Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II
|
|
- Maria Matysiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną funkcji liniowej - wie jaką rolę pełnią współczynniki ( kierunkowy i przesunięcia) - potrafi narysować wykres zadanej funkcji liniowej - określa monotoniczność i miejsca zerowe - zapisuje wzór funkcji na podstawie określonych danych - potrafi zbadać, jakie jest położenie dwóch prostych względem siebie, które są zadanie równaniem kierunkowym - potrafi znaleźć równanie prostej równoległej oraz prostej prostopadłej do danej, gdy jest ona zadana równaniem kierunkowym zadania z związane z własnościami funkcji liniowej zadania o trudności - sprawnie posługuje się zdobytą wiedzą do rozwiązywania niestandardowych zadań Równania i nierówności liniowe z jedną niewiadomą, Równania i nierówności Równania i nierówności liniowe z dwiema niewiadomymi i ich układy (oraz takowe w prostych przypadkach nieliniowych) - potrafi rozwiązać równanie i nierówności z jedną niewiadomą (liniowe oraz nieliniowe) - zna interpretację geometryczną równania i nierówności z dwiema niewiadomymi oraz ich układów - potrafi określić czy układ równań jest oznaczony, nieoznaczony czy sprzeczny - potrafi rozwiązać układy równań i proste zadania tekstowe prowadzące do równania liniowego równania liniowe z, przeprowadza dyskusję liczby rozwiązań - potrafi podać interpretację geometryczną każdego z rodzajów układu równań - zna metodę wyznacznikową rozwiązywania układów równań bardziej złożone zadania - przeprowadza dyskusję rozwiązalności układu równań z dwoma parametrami - sprawnie posługuje się zdobytą wiedzą do rozwiązywania niestandardowych zadań samodzielnie trudne zadania tekstowe doprowadzające do układu równań liniowych - sprawnie posługuje się
2 Postać ogólna i kanoniczna funkcji kwadratowej Wykres funkcji kwadratowej nierówności z dwoma niewiadomymi proste zadania tekstowe -rozpoznaje na podstawie wzoru, funkcję kwadratową w dowolnej postaci -zamienia f. kwadr. z postaci ogólnej na kanoniczną i odwrotnie - umie narysować wykres dowolnej f. kwadratowej, obliczając odpowiednie wielkości trudniejsze zadania tekstowe układy równań z układy równań i nierówności z wartością bezwzględną proste zadania tekstowe prowadzące do znalezienia dowolnej postaci f. kwadr. - umie wyprowadzić postać kanoniczną funkcji kwadratowej - rysuje wykres funkcji w postaci g(x)= f(x), gdzie - jest funkcją kwadratową -rysuje wykres funkcji w postaci g(x)= f( x ), gdzie - jest funkcją kwadratową; złożone zadania z pojęć zdobytą wiedzą do rozwiązywania niestandardowych zadań z zastosowaniem postaci kanonicznej czy wykresu funkcji Zadania prowadzące do wykorzystania ekstremum funkcji Miejsca zerowe i znak funkcji kwadr. Postać iloczynowa -potrafi określić ekstremum funkcji w zależności od współczynników -potrafi wyznaczyć wartość najmniejszą i największą w podanym przedziale domkniętym - potrafi określić warunki, przy których f. kwadr. ma miejsca zerowe; - potrafi znajdować miejsca zerowe; proste zadania z na istnienie miejsc zerowych f. kw.; - znajduje postać iloczynową trójmianu kwadr. - bada istnienie wartości i najmniejszej i największej funkcji kwadratowej na przedziałach innych niż domknięte; proste zadania wykorzystaniem funkcji kwadratowej - wyprowadza wzory na pierwiastki funkcji kwadratowej; bardziej złożone zadania z zastosowaniem wart. najmniejszej i największej funkcji kwadratowej złożone zadania z na istnienie miejsc zerowych f. kwadratowej złożone zadania z zastosowaniem wart. najmniejszej i największej funkcji kwadratowej - wyprowadza wzory na miejsca zerowe f. kwadr. złożone zadania z na istnienie miejsc zerowych f. kw, wykorzystujące inne działy matematyki Wzory Viete a - zna wzory Viete a - stosuje wzory Viete a do znajdowania miejsc zerowych -wyprowadza wzory Viete a proste zadania z z wykorzystaniem wzorów Viete a złożone zadania z z wykorzystaniem wzorów Viete a - stosuje wzory Viete a do zagadnień funkcji dwukwadratowej - wykorzystuje wzory
3 Równania i nierówności kwadratowe Zadania tekstowe proste równania i nierówności kwadratowe - znajduje proste modele matematyczne do zadań tekstowych równania i nierówności kwadratowe z wartością bezwzględną i równania dwukwadratowe - znajduje bardziej złożone modele matematyczne do zadań tekstowych -rozwiązuje złożone równania i nierówności kwadratowe z wartością bezwzględną i -wykorzystuje równania i nierówności kwadratowe do innych działów matem. Viete a w niestandardowych zadaniach równania sprowadzalne poprzez podstawienie do równań kwadratowych -stosuje równania i nierówności kwadratowe do zadań tekstowych z innych działów matem. Wielomian jednej zmiennej, działania na wielomianach Tw. Bezout a i schemat Hornera - rozpoznaje wielomian jednej zmiennej, określa stopień wielomianu i wielomian zerowy; - wykonuje dodawanie, odejmowanie i mnożenie wielomianów - dzieli proste wielomiany - zna i stosuje twierdzenie o równości wielomianów -zna tw. Bezout a i wie kiedy się je stosuje - zna i stosuje twierdzenie o reszcie - umie zastosować schemat Hornera - umie znaleźć resztę z dzielenia wielomianu przez dwumian, - zna definicję dzielenia wielomianu przez wielomian - wykonuje trudniejsze dzielenia wielomianu przez wielomian - dowodzi twierdzenie Bezout a - umie znaleźć resztę z dzielenia wielomianu przez dwumian, nie wykonując dzielenia - dzieli wielomiany z - określa kiedy wielomian z jest podzielny przez inny wielomian -umie wykorzystać twierdzenie Bezout a do wyznaczania reszty z dzielenia wielomianu przez wielomian rozkładalny na czynniki - wykonuje dzielenie wielomianów z dwoma parametrami - umie wyprowadzić metodę dzielenia: schemat Hornera trudniejsze zadania z Wzory Viete a dla wielomianów Rozkład wielomianu na czynniki - zna wzory Viete a dla wielomianów trzeciego stopnia - stosuje wzory Viete a dla wielomianów w prostych zadaniach -rozkłada proste wielomiany na czynniki, dowolną metodą - zna tw. o pierwiastkach wymiernych wielomianu - wyprowadza wzory Viete a dla wielomianów - rozkłada na czynniki wielomiany nie posiadające pierwiastków (w prostych sytuacjach) - korzysta ze wzorów Viete a dla wielomianów w złożonych zadaniach, także z - zna dowód twierdzenia o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych - wykorzystuje wzory Viete a w niestandardowych zadaniach - wykorzystuje twierdzenie o pierwiastkach wymiernych w niestandardowych sytuacjach
4 Równania i nierówności wielomianowe; Zadania tekstowe Funkcje wymierne i działania na nich -rozwiązuje proste równania i nierówności wielomianowe proste zadania prowadzące do równań i nierówności wielomianowych - rozpoznaje funkcję wymierną -określa dziedzinę f. wym. -wykonuje działania na f. wym. -rozwiązuje równania i nierówności wielomianowe z wartością bezwzględną - sprowadza wyrażenia wymierne do wspólnego mianownika równania i nierówności wielomianowe z wartością bezwzględną i złożone zadania Rozwiązuje tekstowe prowadzące do rozwiązywania równań i nierówności wielomianowych Równania i nierówności wymierne, Zadania tekstowe Funkcja homograficzna -rozwiązuje proste równania i nierówności wymierne proste zadania tekstowe prowadzące do równań i nierówności wymiernych -zna definicję f. homograficznej i określa jej dziedzinę -rysuje wykres f. homograficznej podając równania asymptot i pkt. przecięcia wykresu z osiami układu współrzędnych złożone równania i nierówności wymierne oraz zadania tekstowe prowadzące do takich równań - zamienia wzór f. homograficznej z postaci ogólnej na kanoniczną - rysuje wykresy f. homograficznej z wartością bezwzględną równania i nierówności wymierne z modułem i złożone zadania z wykorzystaniem funkcji homograficznej trudniejsze równanie i nierówności wymierne tekstowe zadania wykorzystujące własności funkcji homograficznej odwołujące się do innych działów matematyki Ciągi liczbowe - zna pojęcie ciągu -zna sposoby określania ciągu - określa monotoniczność ciągu z definicji - posługuje się def. rekurencyjną ciągu - znajduje wzór ogólny ciągu z def. rekurencyjnej - potrafi udowodnić indukcyjnie równoważność pomiędzy def. rekurencyjną, a ogólną ciągu Ciąg arytmetyczny i geometryczny - rozpoznaje ciąg arytmetyczny i geometryczny -zna i umie zastosować zależność między trzema kolejnymi wyrazami ciągu arytmetycznego i geometrycznego - zna pojęcie sumy częściowej ciągu arytmetycznego i geometrycznego i wykorzystuje ją w prostych zadaniach -bada monotoniczność ciągu geometrycznego i arytmetycznego -rozwiązuje proste zadania wykorzystujące pojęcie ciągu arytmetycznego czy geometrycznego -rozwiązuje bardziej złożone zadania z wykorzystaniem ciągu arytmetycznego i geometrycznego -rozwiązuje zadania z wykorzystaniem obu ciągów -stosuje ciągi arytmetyczny i geometryczny do innych działów matematyki
5 Granica ciągu - liczy proste granice ciągów stosując twierdzenia o granicach ciągów zbieżnych - zna def. granicy ciągu - zna pojęcie symbolu nieoznaczonego - zna def. granicy ciągu i umie ją wyjaśnić - zna i dowodzi twierdzenia.: o trzech ciągach, o iloczynie granicy ciągów zbieżnego do zera i ograniczonego, o działaniach arytmetycznych na granicach ciągów; Umie zastosować powyższe twierdzenia - potrafi wyjaśnić pojęcie symbolu nieoznaczonego - sprawdza na mocy def. czy dana liczba jest granicą ciągu - oblicza złożone granice - zna twierdzenie o istnieniu granicy ciągu monotonicznego i ograniczonego - zna dowód tw. o liczbie e - zna dowód twierdzenia o granicy ciągu Szereg geometryczny Granica funkcji - zna pojęcie szeregu geometrycznego i warunek jego zbieżności oraz wylicza sumę szeregu zbieżnego - zna definicję granicy funkcji w punkcie w sensie Heinego oraz w sensie Cauchy ego - zna definicję granicy niewłaściwej funkcji w punkcie w sensie Heinego oraz w sensie Cauchy ego; - zna definicję granicy funkcji w nieskończoności w sensie Heinego i w sensie Cauchy ego - zna twierdzenie o działaniach arytmetycznych na granicach funkcji; - potrafi obliczać granice funkcji z twierdzeń; - zna pojęcie granicy jednostronnej w punkcie i potrafi obliczać takie granice przy pomocy poznanych twierdzeń, - potrafi wyznaczać równania asymptot pionowych dla wykresów funkcji wymiernych; proste zadania z wykorzystaniem szeregu geometrycznego - sprawdza z definicji Heinego czy funkcja ma granicę w punkcie - potrafi wyznaczać równania asymptot pionowych i ukośnych dla wykresów funkcji wymiernych; - umie obliczać granice typu = 1 - bada zbieżność szeregu geometrycznego w zadaniach złożonych - zna twierdzenie o trzech funkcjach i potrafi je stosować do obliczania granic funkcji; - umie obliczać granice funkcji typu ( ) ( ) -rozwiązuje zadania wykorzystujące inne działy matematyki nietypowe zadania dotyczące granic funkcji o trudności z twierdzeń; - potrafi udowodnić z definicji, że podana funkcja nie ma granicy; Ciągłość funkcji - zna definicję ciągłości funkcji w punkcie w sensie Heinego i w sensie - potrafi wykorzystać własność Darboux do stwierdzenia że - rozróżnia typy nieciągłości - dookreśla funkcję, aby nietypowe zadania lub o
6 Cauchy ego; - zna definicję ciągłości jednostronnej; - zna i rozumie pojęcie ciągłości funkcji w zbiorze; - zna własność Darboux; - sprawdza ciągłość funkcji w punkcie oraz zbiorze funkcja ciągła ma w danym przedziale pierwiastek; - zna twierdzenie Weierstrassa; - bada ciągłość funkcji w zależności od parametru funkcji będącej sklejeniem nowo powstała funkcja była funkcją ciągłą - wykorzystuje własność Darboux w zadaniach trudności dotyczące ciągłości Pochodna funkcji - zna pojęcie ilorazu różnicowego funkcji, potrafi wyznaczyć iloraz różnicowy w danym punkcie; - zna definicję pochodnej funkcji w punkcie; - zna geometryczną interpretację pochodnej funkcji w punkcie; - zna podstawowe wzory na pochodne; - zna twierdzenia o pochodnej sumy, iloczynu, ilorazu funkcji różniczkowalnych; - potrafi obliczać pochodne nieskomplikowanych funkcji przy pomocy poznanych twierdzeń i wzorów; - potrafi liczyć pochodną funkcji złożonej oraz funkcji odwrotnej - zna pojęcie stycznej do wykresu funkcji; potrafi wyznaczać równanie stycznej do wykresu funkcji różniczkowalnej w danym punkcie; - bada monotoniczność funkcji różniczkowalnej przy pomocy pochodnej; - zna pojęcie ekstremum funkcji; - zna warunek konieczny i wystarczający istnienia ekstremum funkcji różniczkowalnej; - wyznacza ekstremum funkcji różniczkowalnej; - potrafi korzystając z definicji obliczyć pochodną funkcji w punkcie; - zna definicję pochodnej jednostronnej funkcji w punkcie; - potrafi zbadać czy funkcja do określenia której użyto kilku wzorów, jest różniczkowalna; - bada przebieg zmienności funkcji; proste zadania wykorzystaniem pochodnej - wyznacza ekstremum funkcji w punkcie w przypadku gdy jest różniczkowalna tylko w sąsiedztwie ; - potrafi udowodnić twierdzenie o związku monotoniczności funkcji różniczkowalnej w przedziale, ze znakiem pochodnej w tym przedziale; zadania optymalizacyjne o trudności nietypowe zadania dotyczące pochodnej funkcji o podwyższonym stopniu trudności z twierdzeń
7 Odległość w zbiorze Równanie prostej Okrąg i koło - wie co to jest odległość na osi liczbowej - zna warunek na współliniowość i niewspółliniowość punktów - potrafi policzyć odległość między dwoma punktami na płaszczyźnie kartezjańskiej korzystając ze wzoru analitycznego - zna równanie ogólne i kierunkowe prostej, wie jaką rolę pełnią współczynniki tych równań; - wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej); - bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych; - wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt; - oblicza współrzędne punktu przecięcia dwóch prostych; - wyznacza współrzędne środka odcinka; - oblicza odległość dwóch punktów; - oblicza odległość punktu od prostej; - zna definicję okręgu i koła oraz związane z nimi pojęcia - zna równania okręgu i umie sprowadzać równanie okręgu do postaci kanonicznej - zna twierdzenie o stycznej do okręgu - zna warunki na wzajemne położenie prostej i okręgu - zna warunki konieczne i - umie badać, jakie jest wzajemne położenie 3 punktów o zadanych współrzędnych - potrafi wyprowadzić warunek na współliniowość punktów - bada równoległość i prostopadłość prostych na podstawie ich równań ogólnych; - wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci ogólnej i przechodzi przez dany punkt; - wyznacza równanie prostej prostopadłej do danego wektora i przechodzącej przez dany punkt nieskomplikowane zadania z wykorzystaniem poznanych pojęć, także zadania z ; - potrafi sprawdzić, czy dane równanie ( nierówność) opisuje okrąg ( koło) - potrafi rozstrzygnąć, jakie jest położenie dwóch zadanych okręgów względem siebie ( analitycznie) oraz okręgu i prostej - omawia wzajemne położenie w zależności od - podaje warunki na współliniowość i niewspółliniowość punktów, których współrzędne są opisane za pomocą niewiadomej zadnia złożone z - potrafi wyprowadzić równanie okręgu - potrafi przedyskutować położenie dwóch okręgów w zależności od wartości parametru w trudniejszych przypadkach - zna działania mnogościowe na figurach wypukłych oraz zadania o trudności z pojęć - zna i stosuje w praktyce równanie parametryczne prostej; - sprawnie posługuje się zdobytą wiedzą do rozwiązywania niestandardowych zadań
8 Prosta i okrąg wystarczające na każde z położeń dwóch okręgów względem siebie - wyznacza punkty wspólne prostej i okręgu; - bada wzajemne położenie prostej i okręgu; parametru zadania z dotyczące wzajemnego położenia prostej i okręgu; zadnia złożone z oraz zadania o trudności z Wzór na pole trójkąta w układzie współrzędnych Zadania optymalizacyjne - zna i stosuje wzór na pole trójkąta w układzie współrzędnych; proste zadania wiązane z geometrią analityczną z wykorzystaniem własności funkcji kwadratowej; proste zadania wiązane z geometrią analityczną z wykorzystaniem pochodnej zadania z z wykorzystaniem danego wzoru; zadania wykorzystaniem własności funkcji kwadratowej lub przy wykorzystaniu pochodnej zadnia złożone z złożone zadania wykorzystaniem własności funkcji kwadratowej lub przy wykorzystaniu pochodnej; oraz zadania o trudności z wykorzystaniem własności funkcji kwadratowej lub przy wykorzystaniu pochodnej; Ocenę celującą otrzymuje uczeń, biorący udział w olimpiadach, konkursach i zawodach matematycznych, przechodząc do kolejnego etapu lub którego wiedza znacznie wykracza poza obowiązujący materiał.
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną
Wymagania edukacyjne z matematyki Klasa II zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa II zakres rozszerzony Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Wymagania edukacyjne z matematyki Klasa II M+ zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa II M+ zakres rozszerzony Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Podstawowy., Oficyna Edukacyjna
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
1, y = x 2, y = x 3, y= x, y = [x], y = sgn x;
Wymagania edukacyjne dla uczniów klasy II z rozszerzonym programem nauczania matematyki, niezbędne do uzyskania rocznych i śródrocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony
Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena
MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.
Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM ROZSZERZONY /
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM ROZSZERZONY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia.