będzie tabilny. Zadanie 9 Schemat uładu automatycznej regulacji ja na ryunu, gdzie tranmitancje operatorowe mają potać:

23 ,, Wyznaczyć błąd uchyb tatyczny uładu, gdy na wejście wprowadzono natępujące ygnały użyteczne: in5 t t t t t t a lim e S S b, lim e S S c,, j A B e gdzie:, 975,5 75, j e

24 Zadanie 4 Podać równania różniczowe opiujące dynamię ilnia w przypadu, gdy napięcie wzbudzenia w jet tałe ilni terowany tworniowo. Znaleźć tranmitancję operatorową Ω / oraz Ω /M.. i w S M. Schemat ideowy obcowzbudnego ilnia prądu tałego. Na poniżzym ryunu przedtawiono zatępczy chemat eletryczny obwodu twornia uwzględniający oporność i inducyjność L twornia oraz iłę eletromotoryczną inducji e φ, gdzie tała ontrucyjna mazyny, a φ - trumień wzbudzenia. L i e Z uwagi na tałość w, cont, a zatem: e ϕ Ω Ω M gdzie: em em M u em em 4

25 L, u, c em M J c c tała eletromagnetyczna em tała eletromechaniczna Zadanie 4 orzytając z ryterium Nyquita wyznaczyć graficznie wpółczynnii wzmocnienia dla uładu o natępującej tranmitancji w tanie otwartym >, >, >. Aby uład był tabilny, powinno zachodzić: < gr, gdzie: gr Zadanie 4 Dla elementu orecyjnego: Wyznacz odpowiedź oową uładu oraz charaterytyę amplitudowo fazową C C C C C C C C C C 5

26 Zadanie 4 ranmitancja uładu jet równa: W jaim zareie można zmienić aby pełnione były: tabilność uładu tabilnego uchyb tatyczny w tanie utalonym był mniejzy od % przy wymuzeniu t t a ład będzie tabilny dla < 6 b e l im E l im S l im 7, 7 Nie ma taiego tóre pełniałoby założenia zadania. 7 % Zadanie 44 orzytając z ryterium logarytmicznego oreślić tabilność uładu o tranmitancji Wyznaczamy charaterytyi amplitudy i fazy w zależności od czętotliwości: - Charaterytya amplitudy Mlg j lg- lg *lg 4 - Charaterytya fazy π Φ * arctg ryterium logarytmiczne jet formułowane natępująco: - uład jet tabilny jeżeli dla Φarg{ jw}8 M <. - uład jet tabilny jeżeli przy M Φ > - 8 6

27 Charaterytya odcinowa wartości przedtawione tabelarycznie M Φ, 6-9, 4-9, -9 < Ponieważ waruni tabilności nie ą pełnione rozpatrywany uład jet nietabilny Zadanie 45 Obliczyć tranmitancję uładu przedtawionego na chemacie: C C Z Z Z gdzie: C C,., C C C C C C C C C C C C Zadanie 46 7

28 Za pomocą ryterium Hurwitza obliczyć wpółczynni wzmocnienia dla uładu poiadającego w tanie otwartym o danych:,,,4 natępującą tranmitancję: Warune tabilności: < > <, 5 Zadanie 47 orzytając z ryterium Nyquita wyznaczyć waruni tabilności uładu: y - S cont. Aby uład był tabilny mui być pełniony warune: <,4. Zadanie 48 ranmitancja uładu otwartego ma potać. W jaim zareie 4 można zmieniać aby uład po zamnięciu był tabilny oraz uchyb tatyczny w tanie utalonym nie przeraczał 5% przy wymuzeniu t t?. a < 7 b e,5 68 ład będzie tabilny oraz uchyb nie będzie przeraczał 5% jeżeli będzie w przedziale: 68 < 7. 8

29 9 Zadanie 49 Obliczyć tranmitancję uładu przedtawionego na chemacie: C C C C C C C C Z Z Z Zadanie 5 Obliczyć tranmitancję uładu przedtawionego na chemacie: C L L C LC Z Z Z

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH Zadanie 1. (Charaterytyi czętotliwościowe) Problem: Wyznaczyć charaterytyi czętotliwościowe (amplitudową i fazową) członu całującego rzeczywitego

Bardziej szczegółowo

BADANIE SILNIKA INDUKCYJNEGO STEROWANEGO Z FALOWNIKA NAPIĘCIA

BADANIE SILNIKA INDUKCYJNEGO STEROWANEGO Z FALOWNIKA NAPIĘCIA BADANIE SILNIKA INDUKCYJNEGO SEROWANEGO Z FALOWNIKA NAPIĘCIA 1. Wprowadzenie Silni inducyjny należy do grupy mazyn aynchronicznych, tzn. taich, w tórych prędość wirnia jet różna od prędości wirowania pola

Bardziej szczegółowo

Laboratorium Napędu Elektrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falownikiem napięcia. Właściwości silnika indukcyjnego.

Laboratorium Napędu Elektrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falownikiem napięcia. Właściwości silnika indukcyjnego. Laboratorium Napędu Eletrycznego. Ćwiczenie 4: Napęd prądu przemiennego z falowniiem napięcia. Właściwości ilnia inducyjnego. Silni inducyjny latowy I jet mazyną eletryczną zailaną napięciem prądu przemiennego.

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII POLTECHNA ŚLĄSA WYDZAŁ GÓNCTWA GEOLOG oman aula WYBANE METODY DOBOU NASTAW PAAMETÓW EGULATOA PD PLAN WYŁADU Wprowazenie ryterium Zieglera-Nichola Metoa linii pierwiatkowych ryterium minimalizacji kwaratowego

Bardziej szczegółowo

Podstawowe układy pracy tranzystora bipolarnego

Podstawowe układy pracy tranzystora bipolarnego L A B O A T O I U M U K Ł A D Ó W L I N I O W Y C H Podtawowe układy pracy tranzytora bipolarnego Ćwiczenie opracował Jacek Jakuz 4. Wtęp Ćwiczenie umożliwia pomiar i porównanie parametrów podtawowych

Bardziej szczegółowo

Temat: Generatory napięć sinusoidalnych wprowadzenie

Temat: Generatory napięć sinusoidalnych wprowadzenie Temat: Generatory napięć sinusoidalnych wprowadzenie. Generator drgań eletrycznych jest to urządzenie wytwarzające drgania eletryczne w wyniu przetwarzania energii eletrycznej,zwyle prądu stałego na energię

Bardziej szczegółowo

współczynnik proporcjonalności Jeżeli u i y są jednakowymi wielkościami fizycznymi

współczynnik proporcjonalności Jeżeli u i y są jednakowymi wielkościami fizycznymi 64 5. Liniowe człony ynamiczne 5.. Człony potawowe elementarne W złożonych ułaach automatyi zwyle można wyorębnić zereg najprotzych niepozielnych już elementów funcjonalnych. Pomimo różnoronych form ich

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Mazyn Roboczych tudia inżynierkie prowadzący: mgr inż. Sebatian Korczak Poniżze materiały tylko dla tudentów uczęzczających na zajęcia. Zakaz

Bardziej szczegółowo

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu. Pomiar rezytancji. 1. Cel ćwiczenia: Celem ćwiczenia jet zapoznanie ię z najważniejzymi metodami pomiaru rezytancji, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich

Bardziej szczegółowo

s P 6.1. Silniki asynchroniczne pierścieniowe Możemy łatwo wykazać, że: Po sprowadzeniu do obwodu stojana: Maszyny indukcyjne Napęd elektryczny 6.

s P 6.1. Silniki asynchroniczne pierścieniowe Możemy łatwo wykazać, że: Po sprowadzeniu do obwodu stojana: Maszyny indukcyjne Napęd elektryczny 6. azyny inducyjne 6.. Silnii aynchroniczne pierścieniowe ożemy łatwo wyazać, że: P cu m I P ω o m ω o I Po prowadzeniu do obwodu tojana: m ω ' o I ' Napęd eletryczny 6. - azyny inducyjne Ponieważ I ' ' U

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

P-3. Filtr aktywny z dodatnim sprzężeniem zwrotnym

P-3. Filtr aktywny z dodatnim sprzężeniem zwrotnym laboratorium z podtaw eletronii analoowej i cyfrowej - intrucje do ćwiczeń (005, p) P-. Filtr atywny z dodatnim przężeniem zwrotnym Ćwiczenie polea na zaprojetowaniu, zbudowaniu i zbadaniu filtru atywneo

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI ĆWICZENIE A2 INSTRUKCJA OBSŁUGI 1. Oględziny zewnętrzne tanowika: dane ilnika (dla połączenia w gwiazdę): typ Sg90L6, nr fabr. CL805351, P n =1,1kW, n n =925obr/min, U n =230/400V, I n =5,1/2,9A, coϕ n

Bardziej szczegółowo

Podstawy Automatyki. Karol Cupiał

Podstawy Automatyki. Karol Cupiał Poawy Automatyki Karol Cupiał Czętochowa tyczeń Kierunek Energetyka tudia tacjonarne em. 3 we 3 l3 c Kierunek Mechanika i BM tudia tacjonarne em 4 5 w 3 l Kierunek Mechatronika tudia tacjonarne em. 5 w

Bardziej szczegółowo

NAPĘD ELEKTRYCZNY (studia zaoczne)

NAPĘD ELEKTRYCZNY (studia zaoczne) NAPĘD ELEKTYCZNY (tudia zaoczne) emetr W Ć S L P VI EZ PiUEE E - - - VI EZ EE E - - - - Treść wykładów ( godz.):. Podtawowe cechy napędu elektrycznego oraz truktura układów napędowych. Definicje i klayfikacje

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

A-4. Filtry aktywne rzędu II i IV

A-4. Filtry aktywne rzędu II i IV A-4. Filtry atywne rzędu II i IV Filtry atywne to ułady liniowe i stacjonarne realizowane za pomocą elementu atywnego, na tóry założono sprzężenie zwrotne zbudowane z elementów biernych i. Elementem atywnym

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013

Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013 Kolokwium poprawkowe Wariant C azyny Elektryczne i Tranormatory t. t. em. III (zima) 01/013 azyna Aynchroniczna Trójazowy ilnik indukcyjny pierścieniowy ma natępujące dane znamionowe: P 13 kw n 147 or/min

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Przykład modelowania cybernetycznego bardziej złożonych systemów biologicznych przepływ krwi. Najpierw przypomnienie kilku elementarnych faktów

Przykład modelowania cybernetycznego bardziej złożonych systemów biologicznych przepływ krwi. Najpierw przypomnienie kilku elementarnych faktów Przyład modelu rążenia rwi Modelowanie (z pomocą uperomputerów) proceu przepływu rwi w naczyniach apilarnych Wyład nr 1 z uru Biocybernetyi dla Inżynierii Biomedycznej prowadzonego przez Prof. Ryzarda

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 1 ĆWICZENIA

PODSTAWY AUTOMATYKI 1 ĆWICZENIA Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

1. Wstęp teoretyczny.

1. Wstęp teoretyczny. 1. Wstęp teoretyczny. W naszym ćwiczeniu mieliśmy za zadanie zbadać pracę uładu generatora opartego na elementach biernych R i C. W generatorach ze sprzęŝeniem zwrotnym jest przewidziany obwód, dzięki

Bardziej szczegółowo

Ć W I C Z E N I E N R E-7

Ć W I C Z E N I E N R E-7 NSTYTT FYK WYDAŁ NŻYNER PRODKCJ TECHNOOG MATERAŁÓW POTECHNKA CĘSTOCHOWSKA PRACOWNA EEKTRYCNOŚC MAGNETYM Ć W C E N E N R E-7 WYNACANE WSPÓŁCYNNKA NDKCJ WŁASNEJ CEWK . agadnienia do przetudiowania 1. jawiko

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 5 Politechnika Wrocławka, w porównaniu z filtrami paywnymi L, różniają ię wieloma zaletami, np. dużą tabilnością pracy, dokładnością, łatwością

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Badanie układu sterowania z regulatorem PID

Badanie układu sterowania z regulatorem PID Akademia Morka w Gdyni Katedra Automatyki Okrętowej eoria terowania Miroław omera. WPROWADZENE W układzie regulacji porównywana jet wartość pomierzona ze ygnałem zadanym i określana jet odchyłka łużąca

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Wzmacniacz rezonansowy

Wzmacniacz rezonansowy A B O R A T O R I U M P O D S T A W E E K T R O N I K I I M E T R O O G I I Wzmacniacz rezonanowy 3. Wtęp Ćwiczenie opracował Marek Wójcikowki na podtawie pracy dyplomowej Sławomira ichoza Ćwiczenie umoŝliwia

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 6 Politechnika Wrocławka Filtry toowanie filtrów w elektronice ma na celu eliminowanie czy też zmniejzenie wpływu ygnałów o niepożądanej czętotliwości

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ Prace Nauowe Instytutu Maszyn, Napędów i Pomiarów Eletrycznych Nr 66 Politechnii Wrocławsiej Nr 66 Studia i Materiały Nr 3 Józef NOWAK*, Jerzy BAJOREK*, Dominia GAWORSKA-KONIAREK**, omasz JANA* moc bierna,

Bardziej szczegółowo

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO Akademia Morka w dyni Katedra Automatyki Okrętowej Teoria terowania Miroław Tomera. ELEMENTY SCEMATU BLOKOWEO Opi układu przy użyciu chematu blokowego jet zeroko i powzechnie toowany w analizowaniu działania

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

Programy CAD w praktyce inŝynierskiej

Programy CAD w praktyce inŝynierskiej Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 76/2007

Zeszyty Problemowe Maszyny Elektryczne Nr 76/2007 Zezyty roleowe Mazyny Eletryczne r 76/7 Wojciech Grzegorz Zielińi olitechnia Lela Llin RACJOALA RACA SILIKÓW ASYCHROICZYCH KLATKOWYCH RZY ZMIAIE SKOJARZEIA UZWOJEŃ Z TRÓJKĄTA W GWIAZDĘ EFFICIET OERATIO

Bardziej szczegółowo

ANALIZA PRACY MASZYNY SYNCHRONICZNEJ NAPĘDZANEJ SILNIKIEM TŁOKOWYM

ANALIZA PRACY MASZYNY SYNCHRONICZNEJ NAPĘDZANEJ SILNIKIEM TŁOKOWYM Zezyty Problemowe Mazyny Eletryczne Nr 3/14 (13) 17 Michał Radzi *, Tadeuz Sobczy ** * Pańtwowa Wyżza Szoła Zawodowa w Nowym Sączu, Intytut Techniczny ** Politechnia Kraowa, Intytut Eletromechanicznych

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący Podstawowe zastosowania wzmacniaczy operacyjnych. kład całkujący i różniczkujący. el ćwiczenia elem ćwiczenia jest praktyczne poznanie układów ze wzmacniaczami operacyjnymi stosownych do liniowego przekształcania

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji

Bardziej szczegółowo

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO ELEKTRYKA 24 Zezyt 4(232) Rok LX Januz HETMAŃCZYK, Maciej SAJKOWSKI, Tomaz STENZEL, Krzyztof KRYKOWSKI Politechnika Śląka w Gliwicach MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie generatorów sinusoidalnych (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych typów generatorów sinusoidalnych.

Bardziej szczegółowo

LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO

LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO Intytut Mazyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławkiej ZAKŁAD NAPĘDÓW ELEKTRYCZNYCH LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO Bezpośrednie terowanie momentem ilnika indukcyjnego

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika Śląka w Gliwicach Intytut Mazyn i Urządzeń Energetycznych Zakład Podtaw Kontrukcji i Ekploatacji Mazyn Energetycznych Ćwiczenie laboratoryjne z wytrzymałości materiałów Temat ćwiczenia: Wyboczenie

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Elektronika. Wzmacniacz tranzystorowy

Elektronika. Wzmacniacz tranzystorowy LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.

Bardziej szczegółowo

POLITYKA DYWIDENDY. Podstawowy dylemat: ile zysku przeznaczyć na dywidendy, a ile zatrzymać w firmie i przeznaczyć na potrzeby jej dalszego rozwoju?

POLITYKA DYWIDENDY. Podstawowy dylemat: ile zysku przeznaczyć na dywidendy, a ile zatrzymać w firmie i przeznaczyć na potrzeby jej dalszego rozwoju? POLITYKA DYWIDENDY Treść wyładu politya dywidendy jao element trategii formy wypłaty dywidendy teorie polityi politya dywidendowa polich półe Polityę dywidendą oreśla ię jao decyzje roztrzygające o tym,

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka Zmienna losowa ozszerzenie znaczenia funcji zmiennej rzeczwistej na przpadi, ied zmienna niezależna nie jest liczbą rzeczwistą: odległość to funcja par puntów, obwód trójąta, to funcja oreślona na zbiorze

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów. Numer zadania Czynności unktacja Uwagi. Amperomierz należy podłączyć

Bardziej szczegółowo

Projekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy)

Projekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy) Niniejzy projekt kłada ię z dwóch części: Projekt 2 tudium wykonalności ) yznaczenia obciążenia powierzchni i obciążenia ciągu (mocy) przyzłego amolotu 2) Ozacowania koztów realizacji projektu. yznaczenie

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE

WZMACNIACZE OPERACYJNE WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego -  - zadania fizyka, wzory fizyka, matura fizyka 2. Dynamika zadania z arkuza I 2.8 2.1 2.9 2.2 2.10 2.3 2.4 2.11 2.12 2.5 2.13 2.14 2.6 2.7 2.15 2. Dynamika - 1 - 2.16 2.25 2.26 2.17 2.27 2.18 2.28 2.19 2.29 2.20 2.30 2.21 2.40 2.22 2.41 2.23 2.42 2.24

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo