Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE"

Transkrypt

1 METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody przemieszczeń, wyznaczyć siły w prętach oraz naszkicować postać deformacji. Zastosować trzy różne przekroje prętów. IPET 18 RO 51/5 a IPET 14 RO 51/5 IPET 18 RO 51/5 IPET 14 RO 51/5 IPET 14 IPET 14 P1=5 kn P2=2 kn,8,8 P3=3 kn 1,3 1,3 1,3 α = arctg,8 1,3 = 31,675 Opracowanie powinno zawierać: 1. Schematy konstrukcji z numeracją prętów i węzłów, lokalnymi układami współrzędnych, układem globalnym, stopniami swobody konstrukcji oraz zestawienie danych o konstrukcji. 2. Wydruk obliczeń konstrukcji macierzową metodą przemieszczeń. 3. Rezultaty analizy: tabela z wartościami sił i ręcznie przygotowany rysunek zdeformowanej postaci kratownicy. 4. Wydruki z programu Robot (schemat konstrukcji z numeracją węzłów i prętów, tabele: przemieszczenia węzłów i siły wewnętrzne). Uwaga: Na sprawdzenie stanu zaawansowania należy przynieść schemat dyskretnego modelu konstrukcji (rysunek odręczny lub wydruk) i wydruki obliczeń komputerowych. 1 S t r o n a

2 1. DYSKRETNY MODEL KONSTRUKCJI 1.1. Schematy konstrukcji Autor: mgr inż. Robert Cypryjański Y P1=5 kn, P2=2 kn 6 1 4,8 X 1 5 P3=3 kn 1,3 1,3 1,3 Rys. 1. Podział konstrukcji na węzły i pręty, globalny układ współrzędnych. Y 4 3 y1 8 7 x1 2 1 y7 x7 4 x8 y8 8 2 y2 x2 y y6 x y x9 11 x y5 x1 x5 y1 1 y4 x X 1 5 Rys. 2. Lokalne układy współrzędnych prętów, układ stopni swobody konstrukcji. 2 S t r o n a

3 1.2. Zestawienie danych o konstrukcji Tab. 1. Współrzędne węzłów (takie jak w programie ROBOT) Węzeł Współrzędna X [m Współrzędna Y [m 1,, 2, 1,6 3 1,3,8 4 1,3 1,6 5 2,6, 6 2,6,8 7 3,9,8 Tab. 2. Topologia konstrukcji i informacje o prętach (takie jak w programie ROBOT) Pręt Węzeł początkowy Węzeł końcowy Przekrój l i [cm A i [cm IPET , IPET , , IPET , IPET ,6434 8, IPET ,6434 8, IPET ,6434 8, RO 51x5 152,6434 7, RO 51x5 8 7, RO 51x5 13 7, RO 51x5 8 7,23 Moduł Younga dla kształtowników stalowych (taki jak w programie ROBOT): E = 25 Pa 3 S t r o n a

4 2. LOBALNA MACIERZ SZTYWNOŚCI KONSTRUKCJI K K = A T K A A gdzie A macierz alokacji A T transponowana macierz alokacji K A agregowana macierz sztywności konstrukcji 2.1. Macierz alokacji A Macierz alokacji A zawiera informację, któremu stopniowi swobody konstrukcji odpowiada dane, globalne przemieszczenie końca pręta. Przykładowo, w przypadku pręta nr 4 wiemy, że: V 47=14 y4 x4 4 7 U47=13 V 45=1 a U45=9 5 Rys. 3. Zgodność globalnych przemieszczeń końców pręta z przemieszczeniami węzłów na kierunku stopni swobody konstrukcji. Powyższe informacje można też zapisać w formie tablicy (Tab. 3) uzyskując w ten sposób część macierzy alokacji dotyczącą pręta czwartego. Sposób postępowania w przypadku pozostałych prętów jest analogiczny. Tab. 3. Fragment macierzy alokacji dotycząca pręta czwartego zapisany w formie tabeli U 45 1 V 45 1 U 47 1 V S t r o n a

5 Cała macierz alokacji ma wymiar 4 x 14 (sumaryczna liczba globalnych przemieszczeń końców prętów x liczba stopni swobody konstrukcji) i przyjmuje postać: A = U 12 V 12 U 14 V 14 U 24 V 24 U 26 V 26 U 36 V 36 U 37 V 37 U 45 V 45 U 47 V 47 U 53 V 53 U 55 V 55 U 61 V 61 U 63 V 63 U 72 V 72 U 73 V 73 U 83 V 83 U 84 V 84 U 93 V 93 U 96 V 96 U 15 V 15 U 16 V 16 [ S t r o n a

6 2.2. Agregowana macierz sztywności konstrukcji W macierzy tej na głównej przekątnej ustawiane są globalne macierze sztywności poszczególnych prętów, pozostałe elementy to macierze zerowe o wymiarze 4 x 4: K A = k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 [ k 1 lobalne macierze sztywności poszczególnych prętów oblicza się ze wzoru: k i = λ T i k L i λ i gdzie: λ i macierz cosinusów kierunkowych i tego pręta λ T i transponowana macierz cosinusów kierunkowych i tego pręta k L i lokalne macierze sztywności prętów i tego pręta Macierze cosinusów kierunkowych λ i Macierze cosinusów kierunkowych określają położenie osi lokalnego układu danego pręta, względem układu globalnego. Jej wymiar zależy od liczby stopni swobody w węzłach danego pręta. Pręt ramy posiada 2 węzły po 3 stopnie swobody (dwie możliwości przesuwów wzajemnie prostopadłych oraz możliwość obrotu) macierz 6x6. λ i = cos γ xx cos γ xy cos γ yx cos γ yy 1 cos γ xx cos γ xy cos γ yx cos γ yy [ 1 6 S t r o n a

7 Pręt kratownicy posiada 2 węzły przegubowe po 2 stopnie swobody (dwie możliwości przesuwów wzajemnie prostopadłych ) macierz 4x4. λ i = cos γ xx cos γ xy cos γ yx cos γ yy cos γ xx cos γ xy [ cos γ yx cos γ yy Przykładowe wyznaczenie kątów dla pręta 4 y4 x4 4 7 a 5 Rys. 4. Lokalny układ współrzędnych pręta nr 4. Rys. 5. Położenie osi lokalnego układu danego pręta względem układu globalnego. α = arctg,8 1,3 = 31,675 γ xx = 36 α = 36 31,675 = 328,3925 γ xy = 9 α = 9 31,675 = 58,3925 γ yx = 27 α = 27 31,675 = 238,3925 γ yy = 36 α = 36 31,675 = 328, S t r o n a

8 Macierze cosinusów kierunkowych dla poszczególnych prętów Pręt nr 1 Pręt nr 9 Pręt nr 8 Pręt nr 7 Pręt nr 6 Pręt nr 5 Pręt nr 4 Pręt nr 3 Pręt nr 2 Pręt nr 1 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 328,3925 γ xy = 58,3925 γ yx = 238,3925 γ yy = 328,3925 γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = 328,3925 γ xy = 58,3925 γ yx = 238,3925 γ yy = 328,3925 γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = 27 γ xy = γ yx = 18 γ yy = 27 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 27 γ xy = γ yx = 18 γ yy = λ 1 = [ 1 1,8517,5241,5241,8517 λ 2 = [,8517,5241,5241, λ 3 = [ 1 1,8517,5241,5241,8517 λ 4 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 5 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 6 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 7 = [,8517,5241,5241, λ 8 = [ λ 9 = [ λ 1 = [ S t r o n a

9 Lokalne macierze sztywności prętów Kratownice płaskie posiadają po dwa stopnie swobody w każdym węźle. W układzie lokalnym pręta występują tylko siły normalne N, natomiast siły tnące T równe są zeru, zatem lokalna macierz sztywności i-tego elementu kratownicy płaskiej obliczana jest według wzoru v2 EA EA l l k L i = EA EA l l [ v1 u1 Rys. 6. Stopnie swobody elementu w układzie lokalnym. u2 Pręt nr 1 Pręt nr 2 Pręt nr 3 Pręt nr 4, 5, 6 Pręt nr 7 Pręt nr 8, 1 Pręt nr = 1892,31 = 1892, k L 1 = = 1892,31 = 1892, [ 1611,6 1611,6 k L 2 = [ 1611,6 1611,6 1294, ,65 k L 3 = [ 1294, ,65 112,6 112,6 k L 4 = k L 5 = k L 6 = [ 112,6 112,6 97,99 97,99 k L 7 = [ 97,99 97, , ,69 k L 8 = k L 1 = [ 1852, ,69 114,12 114,12 k L 9 = [ 114,12 114,12 9 S t r o n a

10 lobalna macierz sztywności poszczególnych prętów k i V 2 U2 Wyrażenie globalnej macierzy sztywności danego pręta w układzie globalnym polega na transformacji jego lokalnej macierzy sztywności do układu globalnego za pomocą macierzy cosinusów kierunkowych, zgodnie z formułą: k i = λ i T k i L λ i V 1 U1 Rys. 7. Stopnie swobody elementu w układzie globalnym. Pręt nr , ,31 k 1 = k L 1 = [ 1892, ,31 układ lokalny pręta pokrywa się z globalnym układem współrzędnych Pręt nr ,93 719, ,93 719,34 k 719,34 442,67 719,34 442,67 2 = [ 1168,93 719, ,93 719,34 719,34 442,67 719,34 442,67 Pręt nr , ,65 k 3 = k L 3 = [ 1294, ,65 układ lokalny pręta pokrywa się z globalnym układem współrzędnych Pręt nr 4, 6 Pręt nr 5 Pręt nr 7 Pręt nr 8, 1 799,74,15 799,74,15 k 4 = k,15 32,86,15 32,86 6 = [ 799,74,15 799,74,15,15 32,86,15 32,86 799,74,15 799,74,15 k,15 32,86,15 32,86 5 = [ 799,74,15 799,74,15,15 32,86,15 32,86 74,28 433,4 74,28 433,4 k 433,4 266,71 433,4 266,71 7 = [ 74,28 433,4 74,28 433,4 433,4 266,71 433,4 266,71 k 8 = k 1852, ,69 1 = [ 1852, ,69 Pręt nr 9 114,12 114,12 k 9 = k L 9 = [ 114,12 114,12 układ lokalny pręta pokrywa się z globalnym układem współrzędnych 1 S t r o n a

11 11 S t r o n a Utworzenie agregowanej macierzy sztywności konstrukcji K A = [

12 2.3. Utworzenie globalnej macierzy sztywności konstrukcji lobalna macierz sztywności konstrukcji obliczana jest według wzoru: K = [ K = A T K A A ,742, ,742,149,149 32,861,149 32, , ,43 74, , ,38 433,43 266,79 433,43 266,79 799,742,149 74, , , ,43 799,742, ,115,149 32, ,43 266,79 433, , ,688,149 32, ,38 361, , , , , , , , , ,742, , ,742,149,149 32, , ,688,149 32, , , , , , , , , , , , ,742, , ,396,149,149 32,861,149 32, Nałożenie warunków brzegowych na globalną macierz sztywności konstrukcji W węźle nr 1 oraz 2 znajduje się podpora przegubowo nieprzesuwna, co znaczy że węzeł ten nie przemieści się ani w poziomie, ani w pionie. W węźle nr 4 znajduje się podpora przegubowo przesuwna z możliwością przesuwu w poziomie, co znaczy że węzeł ten nie przemieści się w pionie Rys. 8. Układ stopni swobody konstrukcji K = [ , ,43 799,742, , , ,119,149 32, , , , ,742, , ,742,149,149 32, , ,688,149 32, , , , , , , , , , ,742, , ,396,149,149 32,861,149 32, S t r o n a

13 Autor: mgr inż. Robert Cypryjański 3. LOBALNY WEKTOR OBCIĄŻENIA Q lobalny wektor obciążeń obliczyć można za pomocą wzoru Q = Q W + Q P gdzie: Q W - suma globalnego wektora obciążeń węzłowych Q P - suma globalnego wektora obciążeń prętowych sprowadzonych do węzłów. W przypadku obu wektorów obciążenia wyrażone są za pomocą składowych działających na kierunkach stopni swobody konstrukcji. Wszystkie obciążenia są przyłożone w węzłach, dlatego Q P =, a co za tym idzie P1=5 kn P2=2 kn P3=3 kn Rys. 9. Układ stopni swobody konstrukcji. Rys. 1. Siły węzłowe. Q = Q W = [ 5 13 S t r o n a

14 4. PRZEMIESZCZENIA WĘZŁOWE Układ równań kanonicznych metody przemieszczeń K = Q gdzie: K globalna macierz sztywności konstrukcji, wektor parametrów węzłowych (przemieszczeń, obrotów jeśli występują), Q wektor obciążeń zewnętrznych. Przemieszczenia węzłowe obliczane są przez przekształcenie powyższego układu równań. Otrzymane wartości przemieszczeń są w cm. = K 1 Q = ,8982,2282,611,522,51438,13587,4766, [ 1, = 4= 7=,611 8= 11=-, =-,4766 1= 2= 5=-,8982 6=,2282 9=-,522 1=-, =-, =-1,38382 Rys. 11. Deformacja kratownicy (przygotować ręczny rysunek). 14 S t r o n a

15 5. OBLICZENIE SIŁ WEWNĘTRZNYCH Autor: mgr inż. Robert Cypryjański Wartości sił wewnętrznych w przekrojach przywęzłowych i tego pręta kratownicy obliczane są na podstawie wyznaczonych wartości przemieszczeń węzłów według wzoru: S i L = k i L i L Znaki sił wewnętrznych odnoszą się do zwrotów lokalnych stopni swobody elementu. Lokalne wektory przemieszczeń obliczane są zgodnie z zależnością i L = λ i i lobalne wektory przemieszczeń końców prętów i tworzy poprzez wybranie z globalnego wektora przemieszczeń wartości opisujących przemieszczeniu danego pręta. Pręt nr 7 Pręt nr 6 Pręt nr 5 Pręt nr 4 Pręt nr 3 Pręt nr 2 Pręt nr , = [ L 7,611 1 = [ S L,611 1 = [ 113,75 8 7,611, , = [ 11,13587 L,315 2 = [ S,1347 L 2 = [ 133,563 12,4766, ,13587, ,25 12, = [ 13,8856 L, = [ S,8856 L 3 = [ 61, , , ,522, , = [ 13,8856 L, = [ S,868 L 4 = [ 14 1, , ,421 95,421 5,8982, ,421 6, = [ 9,522 L, = [ S,17498 L 5 = [ 95,421 1,51438, , = [ 5,8982 L 6 = [ S,6454 L 6 = [ 71,1571 6,2282, = [ 5,8982 6, L = [,8846,2764 S 7 L = [ 85, , S t r o n a

16 Pręt nr 8 Pręt nr 9 Pręt nr 1 8 = [,8982,2282 L,611 8 = [,2282,8982,611 42,2788 S L 8 = [ 42,2788 5,8982,8982 6, = [ 11,13587 L, = [ S,13587 L 9 = [ 12,4766, ,5 52,5 9,522, , 1, = [ 11,13587 L,522 1 = [ S,4766 L 1 = [ 7, 12,4766, S t r o n a

17 6. WYDRUKI Z PRORAMU ROBOT Autor: mgr inż. Robert Cypryjański Rys. 12. Schemat konstrukcji z numeracją węzłów i prętów Tab. 4. Przemieszczenia węzłów Węzeł/Przypadek UX (cm) UZ (cm) 1/1,, 2/1,, 3/1 -,8982,2282 4/1,611, 5/1 -,522 -, /1 -, ,4766 7/1 -,8856-1,38382 Tab. 5. Siły wewnętrzne Pręt/Węzeł/Przypadek FX (kn) 1/2/1-113,75 1/4/1-113,75 2/4/1-133,563 2/6/1-133,563 3/6/1-61,25 3/7/1-61,25 4/5/1 95,421 4/7/1 95,421 5/3/1 95,421 5/5/1 95,421 6/1/1 71,1571 6/3/1 71,1571 7/2/1 85,8894 7/3/1 85,8894 8/3/1 42,2788 8/4/1 42,2788 9/3/1 52,5 9/6/1 52,5 1/5/1-7, 1/6/1-7, 17 S t r o n a

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH 1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej

Bardziej szczegółowo

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny. KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych metodą sił.

Obliczanie układów statycznie niewyznaczalnych metodą sił. POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. metodą sił

Obliczanie układów statycznie niewyznaczalnych. metodą sił Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia ramy płaskiej obciążonej siłą skupioną

Bardziej szczegółowo

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Nowe zadanie Oś Z jest domyślną osią działania grawitacji. W ustawieniach programu można przypisać dowolny kierunek działania grawitacji.

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE

16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE Część 3 16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE 1 16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE 16.1. METODA SIŁ 16.1.1. Obliczanie sił wewnętrznych Z rozważań poprzedniego rozdziału wynika, że istnieje

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

3. Rozciąganie osiowe

3. Rozciąganie osiowe 3. 3. Rozciąganie osiowe 3. Podstawowe definicje Przyjmijmy, że materiał z którego wykonany został pręt jest jednorodny oraz izotropowy. Izotropowy oznacza, że próbka wycięta z większej bryły materiału

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Własności materiału E=200e9 Pa v=0.3. Preprocessing. 1. Moduł Part moduł ten słuŝy do stworzenia części. Part Create

Własności materiału E=200e9 Pa v=0.3. Preprocessing. 1. Moduł Part moduł ten słuŝy do stworzenia części. Part Create Ćwiczenie 1. Kratownica płaska jednoosiowy stan napręŝeń Cel ćwiczenia: Wyznaczenie stanu napręŝeń w elementach kratownicy płaskiej pod wpływem obciąŝenia siłą skupioną. Własności materiału E=200e9 Pa

Bardziej szczegółowo

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są

Bardziej szczegółowo

Obliczenie kratownicy przy pomocy programu ROBOT

Obliczenie kratownicy przy pomocy programu ROBOT Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2

e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2 OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił. Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 3 1. PRZYKŁADY UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta

Bardziej szczegółowo

Moduł do wymiarowania konstrukcji prętowych. Opracował mgr inż. Tomasz Żebro

Moduł do wymiarowania konstrukcji prętowych. Opracował mgr inż. Tomasz Żebro Moduł do wymiarowania konstrukcji prętowych. Opracował mgr inż. Tomasz Żebro 1. Konstrukcje stalowe. a. Wymiarowanie elementów kratownicy płaskiej. Rozpiętość kratownicy wynosi 11700mm, rozstaw 5670mm.

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

1.2. Przykład projektowania konstrukcji prętowej bez wykorzystania ekranów systemu ROBOT Millennium

1.2. Przykład projektowania konstrukcji prętowej bez wykorzystania ekranów systemu ROBOT Millennium ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 13 1.2. Przykład projektowania konstrukcji prętowej bez wykorzystania ekranów systemu ROBOT Millennium Ten przykład przedstawia

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Moduł. Belka stalowa

Moduł. Belka stalowa Moduł Belka stalowa 410-1 Spis treści 410. BELKA STALOWA...3 410.1. WIADOMOŚCI OGÓLNE...3 410.1.1. Opis programu...3 410.1.2. Zakres programu...3 410.1.3. O pis podstawowych funkcji programu...3 410.1.3.1.

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo