Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2"

Transkrypt

1 Document: Exercise*02*-*manual /11/ :31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z optymalizacji elementów konstrukcji Programowanie liniowe 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z problematyką zadań programowania liniowego. Przedstawione zostaną wybrane metody poszukiwania optimum w tej klasie zagadnień. Do rozwiązania przykładowego problemu wykorzystany będzie algorytm SIMPLEX. 2. PODSTAWY TEORETYCZNE Zadaniem programowania liniowego(ang. linear programming w skrócie LP) nazywamy zadanie optymalizacyjne, w którym zarówno funkcja celu, jak i wszystkie ograniczenia są funkcjami liniowymi zmiennych decyzyjnych. Zakładając, że rozpatrywany problem jest zagadnieniem n-wymiarowym x={x 1,x 2,...,x n } funkcjacelutegotypuzadaniamożebyćzatemzapisana w postaci minf(x)=c x 1 x 1 +c 2 x c n x n n = c i x i =c x i=1 (1) gdzieposzczególnec i,i=1...,nsąwagamizmiennychdecyzyjnychwfunkcjiceluitworząkolumnowywektorc={c 1 c 2... c n }. strona1z8

2 Document: Exercise*02*-*manual /11/ :31---page2of8 Podobniejakfunkcjacelu,takikażdezograniczeńzadaniaLPdasię zapisaćwpostacikombinacjiwyrażeńtypua i x i.funkcjeograniczeńg(x przyjmują zatem postać g j (x): a j1 x 1 +a j2 x 2 +a j3 x a jn x n b j n a ji x i b j (2) i=1 gdzie j jest numerem porządkowym ograniczenia. Podobnie jak funkcja celu komplet nałożonych ograniczeń nierównościowych daje się to sprowadzić do zapisu macierzowego A x b (3) W standardowym sformułowaniu zagadnienia przyjmuje się, że każda ze zmiennychdecyzyjnychjestnieujemnax i 0,i=1,...,n. Dziedziną rozwiązań każdego zadania programowania liniowego w rozważanej przestrzeni n-wymiarowej jest wielościan wypukły(zwany także simpleksem). Można bowiem wskazać, że każde z wprowadzonych ograniczeń g j (x)odcinapółprzestrzeńpewnąhiperpłaszczyznąg j (x)=0.interpretacja tego faktu jest bardzo łatwa w przypadku zadań dwu-wymiarowych. Pełna płaszczyznazmiennychdopuszczalnych(x 1,x 2 )jestrozcinanaprostą-ograniczeniemg j (x 1,x 2 )=0ijednazpowstałychwtensposóbpółpłaszczyzn jest odrzucana. Kolejne ograniczenia/proste odrzucają następne fragmenty płaszczyzny. Utworzony w ten sposób zbiór rozwiązań dopuszczalnych (dziedzina) jest wielokątem wypukłym. Omawiane zadanie programowania liniowego(lp) należy tym samym do szerszej klasy zagadnień, a mianowicie do kategorii programowania wypukłego. Szczególnie istotną cechą zadań programowania wypukłego są własności jakieposiadarozwiązaniex takiegozadania.obowiązujebowiemtwierdzenie jeślifunkcjaliniowaf(x)maekstremumwarunkowewzbiorzewypukłymokreślonymukłademnierównościa x b,toleżyonowwierzchołku wielościanu będącego dziedziną rozwiązania tego zadania. Jednocześnie rozwiązanie to jest ekstremum globalnym. A zatem poszukiwanie rozwiązania zadania programowania wypukłego (a tym samym i liniowego) można ograniczyć do punktów będących narożnikami zbioru rozwiązań dopuszczalnych. Ten sposób postępowania jest efektywny jednak tylko dla stosunkowo mało złożonych problemów. Można strona2z8

3 Document: Exercise*02*-*manual /11/ :31---page3of8 bowiem wykazać, że dziedzina zadania n-wymiarowego, w którym występuje n! m ograniczeń nierównościowych ma narożników.stądteżdorozwiązywania bardziej złożonych problemów, poza wspomnianą wcześniej metodą m!(n m)! rozwiązań bazowych polegającą na systematycznym przeglądzie narożników, stosuje się najczęściej jeden z poniższych sposobów: metoda Gaussa-Jordana, dekompozycja LU(działa dla macierzy kwadratowych), metoda SIMPLEX. Algorytm SIMPLEX Algorytm SIMPLEX jest metodą iteracyjną, polegającą na wyznaczaniu kolejnych rozwiązań dopuszczalnych zadania spośród punktów narożnych dziedziny. Wybór kolejnych rozwiązań jest prowadzony w ten sposób, aby uzyskać możliwie największą, możliwą w danym kroku i pożądaną zmianę wartości funkcji celu. Jeśli na danym etapie rozwiązania zadania nie można wykonać kroku poprawiającego wartość funkcji celu, to aktualnie wybrany wierzchołek jest rozwiązaniem optymalnym. Rozwiązanie zadania LP metodą SIMPLEX wymaga sprowadzenia zagadnienia(3) do tzw. postaci kanonicznej oraz A x=b (4) x 0 i b 0 (5) Zapisanie zagadnienia w postaci kananonicznej może wymagać pewnych modyfikacji w stosunku do pierwotnego sformułowania(3). W szczególności dotyczytoograniczeńtypu n i=1 a i x i b,któremożnasprowadzićdopostaci kanonicznej poprzez dodanie do pierwotnej nierówności tzw. zmiennej dopełniającejx n+1.otrzymujesięwtedyrówność n i=1 a i x i +x n+1 =b.podobnie ograniczenietypu a i x i bmożnazapisaćwżądanejpostacipoprzez uzupełnienienierównościotzw.zmiennąnadmiarową n i=1 a i x i x n+1 =b. Wprowadzone zmienne nadmiarowe i zmienne dopełniające tworzą wektor zmiennych bazowych(zmienne bazy), pozostałe zmienne decyzyjne stanowią wektor tzw. zmiennych swobodnych strona3z8

4 Document: Exercise*02*-*manual /11/ :31---page4of8 Sposób rozwiązania LP za pomocą algorytmu SIMPLEX sprowadza się do kilkukrotnego wykonania poniższej sekwencji: (a) ustalenie dowolnego, bazowego rozwiązania dopuszczalnego, (b) ustalenie, którą ze zmiennych spośród zmiennych swobodnych należy do bazy wprowadzić, (c) ustalenie, którą zmienną z bazy należy usunąć. Szczegóły postępowania zostaną wyjaśnione w poniższym przykładzie. Przykład 1 Wyznaczyć maximum funkcji f(x 1,x 2,x 3 )=5x 1 +4x 2 +3x 3 (6) wobec ograniczeń 2x 1 +3x 2 +x 3 5 4x 1 +x 2 +2x x 1 +4x 2 +2x 3 8 x 1,x 2,x 3 0 Zapis w postaci kanonicznej: 2x 1 +3x 2 +x 3 +x 4 =5 4x 1 +x 2 +2x 3 +x 5 =11 3x 1 +4x 2 +2x 3 +x 6 =8 x 1,x 2,x 3,x 4,x 5,x 6 0 wymagawprowadzeniazmiennychdopełniającychx 4,x 5,x 6.Typujemybazowe rozwiązanie dopuszczalne(ad pkt.(a)) przyjmując tymczasowo, że zmiennymi bazy są wprowadzone zmienne dopełniające. Zmienne oryginalnego zadania są na tym etapie rozwiązania problemu zmiennymi swobodnymi i tymczasowo przyjmują wartość 0. Wobec powyższego tymczasowa wartość funkcji celu wynosi 0, zaś wprowadzone zmienne dopełniające przyjmą wartości prawej strony ograniczeń. Można zatem utworzyć 1-sze tzw. tableau x 4 = 5 2x 1 3x 2 x 3 0 x 1 5 /2 x 5 =11 4x 1 x 2 2x 3 0 x 1 11 /4 x 6 = 8 3x 1 4x 2 2x 3 0 x 1 8 /3 (7) (8) f(x 1,x 2,x 3 ) = 5x 1 +4x 2 +3x 3 strona4z8

5 Document: Exercise*02*-*manual /11/ :31---page5of8 Namocywarunku(5)każdazezmiennychbazowychx 4,...,x 6 musibyć nieujemna. Przystępujemy do wytypowania zmiennej wchodzącej do bazy(ad pkt. (b)).spośródzmiennychswobodnychx 1,x 2,x 3 wybieramytę,któradaje największą możliwą poprawę wartości funkcji celu. W rozważanym zadaniu poszukiwane jest maksimum f(x)), a zatem zmienną, która da największy wzrostf(x)jestx 1 zuwaginanajwiększąwartośćmnożnika(liczba5). Aby ustalić zmienną wychodzącą z bazy(ad pkt.(c)) badamy ograniczenianałożonenazmiennąwchodzącąx 1,jakiewynikajązfaktu,żewszystkie zmiennex,wtymtakżezmiennebazysąnieujemne patrz(5).przykładowo1wiersztableaustanowi,żex 4 0gdziex 4 =5 2x 1 3x 2 x 3 ; azatempowprowadzeniux 1 dobazyipamiętając,żex 2 ix 3 jakozmienne swobodnesą0,dostajemywarunek5 2x 1 0 x 1 5 /2.Następnie sprawdzamy w ten sposób każdą zmienną aktualnej bazy(pozostałe 2 nierówności w tableau). Jako zmienną wychodzącą z bazy wybieramy tę, która daje najbardziej restrykcyjny warunek nakładany na wprowadzaną zmienną. Spośród trzech nierówności najsilniejsze ograniczenie wprowadza pierwszywiersztableau;tymsamymzmiennąwchodzącądobazyjestx 4. Przekształcając pierwszy wiersza uzyskuje się: x 1 = x x x 4 (9) Równanie ro stanowi pierwszy nowego tableau Otrzymane wyrażenie(9) wstawiamy do pozostałych ograniczeń oraz do funkcji celu; powstaje w ten sposób drugie tableau x 1 = 5 2 3x 2 2 1x 2 3 1x x 5 =11 4 ( 5 2 3x 2 2 1x 2 3 1x ) 2 4 x2 2x 3 0 x 6 = 8 3 ( 5 2 3x x x ) 2 4 4x2 2x 3 0 f(x 2,x 3,x 4 ) = 5 ( 5 2 3x 2 2 1x 2 3 1x 2 4) +4x2 +3x 3 Po wykonaniu przekształceń i uporządkowaniu otrzymujemy ostateczną postać drugiego tableau strona5z8

6 Document: Exercise*02*-*manual /11/ :31---page6of8 x 1 = 5 2 3x 2 2 1x 3 3 1x x 3 5 x 5 = 1+5x 2 +2x 4 0 bezogr. x 6 = x x x 4 f(x 2,x 3,x 4 ) = x x 3 3 5x x 3 1 W nowym tableau zmienną wchodzącą do bazy(najbardziej poprawiającąwartośćfunkcjicelu)jestx 3.Sprawdzającograniczenianałożonena zmiennąwchodzącąznajdujemyzmiennąwychodzącązbazy jesttox 6. x 3 =1+x 2 +3x 4 2x 6 (10) Postępując jak poprzednio zapisujemy trzecie tableau: x 3 =1+ x 2 +3x 4 2x 6 0 x 1 =2 2x 2 2x 4 +x 6 0 x 5 =1+5x 2 +2x 4 0 f(x 2,x 4,x 6 ) =13 3x 2 x 4 x 6 Dalsza poprawa rozwiązania nie jest możliwa, bo wszystkie współczynniki wyrażeniafunkcjiceluf(x 2,x 4,x 6 )sąujemne.azatemzmiennymiswobodnymizadaniasązmiennex 2,x 4 ix 6 iprzyjmująonewartośćzero;zaś wartościzmiennychbazywynosząx 3 =1,x 1 =2ix 5 =1. Stądrozwiązaniemzadaniapierwotnegof(x 1,x 2,x 3 )sąwartościx 1 =2, x 2 =0ix 3 =1,amax.funkcjiceluwynosi PRZEBIEG ĆWICZENIA Prowadzący zajęcia przydzieli każdemu zespołowi laboratoryjnemu zadnie do rozwiązania. Będzie to zadanie optymalizacji jednokryterialnej w dziedzinie wielowymiarowej. Studenci rozwiązują zadanie korzystając z oprogramowania Linear Programming Solver. W toku rozwiązywania problemy należy postępować według poniższej kolejności Ustalić zmienne decyzyjne zadania. Zapisać wzór określający funkcję celu patrz(1). Zapisać komplet zależności ograniczeń zadania patrz(2). Zapisaćzadaniewpostacikanonicznej patrz(4)i(5)oraz(??). strona6z8

7 Document: Exercise*02*-*manual /11/ :31---page7of8 Zapisać pierwsze tableau metody SIMPLEX patrz Przykład 1. Wytypować zmienną wchodzącą do bazy oraz zmienną wychodzącą z bazy. Uruchomić na stanowisku komputerowym oprogramowanie Linear Programming Solver. Z menu głównego wybrać polecenie New Table model. W oknie Model Parameters(patrz Rysunek 1) wprowadzić liczbę zmiennych(ang. Number of variables), liczbę ograniczeń(ang. Number of constraints) oraz liczbę funkcji celu(ang. Number of objectives). Podać także typ zadania maksymalizacja czy minimalizacja funkcji celu. Zatwierdzić wprowadzone dane klawiszem OK. Korzystając z wyprowadzonego sformułowania zadania optymalizacyjnego wypełnić poszczególne komórki tabeli okna LiPS Model patrz Rysunek 2. Po wprowadzeniu wszystkich danych uruchomić obliczenia poleceniem LiPS Solve Model. Zapisać raport z obliczeń na nośniku zewnętrznym. Rysunek 1. Przykładowe okno Model Parameters programu LiPS 4. OPRACOWANIE WYNIKÓW Porównać tableau zapisane samodzielnie i tableau uzyskane z obliczeń; porównać także wytypowane zmienne wchodzące i wychodzące z bazy. strona7z8

8 Document: Exercise*02*-*manual /11/ :31---page8of8 Rysunek 2. Tabela LiPS Model definiująca zadanie programowania liniowego programie LiPS Następnie przeanalizować uzyskany wynik zadania optymalizacyjnego. Sprawdzić, które z ograniczeń zadania są aktywne, a które nie. Odnieść uzyskane wyniki do analizowanej konstrukcji. 5. SPRAWOZDANIE Sprawozdanie z ćwiczenia powinno zawierać: 1. Tabelkę identyfikacyjną. 2. Cel ćwiczenia i schemat analizowanej konstrukcji. 3. Sformułowanie zadania optymalizacji wg.(1)-(2) 4. Sformułowanie kanoniczne zadania optymalizacji(4) z zaznaczeniem zmiennych dopełniających/nadmiarowych. 5. Pierwsze tableu algorytmu SIMPLEX. 6. Wydruk raportu z obliczeń. 7. Omówienie wyników. 8. Wnioski strona8z8

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Rozdział 9 PROGRAMOWANIE DYNAMICZNE

Rozdział 9 PROGRAMOWANIE DYNAMICZNE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b) Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W, 2L, 1C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W, 2L, 1C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, laboratorium Metody optymalizacji w ekonomii

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Krzysztof Trajkowski. Przegląd pakietów do optymalizacji liniowej

Krzysztof Trajkowski. Przegląd pakietów do optymalizacji liniowej Krzysztof Trajkowski Przegląd pakietów do optymalizacji liniowej 1. Wprowadzenie Niniejsze opracowanie dotyczy opisu funkcji solvelp(linprog) i lp(lpsolve) za pomocą których możemy rozwiązywać zadania

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI

OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:

Bardziej szczegółowo

Estymacja wektora stanu w prostym układzie elektroenergetycznym

Estymacja wektora stanu w prostym układzie elektroenergetycznym Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji

Bardziej szczegółowo

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

2. DZIAŁANIA NA WIELOMIANACH

2. DZIAŁANIA NA WIELOMIANACH WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to

Bardziej szczegółowo