doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505."

Transkrypt

1 doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22) Mail: www: Literatura: Wspomaganie procesów decyzyjnych, Marianna Lipiec-Zajchowska (red.), tom III, Badania operacyjne, C.H.Beck,

2 Badania operacyjne w przykładach i zadaniach, Karol Kukuła (red.), Wydawnictwo Naukowe PWN, dowolne wydanie BADANIA OPERACYJNE Badanie operacji - operations research II wojna światowa. Badania operacyjne - operational research - naukowa metoda rozwiązywania problemów z zakresu podejmowania decyzji. Zastosowania: 2

3 sporządzanie matematycznych, ekonomicznych i statystycznych opisów lub modeli decyzji oraz problemów sterowania w celu analizy sytuacji charakteryzujących się dużą złożonością i niepewnością, analiza zależności determinujących prawdopodobne konsekwencje wyboru decyzji oraz formułowanie odpowiednich mierników efektywności w celu oszacowania względnej wartości alternatywnych działań. Cechy charakterystyczne: ukierunkowanie na podejmowanie decyzji, możliwość oceny działania na podstawie kryteriów ekonomicznej efektywności, zaufanie do modelu matematycznego; konieczność stosowania oprogramowania komputerowego. Sposoby osiągania celu: poprawa jakości podejmowanych decyzji, poprawa jakości koordynacji działań wewnątrz organizacji, 3

4 polepszenie jakości kontroli, doskonalenie systemów. 4

5 Implementacja Algorytmy Programy komputerowe Procedura badań operacyjnych Sytuacja decyzyjna Problem zarządzania Rozpoznanie Wartościowanie Modelowanie Model problemu Decyzje Analiza i ocena Rozwiązanie problemu Sytuacja decyzyjna, problem zarządzania - wspomaganie decydentów w poszukiwaniu najlepszej odpowiedzi na pytanie Co - jeżeli? Rozpoznanie, wartościowanie, modelowanie: 5

6 rozpoznanie - zebranie danych liczbowych o problemie decyzyjnym, wartościowanie (ewaluacja) zebranych materiałów liczbowych - stwierdzenie problemu zarządzania i jego określenie merytoryczne i formalne (matematyczne), modelowanie. Model problemu Algorytmy, programy komputerowe - metody programowania matematycznego (programowanie liniowe, algorytm transportowy), regresja liniowa i wieloraka, drzewo decyzyjne, programowanie sieciowe, programowanie dynamiczne. Rozwiązanie problemu 6

7 Analiza, ocena - analiza poprawności: założeń, rozpoznania, wartościowania i modelowania, wybranego modelu, zastosowanego algorytmu, zastosowanego programu komputerowego, uzyskanego rozwiązania matematycznego. Decyzje - zbiór rozwiązań o akceptowanym wstępnie stopniu dobroci każdego rozwiązania oraz zbiór rozwiązań suboptymalnych. Implementacja - rozwiązanie problemu wybrane przez decydenta zostaje zastosowane. 7

8 8 PROGRAMOWANIE LINIOWE Postać klasyczna (standardowa) Funkcja celu (kryterium): 1) maksymalizacja z = c 1 x 1 + c 2 x c n x n MAX lub z = n j 1 c j x j MAX Ograniczenia: a 11 x 1 + a 12 x a 1n x n < b 1 a 21 x 1 + a 22 x a 2n x n < b 2... a m1 x 1 + a m2 x a mn x n < b m Warunki brzegowe: x 1, x 2,... x n > 0 cx MAX Ax < b x > 0 gdzie: x j - zmienna decyzyjna dla j = 1,2,..., n, c j - współczynniki funkcji celu j = 1,2,..., n, a ij - współczynniki nakładów j = 1,2,..., n oraz

9 i= 1,2,..., m, b j - zasoby czynników produkcji (zakłada się, że są nieujemne). 2) minimalizacja z = c 1 x 1 + c 2 x c n x n MIN lub z = n j 1 c j x j MIN Ograniczenia: a 11 x 1 + a 12 x a 1n x n > b 1 a 21 x 1 + a 22 x a 2n x n > b 2... a m1 x 1 + a m2 x a mn x n > b m Warunki brzegowe: x 1, x 2,... x n > 0 cx MIN Ax > b x > 0 9

10 Wektor zmiennych decyzyjnych: X = [x 1, x 2,..., x n ] spełniający warunki ograniczające i brzegowe nazywamy rozwiązaniem dopuszczalnym zagadnienia programowania liniowego. Takie rozwiązanie dopuszczalne, dla którego funkcja celu osiąga wartość ekstremalną (MAX, MIN) nazywamy rozwiązaniem optymalnym. Graficzna interpretacja programowania liniowego Przykład: Firma specjalizująca się w produkcji mrożonych półfabrykatów spożywczych produkuje frytki (1) oraz puree (2). Firma może kupować ziemniaki u dwóch dostawców. Z 1t zakupionych ziemniaków u dostawcy pierwszego (I) można wyprodukować 0,2t frytek i 0,6t puree (0,2t stanowią odpady), zaś u dostawcy drugiego (II) odpowiednio - 0,3t i 0,6t. Przy zakupie ziemniaków od I dostawcy zysk względny wynosi 5 j.p., natomiast od II 6 j.p. Frytki mogą być produkowane w ilości 10

11 nie większej niż 18t/miesiąc, natomiast puree w ilości nie większej niż 48t/miesiąc. Problem: ile ziemniaków należy zakupić od każdego dostawcy, aby zmaksymalizować zysk całkowity? Produkt Dostawca I Dostawca II Wielkość produkcji Frytki 0,2 0,3 18 Puree 0,6 0,6 48 Zysk względny 5 6 x 1 - ilość ziemniaków kupowana u I dostawcy, x 2 - ilość ziemniaków kupowana u II dostawcy, Funkcja celu: z = 5 x x 2 MAX Ograniczenia: 0,2 x 1 + 0,3 x 2 < 18 0,6 x 1 + 0,6 x 2 < 48 Warunki brzegowe: x 1 > 0 x 2 > 0 11

12 1.Zamieniamy nierówności na równania: I linia prosta: 0,2 x 1 + 0,3 x 2 = 18 x 1 = 0 0,3 x 2 = 18 x 2 = 60 x 2 = 0 0,2 x 1 = 18 x 1 = 90 II linia prosta: 0,6 x 1 + 0,6 x 2 = 48 x 1 = 0 0,6 x 2 = 48 x 2 = 80 x 2 = 0 0,6 x 1 = 48 x 1 = 80 12

13 0,2 x 1 + 0,3 x 2 < 18 0,6 x 1 + 0,6 x 2 < 48 A(0, 0): B(80,0): 0,2 0+0,3 0=0 0,6 0+0,6 0=0 0,2 80+0,3 0=16 0,6 80+0,6 0=48 C(90,0): 0,2 90+0,3 0=18 0,6 90+0,6 0=54 rozw. sprz. D(?,?): 0,2 x 1 + 0,3 x 2 = 18 0,6 x 1 + 0,6 x 2 = 48 x 1 =60, x 2 =20 D(60,20): 0, ,3 20 = 18 0, ,6 20 = 48 E(0,80): 0, ,3 80 = 24 rozw. sprz. 0, ,6 80 = 48 F(0,60): 0, ,3 60 = 18 0, ,6 60 = 36 13

14 14 2. Wyznaczamy zbiór rozwiązań dopuszczalnych

15 3. Poszukujemy rozwiązania optymalnego: Metoda podstawiania: z = 5 x x 2 MAX A(0,0): = 0 B(80,0): = 400 D(60,20): = 420 MAX F(0,60): =

16 Metoda warstwicy funkcji celu: z = 5 x x 2 MAX Zakładamy dowolną wartość funkcji celu: 5 x x 2 = 250 x 1 = 0 6 x 2 = 250 x 2 = 41 2/3 x 2 = 0 5 x 1 = 250 x 1 = 50 5 x x 2 = 300 x 1 = 0 6 x 2 = 300 x 2 = 50 x 2 = 0 5 x 1 = 300 x 1 = 60 16

17 Rozwiązanie: Należy zakupić od I dostawcy 60t ziemniaków (x 1 = 60) natomiast od II dostawcy 20t ziemniaków (x 2 = 20), aby osiągnąć maksymalny zysk związany z zakupem na poziomie z MAX = 420 j.p. Możliwe zbiory rozwiązań dopuszczalnych 1. Zbiór ograniczony (wielokąt wypukły). 2. Zbiór rozwiązań dopuszczalnych jest zbiorem nieograniczonym (od góry). 17

18 3. Zbiór rozwiązań dopuszczalnych jest zbiorem pustym. 4. Zbiór rozwiązań dopuszczalnych jest punktem. Rozwiązanie optymalne 1. Zbiór rozwiązań dopuszczalnych jest wielokątem wypukłym: 18

19 funkcja celu osiąga ekstremum (MAX lub MIN) w jednym punkcie wierzchołkowym funkcja celu osiąga ekstremum (MAX lub MIN) w dwóch wierzchołkach wielokąta wypukłego 2. Zbiór rozwiązań dopuszczalnych jest zbiorem nieograniczonym: funkcja celu osiąga ekstremum (MIN) w jednym wierzchołku tego obszaru 19

20 funkcja celu osiąga ekstremum (MIN) w dwóch wierzchołkach tego obszaru funkcja celu nie osiąga skończonej wartości ekstremalnej (MAX) 20

21 Dualizm w programowaniu liniowym 1. Dla każdego zadania programowania liniowego można zbudować inne zagadnienie programowania liniowego, zwane zagadnieniem (zadaniem) dualnym do zagadnienia wyjściowego - prymalnego. Zadanie prymalne: z = c 1 x 1 + c 2 x c n x n MAX a 11 x 1 + a 12 x a 1n x n < b 1 a 21 x 1 + a 22 x a 2n x n < b 2... a m1 x 1 + a m2 x a mn x n < b m x 1, x 2,... x n > 0 Zadanie dualne: w = b 1 y 1 + b 2 y b m y m MIN a 11 y 1 + a 21 y a m1 y m > c 1 a 12 y 1 + a 22 y a m2 y m > c 2... a 1n y 1 + a 2n y a mn y m > c n y 1, y 2,... y m > 0 21

22 2. W zadaniu dualnym występuje tyle zmiennych decyzyjnych (y m ) ile warunków ograniczających zawiera zadanie prymalne (b m ). Zmienne decyzyjne w zadaniu dualnym są nazywane cenami dualnymi. 3. W zadaniu dualnym macierz współczynników warunków ograniczających jest macierzą transponowaną względem macierzy współczynników warunków ograniczających zadania prymalnego. a 11 a a 1n a 11 a a m1 a 21 a a 2n a 12 a a m2 A =... A T =... a m1 a m2... a mn a 1n a 2n... a mn 4. Warunki ograniczające w zadaniu dualnym mają nierówności o przeciwnym kierunku do nierówności warunków ograniczających w zadaniu prymalnym. 22

23 5. W zadaniu dualnym wyrazy wolne warunków ograniczających są równe współczynnikom funkcji celu zadania prymalnego. 6. Współczynniki funkcji celu zadania dualnego są równe wyrazom wolnym warunków ograniczających zadania prymalnego. 7. Kryterium optymalizacyjne zadania dualnego jest przeciwne do kryterium optymalizacyjnego zadania prymalnego. 8. Jeśli jedno z zagadnień dualnych ma rozwiązanie optymalne, to rozwiązanie optymalne ma również drugie z tych zagadnień, przy czym zachodzi równość: z MIN = w MAX 9. Jeśli w jednym z zagadnień dualnych optimum funkcji celu jest nieograniczone, to jego zagadnienie dualne jest sprzeczne. 23

24 10. Jeżeli j-ty warunek zadania dualnego jest (chociaż w jednym) optymalnym rozwiązaniu tego programu spełniony z nierównością (ostro), to odpowiadająca mu j-ta zmienna x j w (dowolnym) optymalnym rozwiązaniu zadania prymalnego przyjmuje wartość 0 i odwrotnie. Jest to tzw. twierdzenie o równowadze wykorzystywane do sprawdzania optymalności danego rozwiązania dopuszczalnego. Przykład: Zadanie prymalne: x 1 - ilość ziemniaków kupowana u I dostawcy, x 2 - ilość ziemniaków kupowana u II dostawcy, Funkcja celu: z = 5 x x 2 MAX Ograniczenia: 0,2 x 1 + 0,3 x 2 < 18 0,6 x 1 + 0,6 x 2 < 48 Warunki brzegowe: x 1 > 0 x 2 > 0 Rozwiązanie: x 1 =60, x 2 =20, z MAX =

25 Zadanie dualne: y 1 - cena dualna I ograniczenia (moce produkcyjne przy produkcji frytek), y 2 - cena dualna II ograniczenia (moce produkcyjne przy produkcji puree), Funkcja celu: w = 18 y y 2 MIN Ograniczenia: 0,2 y 1 + 0,6 y 2 > 5 0,3 y 1 + 0,6 y 2 > 6 Warunki brzegowe: y 1 > 0 y 2 > 0 25

26 Rozwiązanie: y 1 =10, y 2 =5, w MIN = 420 Interpretacja: y 1 =10 zwiększenie I zasobu (mocy produkcyjnych przy produkcji frytek) o jednostkę (1t) spowoduje taką zmianę rozwiązania optymalnego w zadaniu prymalnym w efekcie, której wartość funkcji celu wzrośnie o 10 j.p: 0,2 x 1 + 0,3 x 2 < 19 (18+1) 0,6 x 1 + 0,6 x 2 < 48 x 1 =50, x 2 =30 z MAX = = 430 z = = 10 y 1 26

27 y 2 =5 zwiększenie II zasobu (mocy produkcyjnych przy produkcji puree) o jednostkę (1t) spowoduje taką zmianę rozwiązania optymalnego w zadaniu prymalnym w efekcie, której wartość funkcji celu wzrośnie o 5 j.p: 0,2 x 1 + 0,3 x 2 < 18 0,6 x 1 + 0,6 x 2 < 49 (48+1) x 1 =65, x 2 =16 2/3 z MAX = /3 = 425 z = = 5 y 2 27

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu. Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego 6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 3 (Materiały)

Badania Operacyjne Ćwiczenia nr 3 (Materiały) Metoda analityczna Przed przystąpieniem do rozwiązania programu liniowego metodą analityczną, należy sprowadzić program do postaci KANONICZNEJ. Model o postaci kanonicznej to taki, w którym wszystkie warunki

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH Problemy Kolejnictwa Zeszyt 149 89 Dr inż. Adam Rosiński Politechnika Warszawska WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH SPIS TREŚCI 1. Wstęp. Optymalizacja procesu

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Wprowadzenie do algorytmiki

Wprowadzenie do algorytmiki Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki

Bardziej szczegółowo

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Opis modułu kształcenia Programowanie liniowe

Opis modułu kształcenia Programowanie liniowe Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Badania Operacyjne w Informatyce Operations Research in Computer Science

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/BOP Język polski Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna -. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla

Bardziej szczegółowo

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące

Bardziej szczegółowo

Narzędzia wspomagania decyzji logistycznych

Narzędzia wspomagania decyzji logistycznych Narzędzia wspomagania decyzji logistycznych Dr Adam Kucharski Spis treści Optymalizacja liniowa. Programowanie liniowe.................................. Metoda graficzna.....................................

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki ograniczające są funkcjami liniowymi ekonomiczne wykorzystanie Programowania Liniowego do opisu sytuacji decyzyjnej

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Wykłady z programowania liniowego

Wykłady z programowania liniowego Wykłady z programowania liniowego A. Paweł Wojda Wydział Matematyki Stosowanej AGH 2 Spis treści 1 Wstęp 5 2 Problem programowania liniowego 7 2.1 PPL.................................. 7 2.2 Definicje................................

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM GOSPODARKI ELEKTROENERGETYCZNEJ INSTRUKCJA DO ĆWICZENIA 5 Planowanie

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

Statystyka SYLABUS A. Informacje ogólne

Statystyka SYLABUS A. Informacje ogólne Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo