MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA"

Transkrypt

1 MODELOWANIE INŻYNIERSKIE ISNN X 32, s , Gliwice 2006 MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA MARIUSZ GIERGIEL PIOTR MAŁKA Katedra Robotyki i Dynamiki Maszyn, Akademia Górniczo-Hutnicza Streszczenie. W pracy przedstawiono zagadnienia modelowania związane z minirobotem mobilnym MRK. Zamodelowano kinematykę oraz dynamikę dla układów tego typu, jak również wykorzystano metody szybkiego prototypowania do zaimplementowania ich w minirobocie. Do sterowania MRK zastosowano system wizualizacyjno-sterujący wykorzystujący połączenie programu InTouch, Matlab oraz MS SQL. Stworzona wizualizacja pozwala w pełni sterować zachowaniem się robota w nieznanej przestrzeni roboczej. 1. WSTĘP W pracy przedstawiono zagadnienia modelowania związane ze skonstruowanym w Katedrze Robotyki i Dynamiki Maszyn AGH minirobotem mobilnym MRK. W szczególności omówiono zagadnienie modelowania kinematyki oraz dynamiki dla układów tego typu, jak również wykorzystano metody szybkiego prototypowania do zaimplementowania ich w minirobocie. Zagadnienie kinematyki wraz z symulacjami, jakie zostały przeprowadzone, pokazane zostały w poszczególnych rozdziałach referatu. W przypadku dynamiki rozważono dwa przypadki modelowania z uwzględnieniem i bez uwzględnienia koła podpierającego (samonastawnego), zawarte zostało to w rozdziale poświeconym zagadnieniom dynamiki. W przypadku tego typu pojazdów uwzględnienie koła samonastawnego jest konieczne, gdyż wpływ jego ma olbrzymie znaczenie i rzutuje na dynamikę całego układu. Do sterowania minirobotem zastosowano system wizualizacyjno-sterujący wykorzystujący połączenie programu InTouch, Matlab oraz bazę danych oparta na programie MS SQL. Zastosowanie tego typu połączenia umożliwiło pełną wymianę danych oraz uniwersalność konstrukcji jak również możliwość wykorzystania oraz obróbki danych w innych systemach. Stworzona wizualizacja pozwala w pełni sterować zachowaniem się robota w nieznanej przestrzeni roboczej. Możliwe jest to dzięki wykorzystaniu odpowiednich sensorów jak również poprzez obserwację otoczenia zamontowaną kamerą. Rozwiązanie to opisane zostało w rozdziale niniejszego artykułu.

2 158 M. GIERGIEL, P. MAŁKA 2. ZAŁOŻENIA KONSTRUKCYJNE ORAZ PROJEKTOWE MRK Konstrukcja minirobota mobilnego wzorowana jest na budowie robota mobilnego PIONIER 2DX [1,2] oraz innych konstrukcjach tego typu. Autorzy zdecydowali się na wybór tego typu rozwiązania, gdyż konstrukcja taka jest najbardziej uniwersalna i zarazem najczęściej wykorzystywana w przemyśle. Przeznaczenie MRK to przede wszystkim cele badawcze i dydaktyczne. Do budowy wykorzystano elementy pozwalające na uniwersalność modelu, jak również dające możliwości rozbudowy i zmiany konfiguracji. Rys.1. Porównanie MRK do istniejących konstrukcji W celu pełnej analizy minirobota niezbędne jest przyjęcie odpowiedniego modelu, dlatego też zaproponowano następujące rozwiązanie: Rys. 2. Schemat minirobota mobilnego gdzie: m 1 =m 2 masy zastępcze kół napędzających, m 3 masa koła 3, m 4 masa zastępcza ramy robota, I X1 =I X2 zastępcze masowe momenty bezwładności kół 1 i 2 określone względem osi x 1 i x 2, I Z1 =I Z2 zastępcze masowe momenty bezwładności odpowiednich kół określone względem osi obrotu własnego tych kół, założono iż osie układu odniesienia związanego z i-tą częścią są głównymi centralnymi osiami bezwładności, N 1 i N 2, N 3 siły nacisku na odpowiednie koła, f 1 =f 2, f 3 współczynniki tarcia toczenia kół napędzających i samonastawnego, M 1 i M 2 momenty napędzające kół 1 i 2, l, l 1, l 2, h 1 =r 1 l -1 1 odległości wynikające z geometrii układu, r 1 =r 2 =r promienie kół 1, 2 i r 3 promień koła MODELOWANIE KINEMATYKI I DYNAMIKI MINIROBOTA MOBILNEGO 3.1. Kinematyka Do opisu kinematyki 2-kołowego MRK przyjęto model pokazany na rys.2. Wykorzystano równania kinematyki dla charakterystycznych punktów robota i założono, iż porusza się on ze stałą prędkością punktu A (V A ) [1,2,4].

3 MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA 159 Chcąc pokazać zachowanie interesujących z punktu widzenia kinematyki parametrów ruchu, zamodelowano zadanie odwrotne kinematyki. Poniższy układ równań określa rzuty wektorów prędkości punktów styczności odpowiednich kół z jezdnią na oś x. x& 1α& 1 cos( β ) + 1β & A r l cos( β ) = 0 x& r α& cos( β ) l β& cos( β ) = 0 A (1) l β & + v r α& A 0 (2) = Równania (1) pozwalają na wyznaczenie liniowych parametrów ruchu mobilnego robota 2- kołowego, takich jak droga, prędkość czy przyspieszenie wybranych punktów modelu oraz parametrów kątowych ruchu, takich jak kąty obrotu, prędkości kątowe, przyspieszenia kątowe, czyli umożliwia rozwiązanie zadania prostego i odwrotnego kinematyki. Znajomość parametrów kinematycznych ruchu mobilnego robota 2-kołowego jest podstawą do rozwiązania zadania odwrotnego dynamiki. Dodatkowo w celu wyznaczenia parametrów kinematycznych samonastawnego koła podpierającego przedstawiono zależność (2) wynikającą z rozkładu prędkości charakterystycznych punktów modelu [1,2]. Na podstawie równań (1), (2) wykonano symulacje realizujące powyższe zadanie wykorzystując pakiet MATLAB -Simulink. Przyjęto następującą marszrutę: rozruch, jazda po prostej, skręt lewo, jazda po prostej, skręt w prawo, jazda po prostej, hamowanie[4,9]. Rys. 3. Analizowana trajektoria ruchu MRK Rys. 4. Trajektoria punktu charakterystycznego H Rys. 5. Przemieszczenie oraz prędkość kątowa kół napędzających α 1 α 2 α 3 Rys. 6. Przemieszczenie oraz prędkość kątowa ramy β Powyższe charakterystyki obrazują poszczególne rozkłady przemieszczeń i prędkości kątowych α w czasie jazdy po zadanej trajektorii. Analizując je, widać, iż wpływ koła samonastawnego może znacznie wpływać na dynamikę układu, dlatego też słuszne wydaje się

4 160 M. GIERGIEL, P. MAŁKA uwzględnianie go w dalszym procesie sterowania i analizowania konstrukcji. Charakterystyki pokazane na rys. 5 przedstawiają zachowanie poszczególnych kół podczas jazdy. Wyróżnić możemy tu 3 etapy: jazda z tą samą prędkością kątową, następnie zmiana prędkości na poszczególnych kołach i ostatni etap to powrót do jednakowej prędkości na kołach 1 i 2. Charakterystyki obrazujące prędkość i przemieszczenie β przedstawiają zależność ramy od prędkości na poszczególnych kołach napędowych. Wyznaczone parametry kinematyczne wykorzystane zostaną do analizy dynamiki, jak również sterowania minirobotem mobilnym Dynamika Dynamiczne równania ruchu mobilnych robotów kołowych mogą posłużyć do rozwiązania zadania prostego i odwrotnego dynamiki. W zadaniu prostym dynamiki można wyznaczyć parametry związane z ruchem, natomiast w zadaniu odwrotnym siły i momenty działające na robota. Do analizy dynamiki i zobrazowania zachowania minirobota rozwiązane zostało zadanie odwrotne dynamiki. Ruch minirobota odbywa się w jednej płaszczyźnie, jego jednoznaczne ustawienie wymaga podania współrzędnych punktu A x A, y A, kąta obrotu chwilowego ramy β, kąta obrotu koła napędzającego α i samonastawnego α 3 [1,2,4,9]. Zastosowanie równań Maggiego [1,2] pozwala ominąć procedury odsprzęgające mnożniki od momentów napędowych, ponieważ liczba współrzędnych uogólnionych w równaniach Maggiego jest równa liczbie stopni swobody układu. Tak więc, jeżeli interesujące są momenty napędowe, to korzystniejsze jest wówczas zastosowanie równań Maggiego. Postać tych równań jest następująca: n d E E Cij = Θi j dt q j q = 1 & j i=1..s (3) gdzie s określa liczbę niezależnych parametrów układu we współrzędnych uogólnionych s q & j = Cije& i + G i= 1 q j (j=1..n) w ilości równej liczbie stopni swobody układu. Rozwiązania powyższego równania z uwzględnieniem koła podpierającego dokonano w programie MAPLE. Przedstawione równania Maggiego dla modelu 2-kołowego mobilnego robota zostały wcześniej podane w literaturze [1,2]. W celu zobrazowania dynamiki minirobota zbudowano odpowiedni model w programie MATLAB /SIMULINK i zasymulowano zdanie odwrotne dynamiki. Wynikiem tej symulacji są momenty, które posłużą do doboru odpowiedniego napędu, jak również ukażą słabe i mocne punkty powstałej konstrukcji. Charakterystyki momentów pokazane zostały poniżej. j (4) Rys. 7. Momenty napędowe kół, bez uwzględnienia koła samonastawnego Rys. 8. Momenty napędowe kół, z uwzględnieniem koła samonastawnego

5 MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA 161 Z przeprowadzonych symulacji wynika przede wszystkim, iż wpływ koła samonastawnego na zachowanie się MRK jest niewielkie, nie wpływa na dynamikę całego układu, a co za tym idzie, na jego sterowanie. 4. SYSTEM WIZUALIZACJI ORAZ STEROWANIA MRM 4.1. Wizualizacja parametrów ruchu Wizualizacja parametrów ruchu minirobota możliwa jest dzięki połączeniu programu typu SCADA, Matlaba/Simulinka oraz bazy danych SQL. W niniejszej pracy do sterowania wybrano program InTouch, Matlab/Simulink oraz SQL [3,5,6,7,8] Układ sterujący Rys. 9. Układ realizujący sterowanie MRM. Sterowanie minirobotem mobilnym realizowane jest tak jak już wcześniej wspomniano za pomocą sterownika GE Fanuc oraz systemu weryfikująco-parametryzującego [3]. Sterownik realizuje program zapisany w jego pamięci oraz przekazuje wszystkie najważniejsze informacje do jednostki nadrzędnej. Pakiet MATLAB wykorzystywany jest tutaj jako system wspomagający oraz sterujący. Połączenie tego programu ze sterownikiem ujawniło szereg przydatnych i niewykorzystywanych dotychczas możliwości sterowania robotami. Między innymi jest to zmiana niektórych parametrów ruchu w trakcie realizowania odpowiedniego algorytmu. W rozważanym przypadku odbywa się to poprzez pakiet MATLAB/SIMULINK, który dzięki szerokim możliwościom wykorzystania metod sztucznej inteligencji weryfikuje i optymalizuje wybrane parametry ruchu, następnie przekazuje je do sterownika. Komunikacja zewnętrzna wykorzystywana w sterowaniu oparta jest na radiomodemowej sieci bezprzewodowej, a w przypadku wewnętrznej (system SCADA MATLAB) dzięki bazie danych SQL lub też w trybie wewnętrznej wymiany danych systemu WINDOWS DDE. System SCADA odgrywa rolę panela operatorskiego, dzięki któremu mamy możliwość obserwacji on-line zachowań minirobota z wykorzystaniem systemu wizyjnego jak również weryfikacji wszystkich parametrów ruchu: momentów napędowych, prędkości oraz przemieszczeń kątowych na poszczególnych kołach jezdnych, prędkości chwilowej oraz przemieszczenia ramy minirobota. Dodatkowo system pokazuje stan wszystkich sensorów zainstalowanych na pokładzie MRM czy to w formie stanu czy też wartości rzeczywistej np. odległość od przeszkody. 5. PODSUMOWANIE

6 162 M. GIERGIEL, P. MAŁKA W przedstawionej pracy pokazano pewną grupę zagadnień związanych z modelowaniem kinematyki oraz dynamiki mobilnych robotów kołowych, jak również zastosowanie nowoczesnych systemów informatycznych w ich sterowaniu. Zamodelowanie kinematyki ujawniło, iż koło samonastawne może mieć duży wpływ na dynamikę układu oraz na jego sterowanie. W przypadku dużych robotów pomija się je, ponieważ nie wpływa ono znacząco na układ. Sugerując się wynikami otrzymanymi podczas symulowania parametrów kinematycznych, postanowiono sprawdzić jego wpływ. Uzyskane wyniki udowodniły, że w tym przypadku wpływ koła samonastawnego jest również minimalny i znacząco nie wpływa na dynamikę całego układu, natomiast należałoby zastanowić się nad takim utwierdzeniem koła, aby opory podczas jazdy były minimalne Zastosowanie do sterowania minirobota mobilnego systemu wizualizacyjnego InTouch oraz pakietu MATLAB/SIMULINK wniosło szereg nowych niewykorzystywanych dotychczas możliwości, jak również pozwoliło na pełną kontrolę robota podczas wykonywania założonego zadania. LITERATURA 1. Giergiel J., Hendzel Z, Żylski W.: Kinematyka, dynamika i sterowanie mobilnych robotów kołowych w ujęciu algorytmicznym. Monografia Wydziału IMiR AGH, Kraków Giergiel M., Hendzel Z, Żylski W.: Modelowanie i sterowanie mobilnych robotów kołowych. Wydawnictwo Naukowe PWN, Warszawa Giergiel M., Małka P.: Zastosowanie systemów SCADA oraz bazy danych w sterowaniu minirobota kłowego. Zeszyty Naukowe PRZ Mechanika z.65, 2005, s Giergiel M., Małka P.: Mechatroniczne projektowanie mobilnego minirobota kołowego. V Warsztaty Projektowania Mechatronicznego, User Manual, InTouch, User Manual, Matlab TM, Buratowski T.: Modelowanie i identyfikacja mobilnych robotów kołowych. Rozprawa doktorska, Kraków 2003 MODELLING OF KINEMATICS AND DYNAMICS OF MOBILE ROBOT Summary. In this paper some problems concerned with modeling of designed and practically made by author s mini robot named MRK was explained. One of most important problems is modeling of kinematics and dynamics of such kind of mechanisms. Illustrative example of use of fast prototyping methods for implementing models in robot control system was shown. Modeling of kinematics was explained and effects of simulations are presented. Case of modeling of dynamics due to basic configurations of robot, with and without of supporting wheel are discussed. Control system of robot was made with use software tools such as: InTouch, Matlab and MS SQL database engine. Advanced visualization system was applied to help controlling robot in unknown or uncertain work space.

dynamiki mobilnego robota transportowego.

dynamiki mobilnego robota transportowego. 390 MECHANIK NR 5 6/2018 Dynamika mobilnego robota transportowego The dynamics of a mobile transport robot MARCIN SZUSTER PAWEŁ OBAL * DOI: https://doi.org/10.17814/mechanik.2018.5-6.51 W artykule omówiono

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(85)/2011

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(85)/2011 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(85)/2011 Marek STANIA 1, Ralf STETTER 2, Bogdan POSIADAŁA 3 MODELOWANIE KINEMATYKI MOBILNEGO ROBOTA TRANSPORTOWEGO 1. Wstęp Jednym z najczęściej pojawiających się w

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Kinematyka robotów mobilnych

Kinematyka robotów mobilnych Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:

Bardziej szczegółowo

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 Tadeusz SZKODNY SUB Gottingen 217 780 474 2005 A 3014 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH GLIWICE 2004 SPIS TREŚCI WAŻNIEJSZE OZNACZENIA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

PRACA DYPLOMOWA MAGISTERSKA

PRACA DYPLOMOWA MAGISTERSKA KATEDRA WYTRZYMAŁOSCI MATERIAŁÓW I METOD KOMPUTEROWYCH MACHANIKI PRACA DYPLOMOWA MAGISTERSKA Analiza kinematyki robota mobilnego z wykorzystaniem MSC.VisualNastran PROMOTOR Prof. dr hab. inż. Tadeusz Burczyński

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

Automatyka i Robotyka studia stacjonarne drugiego stopnia

Automatyka i Robotyka studia stacjonarne drugiego stopnia #384 #380 dr inż. Mirosław Gajer Projekt i implementacja narzędzia do profilowania kodu natywnego przy wykorzystaniu narzędzi Android NDK (Project and implementation of tools for profiling native code

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów

Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut

Bardziej szczegółowo

PL B1. Mechanizm pedipulatora do ustawiania pozycji modułu napędowego, zwłaszcza robota mobilnego

PL B1. Mechanizm pedipulatora do ustawiania pozycji modułu napędowego, zwłaszcza robota mobilnego PL 223875 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223875 (13) B1 (21) Numer zgłoszenia: 406656 (51) Int.Cl. F16H 1/36 (2006.01) F16H 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. 1. PMiSM-2017

AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. 1. PMiSM-2017 AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. Akademia Górniczo-Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki PMiSM-207 PODSTAWY

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki Praca magisterska Model dynamiki wzdłuŝnej samochodu w czasie rzeczywistym

Bardziej szczegółowo

Modelowanie i symulacja II Modelling and Simulation II. Automatyka i Robotyka II stopień ogólno akademicki studia stacjonarne

Modelowanie i symulacja II Modelling and Simulation II. Automatyka i Robotyka II stopień ogólno akademicki studia stacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Modelowanie i symulacja II Modelling and Simulation II A. USYTUOWANIE

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: MECHANIKA I BUDOWA MASZYN Rodzaj przedmiotu: obowiązkowy na kierunku Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi mgr inż. Łukasz Jastrzębski Katedra Automatyzacji Procesów - Akademia Górniczo-Hutnicza Kraków,

Bardziej szczegółowo

Tematy prac dyplomowych inżynierskich realizacja semestr zimowy 2016 kierunek AiR

Tematy prac dyplomowych inżynierskich realizacja semestr zimowy 2016 kierunek AiR Tematy prac dyplomowych inżynierskich realizacja semestr zimowy 2016 kierunek AiR Lp. Temat Cel Zakres Prowadzący 01/I8/ARi/16/Z Program sterujący automatycznym Celem pracy jest nabycie Praca obejmuje

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu PRACA DYPLOMOWA BADANIA I MODELOWANIE PRACY UKŁADU NAPĘDOWEGO SAMOCHODU Z AUTOMATYCZNĄ SKRZYNIĄ BIEGÓW Autor: inŝ. Janusz Walkowiak Promotor:

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 73 Karol Tatar, Piotr Chudzik Politechnika Łódzka, Łódź MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

ZASTOSOWANIE OPROGRAMOWANIA MES DO WYZNACZANIA PARAMETRÓW RUCHU GĄSIENICOWEGO ROBOTA INSPEKCYJNEGO

ZASTOSOWANIE OPROGRAMOWANIA MES DO WYZNACZANIA PARAMETRÓW RUCHU GĄSIENICOWEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INŻYNIERSKIE nr 52, ISSN 1896-771X ZASTOSOWANIE OPROGRAMOWANIA MES DO WYZNACZANIA PARAMETRÓW RUCHU GĄSIENICOWEGO ROBOTA INSPEKCYJNEGO Mariusz Giergiel 1, Krzysztof Kurc 2a Dariusz Szybicki

Bardziej szczegółowo

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej 10 Zeszyt 12 (2001), str. 10 14 UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Paweł KAPROŃ Politechnika Częstochowska, ul.akademicka

Bardziej szczegółowo

MODELOWANIE I SYMULACJA ROBOTA KROCZĄCEGO Z ZASTOSOWANIEM PRZYBORNIKA SIMMECHANICS PAKIETU MATLAB/SIMULINK

MODELOWANIE I SYMULACJA ROBOTA KROCZĄCEGO Z ZASTOSOWANIEM PRZYBORNIKA SIMMECHANICS PAKIETU MATLAB/SIMULINK Artykuł Autorski, XI Forum Inżynierskie ProCAx cz II, Kraków 16-18 Października 212 r Dr inż Maciej TROJNACKI Przemysłowy Instytut Automatyki i Pomiarów PIAP Al Jerozolimskie 22, 2-486 Warszawa Telefon:

Bardziej szczegółowo

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO ZESZYTY NAUKOWE POLITECHNIKA ŚLĄSKA 2012 Seria: TRANSPORT z. 77 Nr kol.1878 Łukasz KONIECZNY WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO Streszczenie.

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ 53/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ J. STRZAŁKO

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM

KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM 4-2007 PROBLEMY EKSPLOATACJI 275 Andrzej ZBROWSKI Instytut Technologii Eksploatacji PIB, Radom Krzysztof ZAGROBA Politechnika Warszawska, Warszawa KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM Słowa

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

BEZPRZEWODOWE SYSTEMY KOMUNIKACJI W STEROWANIU ROBOTÓW

BEZPRZEWODOWE SYSTEMY KOMUNIKACJI W STEROWANIU ROBOTÓW MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 95-102, Gliwice 2008 BEZPRZEWODOWE SYSTEMY KOMUNIKACJI W STEROWANIU ROBOTÓW MARIUSZ GIERGIEL, PIOTR MAŁKA Katedra Robotyki i Mechatroniki, Akademia Górniczo-Hutnicza

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW

MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW ADAM GOŁASZEWSKI 1, TOMASZ SZYDŁOWSKI 2 Politechnika Łódzka Streszczenie Badania dynamiki ruchu pojazdów wpływają w istotny sposób na rozwój ogólnie rozumianej

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:

Bardziej szczegółowo

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, 2016 Spis treści Wykaz ważniejszych oznaczeń 11 Od autora 13 Wstęp 15 Rozdział 1. Wprowadzenie 17 1.1. Pojęcia ogólne. Klasyfikacja pojazdów

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Roboty przemysłowe Rok akademicki: 2015/2016 Kod: RME-1-504-s Punkty ECTS: 12 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran

Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran Spis treści Omówienie programu MSC.visualNastran Analiza mechanizmu korbowo wodzikowego Analiza mechanizmu drgającego Analiza mechanizmu

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA. Wydział Budowy Maszyn i Zarządzania MECHATRONIKA. Profile dyplomowania Konstrukcje Mechatroniczne

POLITECHNIKA POZNAŃSKA. Wydział Budowy Maszyn i Zarządzania MECHATRONIKA. Profile dyplomowania Konstrukcje Mechatroniczne POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania MECHATRONIKA Profile dyplomowania Konstrukcje Mechatroniczne Prof. dr hab. inż. Andrzej Milecki Kształcenie Profile dyplomowania: Konstrukcje

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

WERYFIKACJA NUMERYCZNA MODELU KINEMATYKI ROBOTA INSPEKCYJNEGO DO DIAGNOSTYKI I KONSERWACJI ZBIORNIKÓW Z CIECZĄ

WERYFIKACJA NUMERYCZNA MODELU KINEMATYKI ROBOTA INSPEKCYJNEGO DO DIAGNOSTYKI I KONSERWACJI ZBIORNIKÓW Z CIECZĄ MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 44, s. 83-9, Gliwice 1 WERYFIKACJA NUMERYCZNA MODELU KINEMATYKI ROBOTA INSPEKCYJNEGO DO DIAGNOSTYKI I KONSERWACJI ZBIORNIKÓW Z CIECZĄ MARIUSZ GIERGIEL, PIOTR MAŁKA,

Bardziej szczegółowo

MODELOWANIE I BADANIA SYMULACYJNE RUCHU ŻURAWIA LEŚNEGO W CYKLU ROBOCZYM

MODELOWANIE I BADANIA SYMULACYJNE RUCHU ŻURAWIA LEŚNEGO W CYKLU ROBOCZYM MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 331-338, Gliwice 2011 MODELOWANIE I BADANIA SYMULACYJNE RUCHU ŻURAWIA LEŚNEGO W CYKLU ROBOCZYM BOGDAN POSIADAŁA PAWEŁ WARYŚ Instytut Mechaniki i Podstaw Konstrukcji

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA - ROBOTY PRZEMYSŁOWE 2. Kod przedmiotu: Err1 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie

Bardziej szczegółowo

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA Zeszyty Problemowe Maszyny Elektryczne Nr 4/2014 (104) 89 Zygfryd Głowacz, Henryk Krawiec AGH Akademia Górniczo-Hutnicza, Kraków ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU

Bardziej szczegółowo

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA InŜynieria Rolnicza 11/006 Andrzej Graboś, Marek Boryga Katedra Podstaw Techniki Akademia Rolnicza w Lublinie WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny Politechnika Śląska Wydział Mechaniczny Technologiczny Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Praca dyplomowa inżynierska Temat pracy Symulacja komputerowa działania hamulca tarczowego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Modelowanie sterowania mechanizmem różnicowym międzyosiowym

Modelowanie sterowania mechanizmem różnicowym międzyosiowym Modelowanie sterowania mechanizmem różnicowym międzyosiowym Andrzej Dębowski Wojskowa Akademia Techniczna, Instytut Pojazdów Mechanicznych i Transportu Gen. Sylwestra Kaliskiego, 200-908 Warszawa, Polska

Bardziej szczegółowo

PROJEKT PNEUMATYCZNEGO MODUŁU NAPĘDOWEGO JAKO ZADAJNIKA PRĘDKOŚCI POCZĄTKOWEJ W HYBRYDOWEJ WYRZUTNI ELEKTROMAGNETYCZNEJ

PROJEKT PNEUMATYCZNEGO MODUŁU NAPĘDOWEGO JAKO ZADAJNIKA PRĘDKOŚCI POCZĄTKOWEJ W HYBRYDOWEJ WYRZUTNI ELEKTROMAGNETYCZNEJ Maszyny Elektryczne Zeszyty Problemowe Nr 4/2015 (108) 89 Roman Kroczek, Jarosław Domin Politechnika Śląska Wydział Elektryczny Katedra Mechatroniki PROJEKT PNEUMATYCZNEGO MODUŁU NAPĘDOWEGO JAKO ZADAJNIKA

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny

Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny 16 listopada 2006 1 Wstęp Robot Khepera to dwukołowy robot mobilny zaprojektowany do celów badawczych i edukacyjnych. Szczegółowe

Bardziej szczegółowo

Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu

Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu Karol Tatar, Piotr Chudzik 1. Wstęp Jedną z nowych możliwości, jakie daje zastąpienie silnika spalinowego

Bardziej szczegółowo

Zakład Sterowania Systemów

Zakład Sterowania Systemów Zakład Sterowania Systemów Zespół ZłoŜonych Systemów Kierownik zespołu: prof. dr hab. Krzysztof Malinowski Tematyka badań i prac dyplomowych: Projektowanie algorytmów do podejmowania decyzji i sterowania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: CHWYTAKI, NAPĘDY I CZUJNIKI URZĄDZEŃ MECHATRONICZNYCH Grippers, driver and sensors of mechatronic devices Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: SYSTEMY

Bardziej szczegółowo

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Stanisław SZABŁOWSKI

Stanisław SZABŁOWSKI Dydaktyka Informatyki 12(2017) ISSN 2083-3156 DOI: 10.15584/di.2017.12.26 http://www.di.univ.rzeszow.pl Wydział Matematyczno-Przyrodniczy UR Laboratorium Zagadnień Społeczeństwa Informacyjnego Stanisław

Bardziej szczegółowo

Model symulacyjny robota Explorer 6WD z uwzględnieniem uszkodzeń

Model symulacyjny robota Explorer 6WD z uwzględnieniem uszkodzeń Model symulacyjny robota Explorer 6WD z uwzględnieniem uszkodzeń inż. Paweł Stęczniewski Promotor: dr inż. Piotr Przystałka Instytut Podstaw Konstrukcji Maszyn Politechnika Śląska Gliwice, 22.11.2017 inż.

Bardziej szczegółowo

MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY

MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY Adam Labuda Janusz Pomirski Andrzej Rak Akademia Morska w Gdyni MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY W artykule opisano konstrukcję modelu manipulatora o dwóch przegubach obrotowych. Obie osie

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Ruch granulatu w rozdrabniaczu wielotarczowym

Ruch granulatu w rozdrabniaczu wielotarczowym JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: NAPĘDY I STEROWANIE PNEUMATYCZNE MASZYN PNEUMATIC DRIVE AND CONTROL OF MACHINES Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: PROJEKTOWANIE SYSTEMÓW MECHANICZNYCH

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Opinia o pracy doktorskiej pt. On active disturbance rejection in robotic motion control autorstwa mgr inż. Rafała Madońskiego

Opinia o pracy doktorskiej pt. On active disturbance rejection in robotic motion control autorstwa mgr inż. Rafała Madońskiego Prof. dr hab. inż. Tadeusz Uhl Katedra Robotyki i Mechatroniki Akademia Górniczo Hutnicza Al. Mickiewicza 30 30-059 Kraków Kraków 09.06.2016 Opinia o pracy doktorskiej pt. On active disturbance rejection

Bardziej szczegółowo

Politechnika Częstochowska, Instytut Mechaniki i Podstaw Konstrukcji Maszyn,

Politechnika Częstochowska, Instytut Mechaniki i Podstaw Konstrukcji Maszyn, BOGDAN POSIADAŁA 1, MAREK STANIA 2 1 Politechnika Częstochowska, Instytut Mechaniki i Podstaw Konstrukcji Maszyn, bogdan.p@imipkm.pcz.pl 2 Politechnika Częstochowska, Instytut Mechaniki i Podstaw Konstrukcji

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

ECTS - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 2015/2016

ECTS - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 2015/2016 - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 20/206 Automatyka i robotyka Profil ogólnoakademicki studia stacjonarne I stopnia w c l p w c l p w c l p w c l p w c

Bardziej szczegółowo

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Specjalność: Komputerowe systemy sterowania i diagnostyki

Specjalność: Komputerowe systemy sterowania i diagnostyki Specjalność: Komputerowe systemy sterowania i diagnostyki Rozkład zajęć w sem. (godz. w tygodniu) Lp Nazwa przedmiotu ECTS sem. 1 sem. 2 sem. 3 sem. 4 sem. 5 sem. 6 sem. 7 w c l p w c l p w c l p w c l

Bardziej szczegółowo

Analiza kinematyki jednotarczowych docierarek laboratoryjnych

Analiza kinematyki jednotarczowych docierarek laboratoryjnych Adam Barylski Analiza kinematyki jednotarczowych docierarek laboratoryjnych JEL: L62 DO: 10.24136/atest.2018.402 Data zgłoszenia:19.11.2018 Data akceptacji: 15.12.2018 e) f) Artykuł porusza problem analizy

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM

NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM MODELOWANIE INŻYNIERSKIE nr 5, t., rok ISSN 96-77X NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM Zenon Hendzel a, Magdalena Muszyńska b Katedra Mechaniki Stosowanej i Robotyki, Politechnika

Bardziej szczegółowo

Szybkie prototypowanie w projektowaniu mechatronicznym

Szybkie prototypowanie w projektowaniu mechatronicznym Szybkie prototypowanie w projektowaniu mechatronicznym Systemy wbudowane (Embedded Systems) Systemy wbudowane (ang. Embedded Systems) są to dedykowane architektury komputerowe, które są integralną częścią

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wybrane zagadnienia modelowania i obliczeń inżynierskich Chosen problems of engineer modeling and numerical analysis Dyscyplina: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: Przedmiot

Bardziej szczegółowo

Spis treści. Przedmowa... 7

Spis treści. Przedmowa... 7 Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...

Bardziej szczegółowo