Justyna Kosakowska i Piotr Malicki. Badania operacyjne. (Kurs letni 2009) Materiały dydaktyczne dla studentów I-go roku matematyki
|
|
- Andrzej Michalik
- 8 lat temu
- Przeglądów:
Transkrypt
1 Justyna Kosakowska i Piotr Malicki Badania operacyjne (Kurs letni 2009) Materiały dydaktyczne dla studentów I-go roku matematyki Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 2009 Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
2 Podczas przygotowywania niniejszych notatek korzystaliśmy z następującej literatury: [] M. S. Bazaraa, C. M. Shetty, Nonlinear Programming Theory and Algorithms, New York 979. [2]T.H.Cormen,Ch.E.Leiserson,R.L.Rivest, Wprowadzeniedo algorytmów, WN-T, Warszawa 200. [3] M. M. Sysło, Algorytmy, WSiP, Warszawa 997. [4] M. M. Sysło, N. Deo, J. S. Kowalik, Algorytmy optymalizacji dyskretnej, PWN, Warszawa 995. Literatura uzupełniająca: [] R. Faure, J.-P. Boss, A. Le Garff, Badania operacyjne, PWN 982. [2] S. I. Gass, Programowanie liniowe, PWN 980. [3] K. Manteuffel, E. Seiffart, Wstęp do algebry liniowej i programowania liniowego, PWN 975.
3 SPIS TREŚCI 3 Spis treści Programowanie liniowe 4. Wstęp Zbiorywypukłeiichwłasności Punktyiwektoryekstremalne Metodasympleksowa Dualnametodaprogramowanialiniowego Elementyprogramowaniacałkowitoliczbowego Strategie zachłanne Problemwyboruzajęć Problemplecakowy Programowanie dynamiczne Problemplecakowy-programowaniedynamiczne Grafy- podstawowe definicje Reprezentacjegrafów Macierzesąsiedztwa Listysąsiedztwa Minimalne drzewa rozpinające AlgorytmKruskala Problem najkrótszych dróg AlgorytmDijkstry AlgorytmBellmana-Forda... 65
4 . PROGRAMOWANIE LINIOWE 4. Programowanie liniowe.. Wstęp W roku 827 matematyk francuski J.B.J. Fourier opublikował metodę rozwiązywania układu nierówności liniowych. Publikacja ta jest zwykle uważana za początek programowania liniowego. W 939 roku rosyjski matematyk L.V. Kantorovich sformułował problem przydziału środków jako problem programowania liniowego. Mniej więcej w tym samym okresie duński ekonomista T.C. Koopmans sformułował model programowania liniowego dla pewnych klasycznych zagadnień występujących w ekonomii. W czasie trwania II wojny światowej modele programowania liniowego były stosowane do rozwiązywania problemów związanych z planowaniem wojskowym. W roku 947 matematyk amerykański G.B. Dantzig odkrył metodę sympleks. Zbiegło się to z rozwojem komputeryzacji, a zatem z możliwością zastosowania metod programowania liniowego do rozwiązywania problemów występujących w rzeczywistości. W roku 975 Kantorovich oraz Koopmans otrzymali za swoje prace nagrodę Nobla w dziedzinie nauk ekonomicznych. Przykład.. Załóżmy, że pewna firma produkuje dwa rodzaje zapałek: grillowe(długie) i normalne(krótkie). Zysk z każdego pudła zapałek grillowych wynosi 300 EUR, a z każdego pudła zapałek normalnych wynosi 200 EUR. Firma posiada jedną maszynę robiącą długie lub krótkie zapałki. Maszyna ta może wyprodukować w jednym roku maksymalnie pudeł zapałek długich lub krótkich. Do produkcji zapałek firma potrzebuje drewna oraz pudeł. Do otrzymania jednego pudła zapałek grillowych potrzeba 3 m 3 drewna,natomiastdootrzymaniajednegopudłazapałeknormalnychpotrzebam 3 drewna.firmaposiada m 3 drewnanaroknastępny, ponadtonaszafirmama700000pudełnazapałkigrilloweoraz600000pudeł na zapałki normalne. Naszym celem jest zmaksymalizowanie zysków firmy w roku następnym, przy czym zakładamy, że firma może sprzedać wszystko co wyprodukuje. Zapiszmypowyższyproblemzapomocąnierówności.Niech x oraz x 2 oznaczają odpowiednio ilość pudeł( ) zapałek długich oraz ilość pudeł( ) zapałek krótkich wyprodukowanych w roku następnym. Zysk z jednegopudłazapałekdługichwynosi300eur(3 00EUR),zatemzyskzx pudełzapałekdługichwynosi 3x (stueurojednostek).podobniezyskzx 2
5 . PROGRAMOWANIE LINIOWE 5 pudełzapałekkrótkichwynosi 2x 2 (stueurojednostek).przyformułowaniu naszego zagadnienia musimy wziąć pod uwagę następujące ograniczenia: wydajnośćmaszynyjestograniczonaprzez9( 00000)pudełnarok, czyli x + x 2 9; ograniczeniezwiązanezilościądrewna,to 3x + x 2 8; ograniczeniezwiązanezilościądostępnychpudeł,to x 7, x 2 6; ograniczeniezwiązanezsensownościąrozważań,to x 0, x 2 0. Możemy teraz napisać model dla naszej firmy: przy warunkach: max(3x + 2x 2 ) x + x 2 9, 3x + x 2 8, x 7, x 2 6, x, x 2 0. Jest to przykład modelu programowania liniowego(w skrócie PL-modelu). Funkcję 3x + 2x 2 nazywamyfunkcjącelu.wdalszejczęściwypracujemy metody ogólne, pozwalające rozwiązywać podobne problemy. Powyższy problem rozwiążmy graficznie.
6 . PROGRAMOWANIE LINIOWE 6 Obszarwyznaczonyprzezpunkty [ ] 0, v, v 2, v 3, v 4 nazywamydopuszczalnym, zawiera on punkty spełniające ograniczenia. Same zaś x punkty x 2 0, v, v 2, v 3, v 4 nazywamywierzchołkamiobszarudopuszczalnego.łatwo [ ] [ ] [ ] [ ] 6 4, policzyć,że v =, v 0 2 =, v 4, 5 3 =, v 6 4 =. Zauważmy, że nierówność x 7niemawpływunaobszardopuszczalny.Szkicującfunkcjęcelu [ ] 4, 5 6 widzimy,żeosiągaonawartośćmaksymalnądlawierzchołka v 2 =. 4, 5 Wartość funkcji celu w tym wierzchołku wynosi 22, 5, zatem maksymalny zyskdlafirmywynosi22500eur..2. Zbiory wypukłe i ich własności Definicja.2.Niepustyzbiór S R n nazywamywypukłym,jeślidla dowolnychdwóchelementów x, x 2 Sorazdowolnego λ [0, ]zachodzi λx + ( λ)x 2 S. Przykład.3.(i)PłaszczyznawR 3, S = {(x, x 2, x 3 ) R 3 ; 2x + x 2 3x 3 = 7}lubogólniejhiperpłaszczyznawR n, S = {c T x = α},gdzie 0 c R n, α R. (ii)półprzestrzeńwr 3, S = {(x, x 2, x 3 ) R 3 ; 2x + x 2 3x 3 7}lub ogólniejpółprzestrzeńwr n, S = {c T x α},gdzie 0 c R n, α R. (iii) Zbiór S pochodzący z Przykładu. S = [ x x 2 ] R 2 ; [ x x 2 ] 9 [ ] 8 7, x x 2 6 [ 0 0 ] Uwaga.4.(i)Niech S, S 2 R n będązbioramiwypukłymi.wówczas zbiory S +S 2 = {x +x 2 ; x S, x 2 S 2 }, S S 2 = {x x 2 ; x S, x 2 S 2 }sąrównieżzbioramiwypukłymi. (ii)niech S t R n, t Tbędązbioramiwypukłymi.Wówczaszbiór t T S t jest również wypukły. Definicja.5.Niech S R n.otoczkąwypukłązbioru SnazywamynajmniejszyzbiórwypukływR n zawierający Sioznaczamygoprzez conv (S)..
7 . PROGRAMOWANIE LINIOWE 7 conv (S) Lemat.6.Dowolnyzbiór S R n posiadaotoczkęwypukłą. Dowód.Niech S R n, A = {T R n ; S T, T wypukły}.odnotujmy,że A =,bo R n A.Definiujemy T A T =conv (S).Mamy S T A T,bo T AS T.Ponadto T A T,ponieważzzałożenia S.Zfaktu,żedowolnyzbiór T Ajestwypukły,dostajemyżezbiór T A Tjestwypukły.Załóżmy,że T A Tniejestnajmniejszymzbiorem wypukłymzawierającym S.Wówczasistniejezbiórwypukły T 0 zawierający Staki,że T A T T 0.Otrzymujemyzatemsprzeczność,bo T 0 A(czyli T A T T 0). Twierdzenie.7.Niech S R n.wówczas x conv (S)wtedyi tylkowtedy,gdyistnieją x, x 2,...,x k S, λ, λ 2,...,λ k 0, k λ i = takie,że x = k λ ix i. Dowód.Dlaustalonego S R n oznaczmy { } k C(S) = x R n ; x,x 2,...,x k S λ,...,λ k 0, P k λ x = λ i x i. Abywykazaćinkluzjęconv (S) C(S)wystarczypokazać,że S C(S)oraz żezbiór C(S)jestwypukły.Oczywiście S C(S),ponieważjeśli x S,to x = x(k =, λ =, x = x). Pokażemy, że C(S) jest zbiorem wypukłym. Niech v, w C(S). Istnieją zatem v, v 2,...,v k, w, w 2,...,w l Soraz λ, λ 2,...,λ k, µ, µ 2,...,µ l 0
8 . PROGRAMOWANIE LINIOWE 8 takie,że v = k λ iv i, w = l µ iw i oraz k λ i =, l µ i =. Musimywykazać,żedladowolnego t [0, ], tv + ( t)w C(S).Mamy tv + ( t)w = t k λ i v i + ( t) l µ i w i = k tλ i v i + l ( t)µ i w i. Jesttokombinacjaliniowawektorów v, v 2,...,v k, w, w 2,...,w l Soraz tλ i 0dla i =, 2,..., k, ( t)µ i 0dla i =, 2,...,l.Ponadto k tλ i + l ( t)µ i = t k λ i + ( t) l µ i = t + t =. ostatecznie otrzymujemy, że conv (S) C(S). Pozostała nam jeszcze do udowodnienia inkluzja C(S) conv (S). Niech S T R n będziedowolnymzbioremwypukłym.pokażemy,że C(S) T. Weźmy x C(S),zatem x = k λ ix i, x i S, k λ i =.Dowódfaktu, że x Tprzeprowadzimyindukcyjniezewzględuna k. Jeśli k =,to x = x S T.Czyli x T.Załóżmy,że x Tdla k. Wówczas x = k k k λ i λ i x i = λ i x i + λ k x k = ( λ k ) x i + λ k x k = λ k k λ i ( λ k ) x i + λ k x k. λ k Możemyzałożyć,że λ k (wprzeciwnymrazie k = ).Zauważmy,że element x = k λ i λ k x i należydo T,gdyż k λ k i = λ i = λ k = λ k λ k λ k oraz x i S.Zatem x = ( λ k )x +λ k x k,gdzie x T, x k S Tnależydo T, ponieważ T jest zbiorem wypukłym. Z dowolności T dostajemy C(S) conv (S). Ostatecznie otrzymujemy równość C(S) = conv (S). Definicja.8.Otoczkęwypukłąskończonegozbioru {x, x 2,..., x k } R n nazywamywielościanem.jeśliponadtowektory x 2 x, x 3 x,...,x k x sąliniowoniezależne,towielościannazywamysympleksem.
9 . PROGRAMOWANIE LINIOWE 9 wielościan sympleks Twierdzenie.9(Carathe odory).niech S R n będziedowolnym zbiorem.wówczas x conv (S)wtedyitylkowtedy,gdyistnieją x, x 2,..., x n+ Stakie,że x conv ({x, x 2,...,x n+ }). Dowód.Oczywiściejeżeliistniejąelementy x, x 2,...,x n+ Stakie,że x conv ({x, x 2,...,x n+ }),to x conv (S). Niech x conv (S).Wówczas x = k λ ix i,przyczym x, x 2,...,x k S, λ, λ 2,...,λ k 0, k λ i =.Jeżeli k n+,toodpowiedniaimplikacja jestprawdziwaztwierdzenia.7.jeśli k > n +,towektorów x 2 x, x 3 x,..., x k x jestconajmniej n +,zatemsąoneliniowozależne(w R n ). Dlategoistniejąliczby µ i R, i = 2, 3,..., ktakie,że k i=2 µ i(x i x ) = 0 oraz k i=2 µ2 i 0.Niech µ = k i=2 µ i.wówczas k µ i x i = µ x + k k µ i x i = µ i x + i=2 i=2 k µ i x i = i=2 k µ i (x i x ) = 0. i=2 Ponadto k µ i = 0oraz k µ2 i 0.Rozpatrzmyzbiór A = { λ i µ i ; µ i > 0}. Zauważmy,że A (istnieje i {, 2,..., k},dlaktórego µ i > 0,ponieważ jeślidlakażdego i 2, µ i 0,to µ > 0).Niech dlapewnego s {, 2,..., k}.mamy α = min{ λ i µ i ; µ i > 0} = λ s µ s > 0 x = k λ i x i + 0 = k k λ i x i α µ i x i = k (λ i αµ i )x i.
10 . PROGRAMOWANIE LINIOWE 0 Jeśli µ i 0,to λ i αµ i > 0.Jeśli µ i > 0,to λ i µ i λs µ s = α.czyli λ i αµ i 0. Ponadto k k k (λ i αµ i ) = λ i α µ i = α0 =. Równocześnie λ s αµ s = λ s λs µ s µ s = 0.Wobecpowyższychzależności x = k,i s (λ i αµ i )x i,czyli x conv ({(x i ) i, i k, i s}).zatem x posiada przedstawienie w postaci wypukłej kombinacji k elementów zezbioru S.Jeżeli k > n +,topostępujemyanalogicznie.procesten kontynuujemy, dopóty dopóki x nie okaże się wypukłą kombinacją n + elementów ze zbioru S. Twierdzenie.0.Niech S R n będziezbioremwypukłymtakim,że S = Sorazniech y S.Wówczasistniejedokładniejedenpunkt x S taki,żeodległość yod xjestminimalna,tzn. y x = min x S { y x }. Ponadto punkt x jest jedynym punktem zbioru S spełniającym nierówność: (x x) T (x y) 0dlawszystkich x S. Dowód.Niech γ = inf x S { y x }.Ponieważzbiór Sjestdomknięty, to γ > 0.Rzeczywiście,gdyby γ = 0,toistniałbyciąg (x n ) Staki,że lim n x n = y,czyli y Siwkonsekwencji y S,codajesprzeczność. Wobectegoistniejeciąg (x n ) Staki,że lim n x n y = γ.pokażemy, żeciąg (x n )jestzbieżny.niech k, n N.Mamy x k x n 2 = x k y (x n y) 2 = 2 x k y 2 +2 y x n 2 x k +x n 2y 2 = 2 x k y x n y 2 4 x k + x n 2 y Ponieważ x k, x n S,to x k+x n S.Zokreślenia γmamy x k+x n y 2 γ Stąd x k x n 2 2 x k y x n y 2 4γ 2. Wiemy,że lim k x k y = γ,czyli lim k x k y 2 = γ 2.Istniejezatem Ntakie,żedla m N x m y 2 < γ 2 + ε 4. Stąddla k, n N x k x n 2 < 2γ 2 + ε 2 + 2γ2 + ε 2 4γ2 = ε. 2.
11 . PROGRAMOWANIE LINIOWE Zatem (x n )jestciągiemcauchy ego.zzupełności R n dostajemy,żeciąg (x n ) jestzbieżny.niech x = lim n x n,odnotujmyże x S,ponieważ S = S. Mamy y x = y lim x n = lim y x n = γ. n n Abypokazaćjedynośćzałóżmy,żeistniejeelement x Staki,że y x = γ.pokażemy,iż x = x.ponieważzbiór Sjestwypukły,to x+x S.Mamy 2 y x + x 2 = y 2 x 2 + y 2 x 2 2 y x + 2 y x = γ. Zokreślenia γwynika,że y x+x 2 = γ,ale 4 y x + x x x 2 = 2 y x y x 2. Czyli 4γ 2 + x x 2 = 2γ 2 + 2γ 2,azatem x x = 0ix = x. Pokażemyteraz,że (x x) T (x y) 0dladowolnego x S.Weźmy x S,wówczas y x 2 y x 2 (xjestnajbliżej y).zbiór Sjestwypukły oraz x, x Szatemdla λ [0, ], λx + ( λ)x S.Mamyponadto y x 2 y x λ(x x) 2 = y x 2 +λ 2 x x 2 +2λ(y x) T (x x). Stąd λ 2 x x 2 + 2λ(x x) T (x y) 0idla λ > 0, λ x x 2 + 2(x x) T (x y) 0.Gdy λzmierzadozeraotrzymujemy (x x) T (x y) 0. Pokażemy teraz, że x jest jedynym punktem spełniającym powyższą nierówność.niech x Sorazniechdladowolnego x Szachodzi (x x ) T (x y) 0.Wówczas y x 2 = y x + x x 2 = y x 2 + x x 2 + 2(y x ) T (x x). Ponieważ x x 2 0oraz (x x ) T (x y) 0,to y x 2 y x 2 dladowolnego x S.Zatemostatecznie x = x,botylko xposiadatę własność. Twierdzenie..Niech S R n będziewypukłymidomkniętymzbioremorazniech y S.Wówczasistniejewektor c R n oraz α Rtakie,że c T y > αoraz c T x αdlakażdego x S.
12 . PROGRAMOWANIE LINIOWE 2 Dowód. Z Twierdzenia.0 wiemy, że istnieje w zbiorze S taki element x,że y x = min x S y x orazdladowolnego x S, (x x) T (y x) 0. Stąd x T (y x) x T (y x), y x 2 = (y x) T (y x) = y T (y x) x T (y x) y T (y x) x T (y x) = (y x) T (y x) = c T (y x), gdzie c = y x 0.Mamy c T y c T x + y x 2 dladowolnego x S. Niech α = sup{c T x; x S},wówczas c T y α + y x 2 > αoraz c T x α z definicji α. Niech X R n będziezbioremwypukłym.punkt x X nazywamy ekstremalnym, jeśli x,y X λ (0,) p = ( λ)x + λy x = y = p..3. Punkty ekstremalne i wektory kierunkowe ekstremalne Przykład.2. Oznaczmy przez E zbiór punktów ekstremalnych zbioru X. [ ] [ ] 9 [ ] [ x (i)dlazbioru X = R x 2 ; 3 x x 2 7, x 0 pochodzącego z Przykładu., E =,,,,. x 2 0] {[ 0 ] [ ] [ ] [ 6 ] [ ]} 0 6 4, , (ii) X = {(x, x 2 ) R 2 ; x 2 + x2 2 }, E = {(x, x 2 ) R 2 ; x 2 + x2 2 = }. Jeśli zbiór X jest domknięty i ograniczony, to dowolny punkt tego zbioru może być przedstawiony jako wypukła kombinacja punktów ekstremalnych. Wektor 0 v R n nazywamykierunkowymzbioru X,jeśli x X λ 0 x + λv X. Dwa wektory kierunkowe v, w zbioru X nazywamy równymi, jeśli λ>0 v = λw.
13 . PROGRAMOWANIE LINIOWE 3 Wektor kierunkowy v zbioru X nazywamy ekstremalnym, jeżeli w,w 2 λ,λ 2 >0 v = λ w + λ 2 w 2 λ>0 w = λw 2, gdzie w, w 2 sąwektoramikierunkowymizbiory X. Wdalszejczęścirozważaćbędziemyzbiory Xpostaci X = {x R n ; Ax = b, x 0},gdzie Aoznaczamacierzwymiaru m n, b R m.zakładamyponadto, że rz(a) = m. Niech A = [BN](po ewentualnej permutacji kolumn), gdzie Bjest m mmacierzą, N jest m (n m)macierzą,natomiast rz (B) = m.wtedy Ax = b, x 0 Bx B + Nx N = b, gdzie x B 0, x N 0.Niech Abędziejakwyżej.Wówczasprzez C(A)oznaczamy zbiór takich macierzy nieosobliwych B wymiaru m m, dla których istniejemacierz Nwymiaru m (n m)taka,że [BN]dasięuzyskaćz macierzy A poprzez przestawienie kolumn. Twierdzenie.3(o charakteryzacji punktów ekstremalnych). Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz(a) = [ m.punkt ] x[ ] Xjestpunktemekstremalnymwtedyitylkowtedy,gdy x = B b xb = dlapewnego B C(A)takiego,że B 0 x b 0. N [ ] B Dowód.Weźmy B C(A)takie,że B b 0.Niech x = b.zauważmy,że x X.Rzeczywiściedla A = [BN]mamy Ax = [BN] b [ 0 ] B = 0 b + N0 = b,zarazem x 0.Załóżmy,że x = λx + ( λ)x 2 dla x, x 2 X oraz λ (0, ).Niech x T = [x T, x T 2], x T 2 = [x T 2, x T 22].Wtedy [ B b 0 ] = λ [ x x 2 ] + ( λ) [ x2 Ponieważ x 2, x 22 0, λ (0, ), λ, λ > 0,tomamy x 2 = x 22 = 0. Ponadto, b = Ax = Bx,awięc x = B b.podobnie x 2 = B b.wobec równości x = x 2 = B bmamy x = x 2 = x,zatem xjestpunktem ekstremalnym w X. x 22 ].
14 . PROGRAMOWANIE LINIOWE 4 Niechteraz x R n będziepunktemekstremalnym.załóżmy,że x = [x, x 2,...,x k, 0, 0,..., 0] T,gdzie x i > 0dla i =, 2,..., k.pokażemy,że kolumny a, a 2,...,a k sąliniowoniezależne.gdybytakniebyło,toistniałyby liczby λ, λ 2,...,λ k R, k λ2 i 0takie,że k λ ia i = 0.Niech λ = [λ, λ 2,...,λ k, 0, 0,..., 0] T.Rozpatrzmywektory x () = x+rλ, x (2) = x rλ, gdzie r > 0, x (), x (2) 0.Zauważmy,że Ax (i) = k a j (x j + ( ) i rλ j ) = j= k k a j x j + ( ) i r a j λ j = b. j= j= Zatem x (), x (2) X,aponieważ r > 0,to x () x (2).Ponadto x = 2 x() + 2 x(2),coprzeczytemu,że xjestpunktemekstremalnym.zatemkolumny a, a 2,...,a k sąliniowoniezależne.czylizn kkolumnmożnawybrać m k kolumn tak, aby razem z pierwszymi k kolumnami tworzyły m liniowo niezależnychwektorów.załóżmy,żetymikolumnamisą a k+, a k+2,...,a m. Wobectegomacierz Amożebyćzapisanawpostaci A = [BN],gdzie B = [a, a 2,...,a m ] C(A),rz (B) = m.mamy b = Ax = Bx B + Nx N = Bx B,a stąd x B = B b,czyli x = [ B b 0 ]. Wniosek.4.Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = m.zbiór Xposiadaskończeniewielepunktów ekstremalnych. Dowód.Wynikazfaktu,że C(A) <. Twierdzenie.5(o istnieniu punktów ekstremalnych). Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = m. Wówczas niepusty zbiór X posiada co najmniej jeden punkt ekstremalny. Dowód.Ustalmy x X.Niech x = [x, x 2,..., x k, 0, 0,..., 0] T,gdzie x i > 0, i =, 2,..., k.rozpatrzmykolumny a, a 2,..., a k macierzy A.Gdysą oneliniowoniezależne,topunkt xjestekstremalny.załóżmy,że a, a 2,...,a k sąliniowozależne,toznaczyistniejąliczby λ, λ 2,...,λ k R, k λ2 i 0 oraz k λ ia i = 0.Niech r = min,2,...,k { x i λ i ; λ i > 0} = x j λ j.możemyzałożyć, żezbiór i {, 2,..., k}takich,że λ i > 0jestniepusty.Niech x R n,gdzie { x i = xi rλ i dla i =, 2,..., k 0 dla i = k +, k + 2,...,n
15 . PROGRAMOWANIE LINIOWE 5. x 0,boinaczejdlapewnego j {, 2,..., k}mielibyśmy x j rλ j < 0,astąd r > x j λ j iotrzymujemysprzecznośćzminimalnością. 2. Ax = b,rzeczywiście Ax = k (x i rλ i )a i = k x ia i r k λ ia i = Ax = b.zatem x X. 3. x i 0 = 0dlapewnegoindeksu i 0 {, 2,..., k}.wiemy,żeistnieje i 0 {, 2,..., k}taki,że r = x i 0 λ i0.zatem x i 0 = x i0 rλ i0 = 0. Jeślikolumny a, a 2,...,a k bez a i0 sąliniowoniezależne,topunkt x jest ekstremalny. Lemat.6.Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = m.wektor v R n jestwektoremkierunkowymniepustego zbioru Xwtedyitylkowtedy,gdy Av = 0iv 0, v 0. Dowód.Niech v R n będziewektoremkierunkowymzbioru X.Weźmy x X,wtedy x+v X.Mamy Av = A(x+v x) = A(x+v) Ax = b b = 0, bo v 0 jest wektorem kierunkowym. Załóżmyteraz,że Av = 0, v 0.Niech x X, λ > 0.Mamy A(x+λv) = Ax + λav = Ax = b.ponieważ x 0, λ > 0, v 0,to x + λv 0czyli x + λv X. Twierdzenie.7(o charakteryzacji kierunków ekstremalnych). Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = m. Wektor v jest kierunkiem ekstremalnym zbioru X wtedy i tylko wtedy, gdy istnieją B C(A),kolumna a j macierzy Aniewystępującawmacierzy B oraz λ > 0takie,że (i) B a j 0, (ii) v = λ(( B a j ) T, e T j ) T,gdzie e j jestwektoremmającym n m współrzędnych z których tylko j-ta współrzędna jest różna od zera i równa się jeden. Dowód.Niech v = λ(( B a j ) T, e T j )T i B a j 0.Pokażemy,że vjest wektoremkierunkowym.zauważmy,że v 0, v 0oraz [ ] B Av = [BN]λ a j = λb( B a j ) + λne j = λ( a j + a j ) = 0. e j Zatem na mocy Lematu.6 wektor v jest kierunkowy. Niech v, v 2 będąwektoramikierunkowymiorazniech v = λ v + λ 2 v 2, gdzie λ, λ 2 > 0.Zauważmy,że n m współrzędnychwektora vjest
16 . PROGRAMOWANIE LINIOWE 6 równe 0.Zatemodpowiedniewspółrzędnewektorów v i v 2 sąrównieżzerowe iwektorytemogąbyćzapisanewpostaci v T = α [v T, et j ], vt 2 = α 2[v T 2, et j ], gdzie α, α 2 > 0.Wiemy,że Av = Av 2 = 0zatemmamy 0 = Av = [BN]α [v T, e T j ] T = α (Bv T + Ne T j ) = α (Bv T + a T j ), stąd v = B a j.podobnie v 2 = B a j,mamywięc v = v 2,aw konsekwencji v = λv 2,gdzie λ = α α 2.Ostatecznieotrzymujemy,żewektor v jest ekstremalny. Niech vbędziewektoremekstremalnym, v = [v, v 2,...,v k, 0,...,0, v j, 0,..., 0] T, v i > 0dla i =, 2,..., koraz i = j.pokażemy,żekolumny a, a 2,...,a k macierzy Asąliniowoniezależne.Załóżmy,żetakniejesttzn. istnieją λ, λ 2,...,λ k Rtakie,że k λ2 i 0, k λ ia i = 0. Niech λ = [λ, λ 2,..., λ k, 0, 0,..., 0] T.Rozpatrzmywektory v () = v+rλ, v (2) = v rλ,gdzie r > 0, v (), v (2) 0, r = min,2,...,k { v i λ i ; λ i > 0} = v j λ j. Zauważmy, że Av (i) = A(v + ( ) i rλ) = Av + ( ) i raλ = 0 + ( ) i r k a i λ i = 0, Ponieważ r > 0,to v () v (2) v.zatem v = 2 v() + 2 v(2),coprzeczytemu,że vjestwektoremekstremalnym.czylikolumny a, a 2,...,a k sąliniowo niezależne.dodatkoworz (A) = m,stąd k mwięcmożemywybrać m k wektorówzezbioru {a i ; i = k +, k + 2,..., m, i j},którerazemzkolumnami a, a 2,...,a k sąliniowoniezależne.oznaczmy B = [a, a 2,...,a m ] C(A).Zauważmy,że a j B,bo a, a 2,...,a k, a j sąliniowozależne.mamy 0 = Av = [BN]v = Bv B + Nv N = Bv B + a j v j,astąd v B = v j ( B a j ), czyli v = v j [ B a j e j ].Ponieważ v 0, v j > 0więc B a j 0. Wniosek.8.Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz(a) = m.zbiór Xposiadaskończeniewielekierunków ekstremalnych. Twierdzenie.9(oreprezentacji).Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = m.niech x, x 2,...,x k będą wszystkimipunktamiekstremalnymizbioru X,natomiast v, v 2,..., v l wszystkimi wektorami ekstremalnymi zbioru X. Wówczas x X wtedy i tylko
17 . PROGRAMOWANIE LINIOWE 7 wtedy,gdyistniejątakieliczby λ, λ 2,...,λ k 0,którychsumajestrówna jedenoraztakieliczby µ, µ 2,...,µ l 0,że x = k λ i x i + l µ i v i. Dowód. Niech Y = {x R n ; λ,λ 2,...,λ k 0, P k λ, µ,µ 2,...,µ l 0 x = k λ i x i + l µ i v i }. Pokażemy,że X = Y.Zauważmy,że Y,boztwierdzenia.5istniejeco najmniej jeden punkt ekstremalny. (i) Y X.Niech x Y, x = k λ ix i + l µ iv i, λ i, µ j 0, k λ i =, i =, 2,..., k, j =, 2,...,l.Mamy x = k λ ix i X.Niech x i = x i + µ iv i,gdzie x 0 = x.wówczas i x i Xczyli x = x l X. (ii) X Y.Zauważmy,że Y jestwypukłyidomknięty.załóżmy,że X \Y iniech z X \Y,czyli z Y.NamocyTwierdzenia.istnieją wówczas:wektor p R n i α > 0takie,że p T z > αoraz k ( ) p T ( λ i x i + l µ i v i ) α, dladowolnych λ i, µ j takich,że k λ i =, λ i, µ j 0, i =, 2,..., k, j =, 2,..., l.ponieważ µ j możnawybraćdowolnieduże,tonierówność ( ) jestprawdziwatylkowtedy,gdy p T v i 0dla i =, 2,..., l.kładąc µ i = 0 dlawszystkich i, λ i = iλ j = 0dla j idostajemyz( ),że p T x i α dla i =, 2,..., k.ponieważ p T z > α,to p T z > p T x i dladowolnego i.z powyższych rozważań wynika, że istnieje niezerowy wektor p, dla którego zachodzą następujące nierówności: ( ) p T z > p T x i dla i =, 2,..., k, ( ) p T v i 0 dla i =, 2,..., l. Rozważmy punkt ekstremalny x określony następująco: p T x = max i k pt x i.
18 . PROGRAMOWANIE LINIOWE 8 [ ] B Ponieważ x jest punktem ekstremalnym, to z Twierdzenia.3 x = b, 0 gdzie A = [BN]oraz B b 0.Ponieważ z X,to Az = boraz z 0. Zatem Bz B + Nz N = biz B = B (b Nz N ) = B b B Nz N.Niech z T = [zb T, zt N ].Z( )mamy pt z p T x > 0,ponadtoniech p T = [p T B, pt N ]. Wówczas 0 < p T z p T x = p T B z B + p T N z N p T B x B p T N x N = p T B (B b B Nz N )+ p T N p T BB b = p T BB b p T BB Nz N + p T N p T BB b = (p T N p T BB N)z N, bo z N 0, z X.Wobectegoistniejeindeks i 0 > mtaki,że z i0 > 0oraz p i0 p T B B a i0 > 0.Pokażemy,żenierówność B a i0 0niejestprawdziwa.Załóżmy,że B a i0 0.Wówczas vi T 0 = (( B a i0 ) T, e T i 0 ),gdzie e i0 jest wektorem o n m współrzędnych z jedynką(jako jedynym niezerowym elementem)namiejscuoindeksie i 0,jestekstremalnymwektoremkierunkowymzbioru XnamocyTwierdzenia.7.Z( )wynika,że p T v i0 0 czyli p i0 p T B B a i0 0,codajesprzeczność.Zatem B a i0 0.Zdefiniujmy wektor x następująco: [ ] [ ] B x = b B + λ a i0, 0 e i0 gdzie λ = min i m { b i y ij ; y ij > 0} = br y rj > 0, b = B b, y i0 = B a i0. Zauważmy, że x posiada nie więcej niż m dodatnich współrzędnych oraz x r = 0, x i0 = λ.wektor x X,ponieważmamy Ax = [BN]x = BB b + λ( BB a i0 + Ne i0 ) = BB b = b. Zauważmy,żeukład a, a 2,...,a r, a r+, a r+2,...,a m, a i0 jestliniowoniezależny.mamy y i0 = B a i0 zatem a i0 = By i0.wówczas a i0 = α a + α 2 a α m a m oraz α r 0. Zatemzbiórwektorów {a, a 2,...,a m }\{a r }, a i0 jestliniowoniezależny.niech B = [a, a 2,...,a r, a r+, a r+2,...,a m, a i0 ].Mamy B C(A), A = [B, N], b = Ax = [B, N]x = Bx B + Nx N = Bx B.
19 . PROGRAMOWANIE LINIOWE 9 [ ] Stąd x B = B B b 0.Zatem x = b iztwierdzenia.3 xjestpunktem 0 ekstremalnym. Ponadto [ ] b p T x = [p T B, p T λyi0 N] = p T λe B(b λy i0 ) + p T Nλe i0 = p T Bb λp T By i0 + λp i0 = i0 = p T B B b + λ(p i0 p T B B a i0 ) = p T B x + λ(p i 0 p T B B a i0 ). Ponieważ λ > 0oraz p i0 p T B B a i0 > 0,to p T x > p T x i0.zatemskonstruowaliśmypunktekstremalny x,dlaktórego p T x > p T x,codajesprzeczność, ponieważ p T x = max i k p T x i. Wniosek.20(o istnieniu kierunkowych wektorów ekstremalnych). Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz(a) = m. Wówczas X posiada kierunkowy wektor ekstremalny wtedy i tylko wtedy, gdy X jest nieograniczony. Dowód. Oczywiście jeśli zbiór X posiada kierunkowy wektor ekstremalny, to X jest nieograniczony. Pokażemy implikację przeciwną. W tym celu załóżmy, że X nie posiada kierunkowych wektorów ekstremalnych. Niech x X, x = k λ ix i, k λ i =, λ i 0orazniech x, x 2,...,x k będą punktami ekstremalnymi. Mamy x = k λ i x i k λ i x i max i k { x i }. Zatem X jest ograniczony. Otrzymana sprzeczność dowodzi, że zbiór X posiada kierunkowy wektor ekstremalny. Twierdzenie.2.Niech X = {x R n ; Ax = b, x 0},gdzie A M m n (R), b R m,rz (A) = miniech x, x 2,..., x k będąwszystkimipunktamiekstremalnymi,zaś v, v 2,...,v l wszystkimiwektoramiekstremalnymi zbioru X, c R n.wówczas inf{c T x; x X} R j=,2,...,l c T v j 0.Jeżeli j=,2,...,l c T v j 0,to i {,2,...,k} inf{c T x; x X} = c T x i. Dowód. Z Twierdzenia.9 wiemy, że dowolny element x spełnia warunki Ax = b, x 0wtedyitylkowtedy,gdy x = k λ ix i + l j= µ jv j, λ i, µ j 0, k λ i =, i =, 2,..., k, j =, 2,..., l.zatem c T x = c T ( k λ ix i + l j= µ jv j ),gdzie λ i, µ j 0, k λ i =, i =, 2,..., k,
20 . PROGRAMOWANIE LINIOWE 20 j =, 2,..., l.jeślidlapewnego j, c T v j < 0,tonaszewyrażeniejestnieograniczone,ponieważ µ j możemywybraćdowolnieduże.zatem inf{c T x; x X} Rwtedyitylkowtedy,gdy c T v j 0dladowolnego j =, 2,..., l. Jeśli c T v j 0dladowolnego j =, 2,...,l,towceluosiągnięcianajmniejszejwartościmożemyprzyjąć µ j = 0dla j =, 2,..., l.zatem inf{c T ( k λ i x i + l k µ j v j )} = inf{c T λ i x i ; λ i 0, j= k λ i = }. Niech λ i0 = oraz λ i = 0dla i i 0,gdzieindeks i 0 jesttaki,że c T x i0 = min i k {c T x i }.Wówczas c T x i0 k λ ic T x i,cokończydowód. Niech X = {x R; Ax = b, x 0},gdzie A M m n (R), b R m, rz (A) = m.zajmiemysięszukaniem inf{c T x; x X}.Niech xbędziepunktem ekstremalnym zbioru X. Z Twierdzenia [ ].3 wiemy, że istnieje B [ C(A), ] B B b 0oraz A = [BN], x = b xb.weźmydowolny x X, x =. [ ] 0 x N xb Wówczas Ax = btzn. [BN] = b,skąddostajemy Bx B + Nx N = b. x N Zatem x B = B b B Nx N.Policzmy c T x c T x = c T Bx B + c T Nx N = c T B b c T BB Nx N + c T Nx N = c T Bx B + c T Nx N + Przypadek : c T BB Nx N + c T Nx N = c T x + (c T N c T BB N)x N. c T N ct B B N 0.Ponieważ x 0,to x N 0iwkonsekwencji c T x c T x. Zatem x jest szukanym punktem. Przypadek 2: c T N ct B B N 0.Wszczególnościniechdlapewnegoindeksu jbędzie c T j ct B B a j < 0(stąd c T x < c T x). Przypadek 2a:
21 . PROGRAMOWANIE LINIOWE 2 Zakładamy,że B a j 0.Wówczasbiorąc v j = [ B a j e j ],gdzie e j jest wektoremon mwspółrzędnychmającymjedynkęnamiejscu j,anapozostałych miejscach zero, otrzymujemy kierunkowy wektor ekstremalny. Wobectego x = x + v j, x X.Zrówności c T x = c T x + c T v j oraz c T x = c T x + (c T N ct B B N)x N dostajemy c T v j = (c T N ct B B N)x N = c T j ct B B a j < 0, czyli problem nie posiada rozwiązania. Przypadek 2b: [ ] B Zakładamy,że B a j 0.Weźmy v j = a j ioznaczmy y = B a j, b = B b.niech λ = min i m { b i y i ; y i > 0} = b i 0 y i0, x = x + λv j.pokażemy,że [ ] B x X.Wiemy,że Ax = b,natomiast Av j = [BN]v j = [BN] a j = a j + a j = 0,zatem Ax = b.musimyjeszczeudowodnić,że x 0.Dla i =, 2,..., mmamy e j e j x = x i + λ(v j ) i = (B b) i + b i 0 y i0 ( B a j ) i = b i b i 0 y i0 y i. Rozważmy dwa przypadki:.jeśli y i 0,tooczywiście x i 0, 2.jeśli y i > 0,to b i y i b i 0 y i0,astąd x i 0. Dla i = m +, m + 2,..., noraz i jmamy x i = 0.Dla i = jmamy x i = λ > 0. Wektor x posiada niezerowe współrzędne co najwyżej na miejscach, 2,..., i 0, i 0 +,..., m, j.pokażemy,że a, a 2,...,a i0, a i0 +,...,a m, a j są liniowo niezależne. Wówczas x będzie punktem ekstremalnym. Załóżmy, że i {,...,m,j}\{i 0 } α ia i = 0,mamy 0 = i {,...,m,j}\{i 0 } α i a i = i {,...,m}\{i 0 } α i a i +α j a j = i {,...,m}\{i 0 } α i a i +α j By = m = α i a i + α j y i a i = i {,...,m}\{i 0 } m (α i + α j y i )a i,
22 . PROGRAMOWANIE LINIOWE 22 gdzie α i0 = 0.Wtedy α i + α j y i = 0oraz α j y i0 = 0.Zatem α j = 0,astąd α i = 0. Niech B = [a, a 2,...,a i0, a i0 +,...,a m, a j ]oraz A = [B [ N ].Wówczas ] B Ax = b,stąd b = B x B +N x N = B x B,czyli x B = B btzn. b oraz 0 B b 0.Ponadto [ ] B c T x = c T (x + λv j ) = c T x + c T λv j = c T x + λc T a j = c T x+ e j.4. Metoda sympleksowa +λ(c T j ct B B a j ) c T x. Przypomnijmy,żechcemyzminimalizować c T xprzywarunkach Ax = b, x 0. Algorytm sympleks Krok.Wziąćdowolnypunktekstremalny xzbioru Xozmiennychbazowych x B. Krok2.Wyliczyć α = c T B B N c T N.Jeżeli α 0,tozakończyćalgorytm(punkt x jest szukanym punktem). W przeciwnym wypadku przejść do kroku 3. Krok 3. Wybrać maksymalną dodatnią współrzędną α. Niech tą współrzędnąbędzie α j,zatem α j = c T B B a j c T j.jeśli y j = B a j 0,to zakończyć algorytm(brak rozwiązania). W przeciwnym wypadku przejść do kroku 4. Krok 4. Skonstruować nowy punkt ekstremalny o zmiennych bazowych x B zgodniezopisanympowyżejprocesem.przejśćdokroku2. Przykład.22.Znaleźćminimumfunkcji f(x, x 2 ) = 2x 9x 2 przy warunkach x + x 2 6, x + 3x 2 3,
23 . PROGRAMOWANIE LINIOWE 23 x 0, x 2 0. Zmianawarunkówfunkcji f(x, x 2 ) = 2x 9x 2 : x + x 2 + x 3 = 6, x + 3x 2 + x 4 = 3, x 0, x 2 0, x 3 0, x 4 0, gdzie x 3, x 4 sązmiennymidopełniającymi.mamy [ ] [ ] 0 6 A =, b =, c = [2, 9, 0, 0] T [ ] 0 Szukamymacierzy B,dlaktórej B b 0.Weźmy B = [a 3, a 4 ] =, 0 wówczas B = Bi B b = b 0.Liczymy c T B B N c T N : [ ][ ] 0 c T B B N c T N = [0, 0] [2, 9] = [ 2, 9] [ ] 0,tokonstru- 3 [ ] [ ] 0 Obliczamy y 2 = B a 2 = = 0 3 ujemy nowy punkt ekstremalny. Mamy [ ].Ponieważ 3 { } { bi 6 λ = min ; y 2i > 0 = min i=3,4 y 2i i=3,4, 3 } =, 3 [ ] e v 2 = 2 B, x = x + λv a 2 = = [ ] [ ] 0 Teraz B = [a 2, a 3 ] =,wówczas B 3 0 = 3. Ponownie liczymy 3 c T B B N c T N : [ ][ ] 0 c T B B N c T N = [ 9, 0] 3 0 [2, 0] = [, 3] 0. 3
24 . PROGRAMOWANIE LINIOWE 24 [ ][ ] [ ] [ ] 0 Obliczamy y = B a = 3 = 3 4.Ponieważ 3 4 0,to konstruujemy kolejny punkt ekstremalny. Mamy { } { } bi 5 λ = min ; y i > 0 = min i=2,3 4 = 5 y i 4, x = x + λv = = [ ] [ 3 ] Terazprzyjmujemy B = [a, a 2 ] =,wobectego B 3 = Liczymy c T B B N c T N : [ 3 ][ ] c T B B N c T N = [2, 9] [0, 0] = [ 3 0 4, 4 ] < Zatemkończymyobliczeniaiotrzymujemywartośćoptymalną f(x, x 2 ) = 2x 9x 2 = = 5 4. Lemat.23.Niech B, B M m m (R)będąmacierzaminieosobliwymi różniącymisięjednąkolumną,tzn. B = [a, a 2,...,a l, a l, a l+,...,a m ], B = [a, a 2,...,a l, a k, a l+,...,a m ]orazniech B a k = y = [y, y 2,...,y m ] T. Wówczas B = FB,gdziemacierz Fposiadajedynkinagłównejprzekątnej, l-tąkolumnępostaci f l = y l [ y, y 2,..., y l,, y l+,..., y m ] T,a na pozostałych miejscach zera. Dowód. B = B + (a k a l )e T l = B + (a k Be l )e T l = B(I + B (a k Be l )e T l ) = B(I + (B a k e l )e T l ) = B(I + (y e l)e T l ),zatem B = (I + (y Ie l )e T l ) B. Trzebapokazać,że F = (I + (y Ie l )e T l ).Zauważmy,że I + (y Ie l )e T l jestmacierząjednostkowązl-tąkolumną y.ponadto det(i + (y Ie l )e T l ) = y l 0. Przykład.24.Znaleźćmaksimumfunkcji f(x, x 2 ) = x + 2x 2 przy warunkach x + x 2 5,
25 . PROGRAMOWANIE LINIOWE 25 x + x 2 0, 3x + 7x 2 27, x 0, x 2 0. Przeformułowanie i zmiana warunków funkcji: znaleźć minimum funkcji f(x, x 2 ) = x 2x 2 przywarunkach x + x 2 + x 3 = 5, x x 2 + x 4 = 0, 3x + 7x 2 + x 5 = 27, x 0, x 2 0, x 3 0, x 4 0, x 5 0, gdzie x 3, x 4, x 5 sązmiennymidopełniającymi.mamy A = 0 0, b = 0, c = [, 2, 0, 0, 0] T Szukamymacierzy B,dlaktórej B b 0.Weźmy B = [a 3, a 4, a 5 ] = ,wówczas B = Bi B b = b 0, x T = [0, 0, 5, 0, 27].Liczymy 0 0 c T B B N c T N : 0 0 c T BB N c T N = [0, 0, 0] 0 0 [, 2] = [, 2] Obliczamy y 2 = B a 2 = 0 0 =. Ponieważ 0, to konstruujemy nowy punkt ekstremalny. Mamy { } { bi 5 λ = min ; y 2i > 0 = min i=3,4,5 y 2i, 27 } = , [ ] e v 2 = 2 0 B, x = x + λv a 2 = =
26 . PROGRAMOWANIE LINIOWE 26 0 Terazzamiast B = [a 2, a 3, a 4 ] = 0, możemy rozważać łatwiejszą dodalszychobliczeńmacierz B = [a 3, a 4, a 2 ] = 0.Mamy B = FB 7 = F = 0 7, B 7 7 b = = 27 7, l = 3, y l = Przykład.25. Przedstawimy rozwiązanie zagadnienia z Przykładu. wykorzystując tablice sympleksowe. Nasz PL-model ma następującą postać. Znaleźćmaksimumfunkcji f(x, x 2 ) = 3x + 2x 2 przywarunkach x + x 2 + x 3 = 9, 3x + x 2 + x 4 = 8, 3x + x 5 = 7, 3x 2 + x 6 = 6, x 0, x 2 0, x 3 0, x 4 0, x 5 0, x 6 0, gdzie x 3, x 4, x 5, x 6 sązmiennymidopełniającymi.mamy A = , b = 8 7, c = [3, 2, 0, 0, 0, 0]T Tablica sympleksowa dla powyższego zagadnienia wygląda następująco: Początkowymrozwiązaniemdopuszczalnymjest x = 0, x 2 = 0, x 3 = 9, x 4 = 8, x 5 = 7, x 6 = 6.Ponadto B = [a 3, a 4, a 5, a 6 ] = , 0 0 0
27 . PROGRAMOWANIE LINIOWE 27 N = [a, a 2 ] = 3 0.Największymdodatnimwspółczynnikiemfunkcjicelujest 3,zatem x wchodzidonowychzmiennychbazowych.abysprawdzić, 0 która ze zmiennych opuszcza zbiór zmiennych bazowych liczymy odpowiednieminimum: min{ 9, 8, 7 } = 8 = 6.Zatem x 3 3 4opuszczazbiórzmiennych bazowych.mamyteraz B = [a, a 3, a 5, a 6 ]oraz N = [a 2, a 4 ] Stosując eliminację Gaussa oraz dokonując odpowiednich uproszczeń otrzymujemy następującą tablicę sympleksową: Jedynymdodatnimwspółczynnikiemfunkcjicelujestteraz 2,czyli x 2 wchodzi do zbioru nowych zmiennych bazowych. Liczymy odpowiednie minimum: min{ 9 2, 8, 6 } = 9 2.Zatemzmienna x 3opuszczazbiórzmiennychbazowych. Mamyteraz B = [a, a 2, a 5, a 6 ]oraz N = [a 3, a 4 ] Stosując eliminację Gaussa oraz dokonując odpowiednich uproszczeń otrzymujemy następującą tablicę sympleksową:
28 . PROGRAMOWANIE LINIOWE Ponieważ nie ma już dodatnich współczynników funkcji celu otrzymujemy wartośćoptymalną f(x, x 2 ) = 3x + 2x 2 = 3(4 2 ) + 2(4 2 ) = Problem znalezienia pierwszego punktu ekstremalnego Przypomnijmy,żeszukamy min c T x,przyzałożeniach Ax = b, x 0,rz(A) = m, b R m. W podanym wcześniej algorytmie sympleks w kroku pierwszym zakładamy istnienie punktu ekstremalnego. Z Twierdzenia.3 wynika, że znalezienie początkowego punktu ekstremalnego związane jest z rozbiciem macierzy A namacierze Boraz Ntak,aby B b 0.WPrzykładach.22i.24mieliśmynapoczątku B = I, b 0. Dwuetapowy sposób znajdowania pierwszego punktu ekstremalnego(bazowego) Zakładamy,że b 0.Jeśli b i < 0,tomnożymyodpowiednierównanieprzez [ ] x -. Rozpatrzmy pomocnicze zagadnienie minimalizacji. Mamy [AI] = bi y szukamy następującego minimum ( ) min m y i, gdzie Ax + Iy = b, x 0, y 0.Dorozwiązaniazagadnienia ( )stosujemy metodę sympleks, ponieważ ma ono początkowe [ ] rozwiązanie dopuszczalne. 0 Zaczynamynastępująco B = I, B b =, x = 0, y = b.jeśliznajdziemy b optymalnerozwiązaniebazowedla ( ),takieże m y i = 0,tootrzymamy takżebazędającąrozwiązanie x B (czyli Ax = b).jeśli ( )posiadadodatnie
29 . PROGRAMOWANIE LINIOWE 29 minimum,toniemarozwiązaniadopuszczalnegodla Ax = b, x 0.Mamy Etap I- znalezienie rozwiązania dopuszczalnego dla Ax = b, x 0 lub stwierdzenie, że nie istnieje takie rozwiązanie. Etap II- użycie rozwiązania z etapu pierwszego do rozwiązania następującegozagadnienia:znaleźćminimum c T xprzywarunkach Ax b, x Dualna metoda programowania liniowego Szukamy maxy T bprzyzałożeniach y T A c T, y R m (niezakładasię, że y 0).Zauważmy,że y T b = y T Ax c T x, x 0.Wobectegojeżeli y T b = c T x, Ax = b, A T y c,to y, xsąrozwiązaniamioptymalnymidlaodpowiednichzagadnień(xdlaszukaniaminimum c T xprzywarunkach Ax = b, x 0,aydlaszukaniamaksimum y T bprzywarunkach y T A c T ). Twierdzenie.26. Jeśli jedno z zadań programowania liniowego(prymalne lub dualne) posiada skończone rozwiązanie, to takie rozwiązanie posiada drugie z tych zadań. Ponadto wartości funkcji celu obu powyższych zagadnień są takie same. Załóżmy,że x B = B b jestrozwiązaniem(dopuszczalnymioptymalnym)dlazagadnieniaprymalnego(min c T x, Ax = b, x 0).Wtedy y T = c T B B.Ponadtowiemy,że c T N ct B B N 0stąd c T B B N c T N.Okazujesię,żewektor y T = c T B B jestrozwiązaniemoptymalnymzagadnienia dualnego. Mamy y T A = y T [BN] = [c T BB B, c T BB N] [c T B, c T N] = c T jak również równość funkcji celu y T b = c T B B b = c T B x B = c T B x B + c T N x N = [ ] = [c T B, ct N ] xb = c T x. x N Zatemjeślizagadnienieprymalneposiadarozwiązanieoptymalne x B = B b, tozagadnieniedualnemarozwiązanieoptymalne y T = c T B B,któremożna bez trudności policzyć, ponieważ macierz odwrotna do bazy jest znana.
30 . PROGRAMOWANIE LINIOWE 30 Związek pomiędzy rozwiązaniami optymalnymi x oraz y podaje następujące twierdzenie. Twierdzenie.27(o różnicach dopełniających). Jeżeli x, y są odpowiednio punktami ekstremalnymi dla zagadnienia prymalnego i dualnego, to są one rozwiązaniami optymalnymi wtedy i tylko wtedy, gdy (i) i x i > 0 y T a i = c i (ii) i y T a i < c i x = 0, gdzie a i oznacza i-tąkolumnęmacierzy A. Algorytm dualny sympleks Danejestrozwiązaniebazowe x B = B btakie,żewektor y T = c T B B spełnianierówność c T N yt N 0. Krok.Jeśli x B 0,to x B jestrozwiązaniemoptymalnymiobliczenia sązakończone.wprzeciwnymraziewybraćujemnąskładową x B,niechtą składowąbędzieskładowaonumerze l(zmienna x l zostajeusuniętazezbioru zmiennych bazowych, a l-ta kolumna w macierzy A zostaje usunięta z bazy B). Krok2.Obliczyć b l a j = u lj dla j = m+, m+2,...,n,gdzie b l jest l-tym wierszemmacierzy B, a j j-tąkolumnąmacierzy A.Jeśliwszystkie u lj 0, to zagadnienie dualne nie ma skończonego rozwiązania. W przeciwnym razie dlawszystkich j = m +, m + 2,...,ntakich,że u lj < 0obliczyć oraz wyznaczyć Niech ε = z k c k u lk macierzy A). z j = y T a j = c T B B a j ε = min{ z j c j u lj ; u lj < 0}. (k-takolumnamacierzy Azastępujewbazie l-tąkolumnę Krok3.Obliczyćnowywektor y T wnastępującysposób: y T = y T εb l. Krok4.Uaktualnićodwrotnąmacierzbazową B orazobliczyćnowe rozwiązanie x B = B b. Krok 5. Wrócić do kroku pierwszego.
31 . PROGRAMOWANIE LINIOWE 3 Uwaga.28.Nowązmienną ymożnaobliczyćtakjakwkroku3lub wykorzystujączależność y T = c T B B potym,gdymacierz B zostałauaktualniona.wartośćdualnejfunkcjicelu y T bjestzwiększanawkażdejkolejnej iteracji. Procedura dualna sympleks zostaje zakończona po skończonej liczbie kroków,gdy x B Elementy programowania całkowitoliczbowego Rozważmy zagadnienie optymalizacji z kawałkami liniowym ograniczeniem lub funkcją celu jednej zmiennej przedstawione na poniższym rysunku f(y) y y 2 y 3 y n-2 y n- y n y Dowolnawartość yleżącapomiędzy y oraz y n możebyćprzedstawiona wpostaciwypukłejkombinacjizmiennych y i oraz y i+ wnastępującysposób: y = λ i y i + λ i+ y i+,gdzie λ i + λ i+ =, λ i, λ i+ 0.Podobnie f(y) = λ i f(y i ) + λ i+ f(y i+ ).Zapomocązmiennychcałkowitoliczbowych możemywyrazić f(y)wcałymprzedziale [y, y n ]wnastępującysposób: gdzie n λ i y i = y, f(y) = n λ i f(y i ), n λ i =, λ i 0, i =, 2,..., n, λ x, λ i x i + x i, n i = 2, 3,..., n, λ n x n, x i =, x i = 0 lub x i =, i =, 2,..., n. Tylkojednazmienna x i możeprzyjąćwartośćrówną,astądtylko λ i oraz λ i+ mogąbyćniezerowe,czyli λ i + λ i+ =.Mamyzatemdoczynienia
32 . PROGRAMOWANIE LINIOWE 32 zezmiennymizero-jedynkowymi x, x 2,...,x n,któreokreślająprzedział zawierający yorazzezmiennymiciągłymi λ, λ 2,..., λ n,któredokładnie określają wartość y. Powyższa technika może być użyta do przybliżania funkcji nieliniowych funkcjami kawałkami liniowymi i do przekształcania zagadnień z nieliniowymi funkcjami celu do zagadnień całkowitoliczbowych programowania liniowego. W przypadku ogólnym nie można rozwiązywać zagadnień całkowitoliczbowych za pomocą metody sympleks i należy posługiwać się specjalnymi technikami obliczeniowymi. Poniżej przedstawimy jedną z nich, a mianowicie metodę dualną Gomory ego. Metoda ta jest bezpośrednim rozwinięciem dualnej metody sympleks. Różnica polega na tym, że w metodzie całkowitoliczbowej wiersz zawierający element główny jest generowany w każdej iteracji i wartość tego elementu wynosi-. Zapewnia to całkowitoliczbowość dualnej metody sympleksowej. Algorytm redukuje obszar dopuszczalności do takiego, aby jego wierzchołek optymalny był całkowitoliczbowy. Leksykograficzna postać dualnej metody sympleks Rozważmy następującą dualną tablicę sympleksową Zmienna Stała x m+ x m+2... x k... x n x 0 p 00 p 0,m+ p 0,m+2... p 0k... p 0n x p 0 p,m+ p,m+2... p k... p n x l p l0 p l,m+ p l,m+2... p lk... p ln x m p m0 p m,m+ p m,m+2... p mk... p mn x m x m x k x n gdzie x l jestzmiennąopuszczającąbazę, x k zmiennąwchodzącądobazy, natomiast p lk jestelementemgłównym.powyższatablicaodpowiadazagadnieniu całkowitoliczbowemu w postaci:
33 . PROGRAMOWANIE LINIOWE 33 ( )znaleźćminimum x 0,przywarunkach x i = p i0 + j J p ij ( x j ), x i 0, x i Z, i =, 2,..., n, natomiast J jest zbiorem wskaźników niebazowych zmiennych. W powyższej tablicy wygodnie jest założyć, że pierwsze m zmiennych jest bazowych. Zapiszmy nasze zagadnienie w postaci wektorowej, mamy: znaleźćminimum x 0,przywarunkach x = p 0 + j J p j ( x j ), x i 0, x i Z, i =, 2,..., n. Wektor v 0 nazywamy leksykograficznie dodatnim(ujemnym), jeśli pierwsza jego niezerowa składowa jest dodatnia(ujemna). Gdy wektor v jest leksykograficzniedodatni(ujemny),topiszemy v > l 0(v < l 0).Wektor vjest leksykograficzniewiększy(mniejszy)odwektora w,jeżeli v w > l 0 (v w < l 0).Ciągwektorów v t, t =, 2,...nazywamyleksykograficznie malejącym(rosnącym),jeśli v t v t+ > l 0(v t v t+ < l 0).Zatemwleksykograficznym algorytmie dualnym zagadnienie ( ) przedstawiamy w sposób następujący: znaleźć leksykograficzne minimum x, przy warunkach x = p 0 + j J p j ( x j ), x 0. Zmienną x l opuszczającąbazęwyznaczasiętaksamojakwzwykłejmetodzie dualnej tzn. p l0 = min{p i0 ; p i0 < 0, i m}. Zmienną x wchodzącą do bazy znajdujemy za pomocą testu p lk p k = lex max{ p lj ; p lj < 0, m + j n}, gdzie lex max oznacza maksimum leksykograficzne. Przekształcenie elementarnewzględem p lk przekształcapowyższątablicęwnowątablicęzkolumnami ( ) p j = p j p lj p lk p k, dla j k, p k = p lk p k.
34 . PROGRAMOWANIE LINIOWE 34 Jeżeli początkowa tablica jest dualnie dopuszczalna w sensie leksykograficznym(tzn.wektory p j, j = m+, m+2,..., nsąleksykograficznieujemne), towzory ( )gwarantują,żenowewektorykolumnowe p j sąrównieżleksykograficznie ujemne. Uwaga.29.Możnapokazać,żerozwiązaniebazowe p 0 jestściślerosnące(w sensie leksykograficznym) w każdej iteracji oraz że żadna baza nie powtórzy się. Zarys metody dualnej Gomory ego. Metoda Gomory ego rozpoczyna działanie od tablicy całkowitoliczbowej i leksykograficzniedualniedopuszczalnegorozwiązania,toznaczywektory p j, j = m+, m+2,...,nsąleksykograficznieujemnedlazagadnieniaminimalizacji oraz dodatnie dla zagadnienia maksymalizacji. Algorytm jest następujący: Krok.Wybraćwierszonumerze r,wktórym p r0 < 0, r 0.Jestto wiersz generujący tzw. cięcie. Jeżeli wiersza takiego nie ma, to bieżące rozwiązanie jest optymalne. Krok2.Znaleźćkolumnę p k zelementemgłównym,którajestnajwiększa wsensieleksykograficznymwśródkolumn,dlaktórych p rj < 0.Jeślitakiej kolumny nie ma, to brak jest dopuszczalnego rozwiązania całkowitoliczbowego. Krok 3. Utworzyć nierówność(tzw. odcinającą) z wiersza r-tego, który nie jest spełniony przez bieżące rozwiązanie prymalne. Nowy wiersz jest dołączonynadoletablicyijesttowierszzelementemgłównymrównym-. Krok 4. Wykonać jedno przekształcenie elementarne dualnej metody sympleks. Krok 5. Usunąć dodany wiersz, który jest teraz trywialny(x = ( x)) iwrócićdokroku. Sposób otrzymania nierówności odcinającej
35 . PROGRAMOWANIE LINIOWE 35 Przypuśćmy, że wybrano wiersz o numerze r w tablicy dualnej, jako generujący cięcie(przez cięcie rozumiemy dodatkowe ograniczenie posiadające tę własność, że odcina część zbioru rozwiązań dopuszczalnych nie gubiąc przy tym żadnego rozwiązania całkowitoliczbowego) x r = p r0 + j J p rj ( x j ). Niech λ będzie liczbą dodatnią. Każda liczba p spełnia równość [ p (i) p = λ + R, λ] gdzieprzez [z]oznaczamyczęśćcałkowitąliczby zoraz 0 R < λ.po zastosowaniu (i) do wiersza generującego, otrzymujemy (ii) [ pr0 ] R j x j +R r x r = R 0 +λ( + [ prj ] [ ] ( x j )+ ( x r )) = R 0 +λx. λ λ λ j J j J Dla dowolnego nieujemnego rozwiązania spełniającego (ii) wartość [ pr0 ] (iii) x = + [ prj ] [ ] ( x j ) + ( x r ) λ λ λ j J musi być całkowita, ponieważ wszystkie współczynniki w (iii) są całkowite. Ponadto x 0,bo 0 R 0 < λijeśli xjestujemnąliczbącałkowitą,to R 0 + λx < 0.Jednakostatnianierównośćniejestmożliwa,ponieważlewa stronaw(ii)jestnieujemna.zatem x 0.Gdywybierzemy λ,wówczas nierówność x 0 uprości się do postaci (iv) [ pr0 λ ] + j J [ prj λ ] ( x j ) 0. Niech π rj = [ p rj ] λ,wówczascałkowitoliczbowecięciegomory egookreślone jest następująco: (v) x = π r0 + π rj ( x j ) 0. j J Ograniczenie (v) jest wierszem głównym, a x jest nową nieujemną zmienną dodatkową. Wyznaczymy teraz wartość λ.
36 . PROGRAMOWANIE LINIOWE 36 Wyznaczanie wartości λ. Krok.Znaleźćkolumnęgłówną ktak,aby p k = lex max{p j ; j J}, gdzie J = {j; p rj < 0, j 0},ar-tywierszgenerujecięcie. Krok2.Wyznaczyćnajwiększąliczbęcałkowitą e j,takąże Ponadtoniech e k =. e j p j l p k, j J, j k. Krok3.Przyjąć λ = max{λ j = p rj e j ; j J}. Uwaga.30.(i) Wyprowadzając zależność (iv) założyliśmy, że λ. Nierównośćtajestspełniona,ponieważ λ λ k = p rk.jeśli λ =, to wiersz generujący jest wierszem zawierającym element główny i nie ma nowego ograniczenia. (ii) Zgodnie z wyprowadzeniem, λ nie musi być całkowite. Wybierając taką wartość λ, otrzymamy jako element główny oraz wiersz główny, który dajenajwiększyleksykograficzniewzrostkolumny p 0. Całkowitoliczbowy algorytm dualny Gomory ego. Zakładamy,żekolumny p j, j = m +, m + 2,..., nsąleksykograficzniedualnie dopuszczalne. Krok.Jeśli p 0 0,torozwiązanieprymalnejestdopuszczalneioptymalne, a obliczenia się kończą. W przeciwnym razie wybrać taki wiersz generującycięcie,że p r0 < 0. Krok2.Znaleźćtakąkolumnęgłówną p k, m + k n,abybyłaonaleksykograficznienajwiększawśródkolumn,dlaktórych p rj < 0. Jeżeliwszystkie p rj 0,towówczasnieistniejedopuszczalnerozwiązanie całkowitoliczbowe. W przypadku przeciwnym przejść do kroku 3. Krok3.Dlakażdego j J, j kznaleźćnajwiększąliczbęcałkowitą e j taką,że e j p j p k.następniepodstawić e k = orazobliczyć λ = max{ p rj e j ; j J}.
37 . PROGRAMOWANIE LINIOWE 37 Krok 4. Do tablicy dualnej dołączyć ograniczenie x = π r0 + j J π rj ( x j ) 0. Krok 5. Wybrać jedno dualne przekształcenie elementarne używając π rk = jakoelementugłównego. Krok 6. Usunąć dodane ograniczenie, które stało się trywialne i wrócić dokroku. Uwaga.3. W kroku powyższego algorytmu do wyznaczenia wiersza generującegocięciemożnawybraćnajmniejsze p i0 < 0. Przykład.32.Znaleźćminimumfunkcji f(x, x 2 ) = x 0 = 3x + 5x 2 przy warunkach x 3 = 5 + x + 4x 2 0, x 4 = 7 + 3x + 2x 2 0, x, x 2, x 3, x 4 0, x, x 2, x 3, x 4 Z. Dualna tablica sympleksowa dla powyższego zagadnienia wygląda następująco: Zmienna Stała x x 2 x x x Trywialne ograniczenia z pojedyńczym elementem równym- zostały pominięte.niechwierszemgenerującymbędziewiersz,któryzawiera x 4,akolumną głównąkolumnapierwsza(k = ).Wartości e j sąnastępujące e =, e 2 =. Zatem λ = max{ p rj e j ; j J} = max{ 3, 2 } = 3. Liczymy dodatkowe ograniczenie [ ] [ ] 7 3 x 5 = + ( x ) [ 2 x 5 = 3 + x + x 2 0. Nasza tablica ma następującą postać: 3 ] ( x 2 ) 0,
38 . PROGRAMOWANIE LINIOWE 38 Zmienna Stała x x 2 x x x x 5 3 Wymieniamyterazzmienną x nazmienną x 5,czylijesttoprzekształcenie elementarnezelementemgłównym p 5 =.Mamy x 0 = 9+3x 5 +2x 2, x = 3+x 5 x 2, x 3 = 2+x 5 +3x 2, x 4 = 2+3x 5 x 2. Nowa tablica wygląda zatem następująco: Zmienna Stała x 5 x 2 x x 3 x x Po usunięciu dodanego ograniczenia mamy: Zmienna Stała x x 2 x x x Zauważmy,że p 0 < 0zatemnależyprowadzićobliczeniadalej.Zgodniez uwagą.3wierszemgenerującymjestterazwiersz,któryzawiera x 3,akolumnągłównąkolumnadruga(k = 2).Wartości e j sąnastępujące e =, e 2 =.Zatem λ = max{, 3 } = 3. Liczymy dodatkowe ograniczenie [ ] [ ] 2 x 5 = + ( x ) [ 3 x 5 = + x + x 2 0. Nasza tablica ma następującą postać: 3 ] ( x 2 ) 0,
39 2. STRATEGIE ZACHŁANNE 39 Zmienna Stała x x 2 x x x x 5 Wymieniamyterazzmienną x 2 nazmienną x 5,czylijesttoprzekształcenie elementarnezelementemgłównym p 52 =.Mamy x 0 = +x + 2x 5, x 2 = x + x 5, x 3 = 2x + 3x 5, x 4 = +4x x 5. Nowa tablica wygląda zatem następująco: Zmienna Stała x x 5 x 0 2 x 2 x x 4 4 Po usunięciu dodanego ograniczenia mamy: Zmienna Stała x x 2 x 0 2 x x 4 4 Ponieważ p 0 > 0,torozwiązanieprymalnejestdopuszczalneioptymalne,co pozwalazakończyćwykonywaniealgorytmu.ostateczniemamy 3x + 5x 2 =,astądrozwiązaniemoptymalnymjest x = 2, x 2 =, x 3 = oraz x 4 =. 2. Strategie zachłanne Strategia zachłanna(ang. greedy) jest to metoda rozwiązywania pewnych problemów optymalizacyjnych. Polega ona na tym, że na każdym etapie rozwiązywania problemu wybiera opcję lokalnie optymalną. Strategia taka może, ale NIE MUSI prowadzić do optymalnego globalnego rozwiązania.
40 2. STRATEGIE ZACHŁANNE 40 Istnieje wiele problemów, w których strategia zachłanna daje rozwiązanie optymalne. Strategię zachłanną możemy stosować także wtedy, gdy nie daje ona gwarancji uzyskania optymalnego rozwiązania. Np. wtedy, gdy jesteśmy zainteresowani szybkim, przybliżonym, ale nie koniecznie optymalnym rozwiązaniem. 2.. Problem wyboru zajęć Mamydanyzbiór S = {,...,n}złożonyznzajęć,którymtrzebaprzydzielić salę wykładową. W sali mogą odbywać się w danej chwili co najwyżej jednezajęcia.każdezajęcia imająswójczasrozpoczęcia s i orazczaszakończenia f i.rozsądniejestzałożyć,że s i < f i.ponadtozakładamy,żezajęcia izajmująprzedziałczasowy [s i, f i ).Mówimy,żezajęcia ioraz jsązgodne, jeśli [s i, f i ) [s j, f j ) =. Problem wyboru zajęć polega na wyborze maksymalnego podzbioru A S parami zgodnych zajęć. Problem wyboru zajęć- rozwiązanie Postępujemywnastepującysposób.Najpierwwybieramyzajęcia a,które mająnajwcześniejszyczaszakończenia.jeżelimamyjużwybranezajęcia a,..., a k,tojakozajęcia a k+ wybieramyzezbioru S \ {a,...,a k }te,któresą zgodnezewszystkimi a,...,a k orazmająnajwcześniejszyczaszakończenia. Procedurę tę kontynuujemy aż do wyczerpania zajęć ze zbioru S. Otrzymany zbiór A = {a,...,a m }jestposzukiwanymmaksymalnymzbioremparami zgodnych zajęć. Zauważmy, że na każdym etapie wybierając zajęcia o najwcześniejszym czasie zakończenia pozostawiamy najwięcej wolnego czasu do wykorzystania. W tym sensie jest to strategia zachłanna. Problem wyboru zajęć- przykład Mamydane:salęwolnąwczasie 0orazzajęcia z,..., z 0 wrazzczasami rozpoczęcia oraz zakończenia podanymi w poniższej tabeli(w postaci s i f i ).
Badania operacyjne- programowanie liniowe
Justyna Kosakowska i Piotr Malicki Badania operacyjne- programowanie liniowe Materiały dydaktyczne dla studentów matematyki (specjalność: matematyka w ekonomii i finansach) Wydział Matematyki i Informatyki
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Krzywe Freya i Wielkie Twierdzenie Fermata
Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie
Elementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Równania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Dwa równania kwadratowe z częścią całkowitą
Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy