Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna"

Transkrypt

1 Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba adnych transformacji uładów współrzdnych, eby łatwiej operowa geometri analizowanego systemu. Element ma dwa wzły definiujce jego oce. i wzeł element j wzeł x Jeli sztywno spryny opisuje stała, a ady wzeł moe przemieci si tylo w ierunu osi x (ma jeden stopie swobody), to macierz sztywnoci elementu zdefiniowanego dwoma wzłami (a wic dwoma stopniami swobody) zapisuje si jao macierz 2x2 (ady wymiar macierzy to liczba stopni swobody całego elementu): K =, jeli w całym uładzie wielu połczonych ze sob spryn wystpi n wzłów, to macierz sztywnoci bdzie miała wymiar nxn. Z fizyi pamitamy, e ugicie spryny jest proporcjonalne do siły, jaa na ni działa, zatem: F = *u, gdzie : F siła, stała sprystoci spryny, u przemieszczenie (ugicie), zapisujemy to macierzowo: [K]{u} = {f} gdzie: [K] macierz sztywnoci, {u} wetor przemieszcze wzłów, {f} wetor sił działajcych w wzłach. Jeli znamy sztywno spryny oraz przemieszczenia wzłów moemy wyliczy działajce siły, a jeli znamy siły, to po rozwizaniu równania moemy wyliczy przemieszczenia. Funcje realizujce obliczenia MES na elementach sprynowych w Matlabie (naley je przepisa w osobnych pliach M-File, nadajc im nazwy taie, jaie maj zawarte w nich funcje): ponisz funcj zapisujemy w pliu: SztywnoscElementSprezynowy.m function y = SztywnoscElementSprezynowy() %funcja tworzy macierz sztywnosci dla pojedynczego elementu sprezynowego %wymiar wyniu : 2x2 y = [ -; - ];

2 ponisz funcj zapisujemy w pliu: ZlozSztywnoscSprezyn.m function y = ZlozSztywnoscSprezyn(K,,i,j) %funcja slada w jedna macierz sztywnosci K wszystie sprezyny %w zadaniu laczac wszystie sztywnosci pojedynczych elementow %zdefiniowanych wezlami i j %UWAGA! Funcja moze byc wywolana po wczesniejszym uruchomieniu %funcji SztywnoscElementSprezynowy! %sladanie K(i,i) = K(i,i) + (1,1); K(i,j) = K(i,j) + (1,2); K(j,i) = K(j,i) + (2,1); K(j,j) = K(j,j) + (2,2); %i wyni zwracany przez funcje y = K; ponisz funcj zapisujemy w pliu: SilyElementSprezynowy.m function y = SilyElementSprezynowy(,u) %funcja wylicza sily wezlowe na podstawie znanych przemieszczen u i %sztywnosci y = * u; Przyład nr 1. Dla podanego uładu elementów o znanych sztywnociach 1 = 1N/m i 2 = 2N/m oraz sile obciajcej P = 15N wyznaczy: 1. macierz sztywnoci uładu 2. przemieszczenia wzłów nr 2 i 3 3. reacj w wle 1 4. sił w adym elemencie (sprynie) P Rozwizanie: Kro 1 dysretyzacja zadania Zadanie jest ju podzielone na elementy i wzły : - element nr 1 zdefiniowany jest wzłami nr i=1 i j=2 - element nr 2 zdefiniowany jest wzłami nr i=2 i j=3 wzeł nr 2 jest wspólny dla obu elementów elementy s połczone w wle nr 2. Kro 2 utworzenie macierzy sztywnoci dla adego elementu Mamy dwa elementy, zatem tworzymy dwie macierze sztywnoci : 1 i 2 omendami: >>1=SztywnoscElementSprezynowy(1) >>2=SztywnoscElementSprezynowy(2)

3 Kro 3 sładanie macierzy sztywnoci elementów w jedn globaln macierz dla całego uładu Poniewa w uładzie mamy 3 wzły, wic globalna macierz sztywnoci bdzie miała wymiar 3x3. Macierz K naley przed sładaniem wyzerowa, co wyonujemy omend: >>K=zeros(3,3) Poniewa mamy dwa elementy, to funcj ZlozSztywnoscSprezyn trzeba wywoła dwa razy niezalenie dla adego elementu, podajc jao parametry globaln macierz K (tóra jest wyniiem), macierz elementu (1, a potem 2) i numery wzłów definiujce dany element (najpierw 1 i 2, a potem 2 i 3): >>K=ZlozSztywnoscSprezyn(K,1,1,2) >>K=ZlozSztywnoscSprezyn(K,2,2,3) Na odpowiednich miejscach w macierzy K pojawi si sumowane sztywnoci poszczególnych elementów. Kro 4 uwzgldnienie warunów brzegowych Stworzona macierz sztywnoci ma posta: 1 K = a uład równa [K]{u}={f} mona rozpisa w posta: u1 f1 2 u2 = f 2 2 u3 f 3 Warunami brzegowymi w naszym zadaniu s: - przemieszczenie wzła nr 1 jest niemoliwe podpora: u1 = - nie ma obcienia w wle nr 2 f2 = - w wle nr 3 zaczepiona jest siła P: f3 = 15N (w prawo, zgodnie z dodatnim zwrotem osi x) Po uwzgldnieniu powyszych wiadomych, uład równa przyjmuje posta: f1 2 u2 = 2 u3 15 nie znamy zatem przemieszcze u2 i u3, a tae reacji f1 (podpora). Kro 5 rozwizanie równa Przygldajc si uładowi równa zauwaymy, e mona go rozwiza po awału, wyrelajc pierwszy wiersz i olumn dla znanego przemieszczenia, zostawiajc reszt dla nieznanych u2 i u3:

4 f1 2 u2 = 2 u u2 = 2 u3 15 w Matlabie realizujemy to poleceniami: przepisanie tylo 2 i 3 wiersza i olumny z K do : >>=K(2:3,2:3) stworzenie wetora f ze znanymi siłami f2=n i f3=15n: >>f=[;15] wyliczamy nieznane przemieszczenia poleceniem (eliminacja Gaussa): >>u=\f i otrzymujemy w wyniu: u2 =.15m oraz u3 =.225m. Kro 6 obróba wyniów (postprocessing) Majc przemieszczenia wszystich wzłów, moemy obliczy reacj w podporze. Najpierw zbierzmy przemieszczenia w jeden wetor (dodajemy u1= do wyniów): >>U=[;u] a potem wyliczmy siły: >>F=K*U otrzymamy: F1 = -15.; F2 =. i F3 = 15.. Zatem reacja w podporze wynosi 15N i jest sierowana przeciwnie do zwrotu osi x (w lewo, zna ujemny). Siły w elementach wyznaczymy dzii funcji SilyElementSprezynowy(,u), tórej parametrami s: macierz sztywnoci elementu (1 i 2) oraz przemieszczenia wzłów definiujcych dany element (czyli u1 i u2, a potem u2 i u3): najpierw przygotujemy pary przemieszcze dla adego elementu: >>u1=[u(1);u(2)] >>u2=[u(2);u(3)] a potem wyznaczymy siły: >>f1=silyelementsprezynowy(1,u1) >>f2=silyelementsprezynowy(2,u2) Wynii wsazuj, e oba elementy s rozcigane zrównowaonymi siłami 15N.

5 Przyład nr 2. Dla podanego uładu elementów o jednaowych sztywnociach = 12N/m oraz sile obciajcej P = 2N wyznaczy: 1. macierz sztywnoci uładu 2. przemieszczenia wzłów nr 3, 4 i 5 3. reacje w wzłach 1 i 2 4. sił w adym elemencie (sprynie) element 2 element element 4 P 5 element 5 4 element 6 2 element 3 Rozwizanie: Kro 1 dysretyzacja zadania Zadanie jest ju podzielone na elementy i wzły : - element nr 1 zdefiniowany jest wzłami nr i=1 i j=3 - element nr 2 zdefiniowany jest wzłami nr i=3 i j=4 - element nr 3 zdefiniowany jest wzłami nr i=3 i j=5 - element nr 4 zdefiniowany jest wzłami nr i=3 i j=5 - element nr 5 zdefiniowany jest wzłami nr i=5 i j=4 - element nr 6 zdefiniowany jest wzłami nr i=4 i j=2 Kro 2 utworzenie macierzy sztywnoci dla adego elementu Mamy sze elementów, zatem tworzymy sze macierzy sztywnoci : od 1 do 6 omendami: >>1=SztywnoscElementSprezynowy(12) >>2=SztywnoscElementSprezynowy(12) >>3=SztywnoscElementSprezynowy(12) >>4=SztywnoscElementSprezynowy(12) >>5=SztywnoscElementSprezynowy(12) >>6=SztywnoscElementSprezynowy(12) Kro 3 sładanie macierzy sztywnoci elementów w jedn globaln macierz dla całego uładu Poniewa w uładzie mamy 5 wzłów, wic globalna macierz sztywnoci bdzie miała wymiar 5x5. Macierz K naley przed sładaniem wyzerowa, co wyonujemy omend: >>K=zeros(5,5)

6 Poniewa mamy sze elementów, to funcj ZlozSztywnoscSprezyn trzeba wywoła sze razy niezalenie dla adego elementu, podajc jao parametry globaln macierz K (tóra jest wyniiem), macierz elementu (od 1 do 6) i numery wzłów definiujce dany element: >>K=ZlozSztywnoscSprezyn(K,1,1,3) >>K=ZlozSztywnoscSprezyn(K,2,3,4) >>K=ZlozSztywnoscSprezyn(K,3,3,5) >>K=ZlozSztywnoscSprezyn(K,4,3,5) >>K=ZlozSztywnoscSprezyn(K,5,5,4) >>K=ZlozSztywnoscSprezyn(K,6,4,2) Na odpowiednich miejscach w macierzy K pojawi si sumowane sztywnoci poszczególnych elementów. Kro 4 uwzgldnienie warunów brzegowych Stworzona macierz sztywnoci ma posta: 12 K = a uład równa [K]{u}={f} mona rozpisa w posta: u1 f1 u2 f 2 24u3 = f 3 12 u4 f 4 36 u5 f 5 Warunami brzegowymi w naszym zadaniu s: - przemieszczenia wzłów nr 1 i 2 s niemoliwe podpory: u1 =, u2 =, - nie ma obcie w wzłach nr 3 i 4 : f3 =, f4 =, - w wle nr 5 zaczepiona jest siła P: f5 = 2N (w prawo, zgodnie z dodatnim zwrotem osi x) Po uwzgldnieniu powyszych wiadomych, uład równa przyjmuje posta: f1 f 2 24u3 = 12 u4 36 u5 2 nie znamy zatem przemieszcze u3, u4 i u5, a tae reacji f1 i f2 (podpory).

7 Kro 5 rozwizanie równa Analogicznie do poprzedniego przyładu, uład równa rozwiemy po awału, wyrelajc dwa pierwsze wiersze i olumny dla znanych przemieszcze u1 i u2, zostawiajc reszt dla nieznanych u3, u4 i u5: f1 f 2 24u3 = 12 u4 36 u u3 12 u4 = 36 u5 2 w Matlabie realizujemy to poleceniami: przepisanie tylo 3, 4 i 5 wiersza i olumny z K do : >>=K(3:5,3:5) stworzenie wetora f ze znanymi siłami f3=n, f4 = N i f5=2n: >>f=[;;2] wyliczamy nieznane przemieszczenia poleceniem (eliminacja Gaussa): >>u=\f i otrzymujemy w wyniu: u3 =.897m, u4 =.769m oraz u5 =.141m. Kro 6 obróba wyniów (postprocessing) Majc przemieszczenia wszystich wzłów, moemy obliczy reacje w podporach. Najpierw zbierzmy przemieszczenia w jeden wetor (dodajemy u1= i u2= do wyniów): >>U=[;;u] a potem wyliczmy siły: >>F=K*U otrzymamy: F1 = -1.77; F2 = -9.23; F3 =.; F4 =. i F5 = 2.. Zatem reacja w podporze lewej (wzeł 1) wynosi 1.77N i jest sierowana przeciwnie do zwrotu osi x (w lewo, zna ujemny), a w podporze prawej (wzeł 2) jest równa 9.23N i te jest sierowana w lewo (zna ujemny). Siły w elementach wyznaczymy analogicznie do poprzedniego przyładu dzii funcji SilyElementSprezynowy(,u), tórej parametrami s: macierz sztywnoci elementu (od 1 do 6) oraz przemieszczenia wzłów definiujcych poszczególne elementy (w parach): pary przemieszcze dla adego elementu:

8 >>u1=[u(1);u(3)] >>u2=[u(3);u(4)] >>u3=[u(3);u(5)] >>u4=[u(3);u(5)] >>u5=[u(5);u(4)] >>u6=[u(4);u(2)] a potem wyznaczymy siły: >>f1=silyelementsprezynowy(1,u1) >>f2=silyelementsprezynowy(2,u2) >>f3=silyelementsprezynowy(3,u3) >>f4=silyelementsprezynowy(4,u4) >>f5=silyelementsprezynowy(5,u5) >>f6=silyelementsprezynowy(6,u6) Który element przenosi najwisze obcienie, a tóry najmniejsze? Zadanie nr 1. Zadania do samodzielnego rozwizania: Dla uładu ja na rysunu poniej, majc sztywnoci spryn: 1=2N/m i 2=25N/m oraz sił P=1N, wyznaczy: 1. macierz sztywnoci uładu 2. przemieszczenie wzła nr 2 3. reacje w wzłach 1 i 3 4. sił w adym elemencie (sprynie) Zadanie nr 2. P Dla uładu ja na rysunu poniej, majc jednaowe sztywnoci spryn: =17N/m oraz sił P=25N, wyznaczy: 1. macierz sztywnoci uładu 2. przemieszczenie wzłów nr 2, 3 i 4 3. reacj w wle 1 4. sił w adym elemencie (sprynie) P

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy liniowy : prt

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy liniowy : prt Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych Element jednowymiarowy liniowy : prt Jest to element bardzo podobny do spryny : współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstracyjnej 1. Nawiasami [[]] oznacza b d omentarze. 2. Denicja 0.1 Grup z [[jaim± abstracyjnym]] dziaªaniem nazywamy zbiór G speªniaj cy waruni

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Program Sprzeda wersja 2011 Korekty rabatowe

Program Sprzeda wersja 2011 Korekty rabatowe Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Analiza nośności poziomej pojedynczego pala

Analiza nośności poziomej pojedynczego pala Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu

Bardziej szczegółowo

Krótki wstęp do zastosowania Metody Elementów Skończonych (MES) do numerycznych obliczeń inŝynierskich Większość inŝynierów, mając moŝliwość wyboru

Krótki wstęp do zastosowania Metody Elementów Skończonych (MES) do numerycznych obliczeń inŝynierskich Większość inŝynierów, mając moŝliwość wyboru Króti wstęp do zastosowania Metody lementów Sończonych (MS) do numerycznych obliczeń inŝyniersich Więszość inŝynierów, mając moŝliwość wyboru pomiędzy rozwiązaniem jednego złoŝonego problemu lub iludziesięciu

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B) Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys

Bardziej szczegółowo

C04 - STATYSTYKA MATEMATYCZNA - Zadania do oddania

C04 - STATYSTYKA MATEMATYCZNA - Zadania do oddania C4 - STATYSTYKA MATEMATYCZNA - Zadania do oddania Parametr = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indesu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia.

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 )

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 ) MATEMATYKA STOSOWANA 7, 2006 Izabella Czochralsa (Warszawa) Metoda rozwiązywania uładu równań liniowych z symetryczną, nieoreśloną macierzą współczynniów ( 0 ) Streszczenie. W pracy zaadaptowano opracowaną

Bardziej szczegółowo

1. Dostosowanie paska narzędzi.

1. Dostosowanie paska narzędzi. 1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

Moduł stolika liniowego

Moduł stolika liniowego Podstawy Konstrucji Urządzeń Precyzyjnych Materiały pomocnicze do ćwiczeń projetowych część 1 Moduł stolia liniowego Presrypt opracował: dr inż. Wiesław Mościci Warszawa 2014 Materiały zawierają informacje

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2011

EGZAMIN GIMNAZJALNY 2011 Centralna Komisja Egzaminacyjna w Warszawie EGZMIN GIMNZJLNY 011 część matematyczno-przyrodnicza Klucz puntowania zadań (arusz dla uczniów bez dysfuncji i z dyslesją rozwojową) KWIECIEŃ 011 Zadania zamnięte

Bardziej szczegółowo

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:

Bardziej szczegółowo

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

PROWIZJE Menad er Schematy rozliczeniowe

PROWIZJE Menad er Schematy rozliczeniowe W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

geometry a w przypadku istnienia notki na marginesie: 1 z 5

geometry a w przypadku istnienia notki na marginesie: 1 z 5 1 z 5 geometry Pakiet słuy do okrelenia parametrów strony, podobnie jak vmargin.sty, ale w sposób bardziej intuicyjny. Parametry moemy okrela na dwa sposoby: okrelc je w polu opcji przy wywołaniu pakiety:

Bardziej szczegółowo

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty. !"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania

Bardziej szczegółowo

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna.

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna. Ćwiczenie 4 Wyznaczanie wydajności wantowej emisji. Wpływ długości fali wzbudzenia oraz ształtu uweti i jej ustawienia na intensywność emisji i na udział filtru wewnętrznego. Zagadnienia: spetrosopia emisyjna,

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki Belka Gerbera Poradnik krok po kroku mgr inż. Krzysztof Wierzbicki Odrobina teorii Belki Gerbera: - układy jednowymiarowe (wiodąca cecha geometryczna: długość) -belki o liczbie reakcji >3 - występują w

Bardziej szczegółowo

651LH/RH, 667LH/RH urzdzenie zabezpieczajce przed skutkami pknicia spryn rezydencjalnych bram sekcyjnych INSTRUKCJA MONTAU

651LH/RH, 667LH/RH urzdzenie zabezpieczajce przed skutkami pknicia spryn rezydencjalnych bram sekcyjnych INSTRUKCJA MONTAU 651LH/RH, 667LH/RH urzdzenie zabezpieczajce przed skutkami pknicia spryn rezydencjalnych bram sekcyjnych PL INSTRUKCJA MONTAU OSTRZEENIA! Spryny skrtne s bardzo silnie napite. Podczas pracy naley zachowa

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Technica Agraria 1(1) 2, 75-81 WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Stanisław Pietruszewsi Streszczenie. W pracy przedstawiono wpływ pola magnetycznego

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych wiczenie laboratoryjne z wytrzymałoci materiałów Temat wiczenia: Wyznaczanie

Bardziej szczegółowo

METODA BADANIA ISTOTNO CI WSPÓŁCZYNNIKÓW REGRESJI ROZMYTEJ

METODA BADANIA ISTOTNO CI WSPÓŁCZYNNIKÓW REGRESJI ROZMYTEJ METODA BADANIA ISTOTNOCI WSPÓŁCZYNNIKÓW REGRESJI ROZMYTEJ BARBARA GŁADYSZ Politechnia Wrocławsa Streszczenie Regresja rozmyta ma zastosowanie w prognozowaniu, gdy dane do jej onstrucji s zadane nieprecyzyjnie,

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich

Bardziej szczegółowo

1. RACHUNEK WEKTOROWY

1. RACHUNEK WEKTOROWY 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyi i Ochrony Środowisa Studia stacjonarne, Ro I, Semestr zimowy 01/14 Dr hab. inż. Tomasz Brylewsi e-mail: brylew@agh.edu.pl tel. 1-617-59 atedra Fizyochemii

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

KINETYKA REAKCJI CHEMICZNYCH I KATALIZA

KINETYKA REAKCJI CHEMICZNYCH I KATALIZA ĆWICZENIE NR KINETYKA REAKCJI CHEMICZNYCH I KATALIZA Cel ćwiczenia Badanie wpływu temperatury i atalizatora na szybość reacji. Zares wymaganych wiadomość. Szybość reacji chemicznych definicja, jednosti..

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

MODELE ODPOWIEDZI DO PRZYKŁADOWEGO ARKUSZA EGZAMINACYJNEGO Z FIZYKI I ASTRONOMII

MODELE ODPOWIEDZI DO PRZYKŁADOWEGO ARKUSZA EGZAMINACYJNEGO Z FIZYKI I ASTRONOMII TEST PRZED MATUR 007 MODELE ODPOWIEDZI DO PRZYKŁADOWEGO ARKUSZA EGZAMINACYJNEGO Z FIZYKI I ASTRONOMII ZAKRES ROZSZERZONY Numer zadania......3. Punktowane elementy rozwizania (odpowiedzi) za podanie odpowiedzi

Bardziej szczegółowo

Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu

Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu Przygotował: mgr in. Jarosław Szybiski Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu 1. Wstp Okablowanie strukturalne to pojcie, którym okrela si specyficzne

Bardziej szczegółowo

Rama płaska metoda elementów skończonych.

Rama płaska metoda elementów skończonych. Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Izolacja Anteny szerokopasmowe i wskopasmowe

Izolacja Anteny szerokopasmowe i wskopasmowe Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Obliczenie kratownicy przy pomocy programu ROBOT

Obliczenie kratownicy przy pomocy programu ROBOT Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA Opera 9.10 Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10 wersja 1.1 Spis treci 1. INSTALACJA WŁASNEGO CERTYFIKATU Z PLIKU *.PFX... 3 2. WYKONYWANIE KOPII BEZPIECZESTWA WŁASNEGO

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Instalacja programu Sprzeda z motorem. bazy danych Pervasive V8

Instalacja programu Sprzeda z motorem. bazy danych Pervasive V8 Instalacja programu Sprzeda z motorem bazy danych Pervasive V8 1. Z katalogu instalacyjnego programu Pervasive uruchom plik setup.exe. Program instalacyjny w spakowanej wersji jest dostpny na naszym FTP

Bardziej szczegółowo

Podstawowe obiekty AutoCAD-a

Podstawowe obiekty AutoCAD-a LINIA Podstawowe obiekty AutoCAD-a Zad1: Narysowa lini o pocztku w punkcie o współrzdnych (100, 50) i kocu w punkcie (200, 150) 1. Wybierz polecenie rysowania linii, np. poprzez kilknicie ikony. W wierszu

Bardziej szczegółowo

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2 Jest to zapis odczytu wygłoszonego na XLVIII Szole atematyi Poglądowej, Sojarzenia i analogie, Otwoc Śródborów, styczeń 22. W przestrzeni Zofia IECHOWICZ, Zielona Góra Naturalna analogia? Nie mylił się,

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Kolejną czynnością będzie wyświetlenie dwóch pasków narzędzi, które służą do obsługi układów współrzędnych, o nazwach LUW i LUW II.

Kolejną czynnością będzie wyświetlenie dwóch pasków narzędzi, które służą do obsługi układów współrzędnych, o nazwach LUW i LUW II. Przestrzeń AutoCAD-a jest zbudowana wokół kartezjańskiego układu współrzędnych. Oznacza to, że każdy punkt w przestrzeni posiada trzy współrzędne (X,Y,Z). Do tej pory wszystkie rysowane przez nas projekty

Bardziej szczegółowo

KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH POPRAWNA ODPOWIED 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D

KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH POPRAWNA ODPOWIED 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH NR ZADANIA POPRAWNA ODPOWIED D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) MODEL OCENIANIA ZADAN OTWARTYCH Uzasadnij, e punkty

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo