Łagodne wprowadzenie do Metody Elementów Skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Łagodne wprowadzenie do Metody Elementów Skończonych"

Transkrypt

1 Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII część I 17 XII część II

2 Program wykładu Część I wybrane podstawy matematyczne klasycznej MES, przykładowe elementy skończone, algorytm i uogólnienia klasycznej MES, implementacja algorytmu w programie MAPLE. Część II zbieżność rozwiązań MES, generowanie siatek węzłów - techniki adaptacyjne, przykłady realizacji obliczeń. Wybrane pozycje literatury przedmiotu (indywidualnie). Propozycje tematów do samodzielnego opracowania (zaliczenie przedmiotu).

3 Czym jest Metoda Elementów Skończonych? Zanim odpowiemy na to pytanie, przypomnijmy sobie kilka równań liniowej mechaniki poznanych na przedmiotach Wytrzymałość Materiałów i Mechanika Konstrukcji: równanie równowagi pręta ściskanego: (EA u ) = p, równanie równowagi pręta zginanego: (EJ w ) = q, równanie równowagi tarczy PSN (i, j, k, l = 1, 2): (C ijkl ε kl ),j + F i = 0, ε kl = 1 2 (u k,l + u l,k ), równanie równowagi płyty cienkiej: (D ijkl w,kl ),ij = q, i zastanówmy się, czy umiemy je rozwiązać w sposób ścisły (przy zadanych warunkach brzegowych)?

4 Czym jest Metoda Elementów Skończonych? Odpowiedź: Metoda Elementów Skończonych jest to matematyczny formalizm, będący podstawą numerycznego algorytmu rozwiązywania układów równań różniczkowych cząstkowych w sposób przybliżony. Uwagi: zbieżność ciągu rozwiązań MES do rozwiązania ścisłego uzyskuje się dzięki odpowiedniemu doborowi przestrzeni funkcji aproksymujących, analiza zbieżności tego ciągu może być przeprowadzona bez znajomości rozwiązania ścisłego, MES można w prosty sposób zaimplementować w postaci kodu komputerowego.

5 Wybrane podstawy matematyczne MES Silna (klasyczna, różniczkowa) postać równania równowagi Niech Ω R 2 będzie obszarem tarczy PSN, z brzegiem Γ, na którym zadane są warunki brzegowe na poszukiwane funkcje C ijkl ε kl n j (s) T i (s) = 0, u i (s) û i (s) = 0, s Γ τ s Γ u W dalszych rozważaniach przyjmiemy dla uproszczenia: F i = 0, i = 1, 2, tj. pominiemy siły masowe, û i = 0, i = 1, 2, tj. założymy, że Γ u nie przemieszcza się.

6 Wybrane podstawy matematyczne MES Silna (klasyczna, różniczkowa) postać równania równowagi W teorii PSN, klasycznym rozwiązaniem zagadnienia brzegowego są funkcje u i C 2 (Ω) C 1 (Ω Γ τ ) C(Ω Γ u ), i = 1, 2 spełniające, dla każdego (x 1, x 2 ) Ω, równanie równowagi ( ( 1 uk C ijkl + u ) ) l + F i = 0, 2 x j x l x k u k = u k (x 1, x 2 ), oraz warunki brzegowe na Γ. Do opisu tych funkcji wprowadźmy oznaczenie (u 1, u 2 ) ozn. = u V 0.

7 Wybrane podstawy matematyczne MES Słaba (wariacyjna, całkowa) postać równania równowagi Znalezienie u V 0 (klasycznego rozwiązania równania równowagi) jest możliwe jedynie w szczególnych sytuacjach, konieczne jest więc sformułowanie ogólnego algorytmu analizy zagadnień brzegowych, zapewniającego istnienie i jednoznaczność rozwiązań. W tym celu wprowadza się dość silne założenia dotyczące przestrzeni, w której poszukuje się funkcji rozwiązujących. W szczególności: przestrzeń V 0 należy uzupełnić do przestrzeni Hilberta (oznaczmy ją symbolem V), zagadnienie brzegowe musi być przepisane w słabej (wariacyjnej, całkowej) postaci. Dzięki temu, na mocy twierdzenia Laxa-Milgrama, rozwiązanie zagadnienia brzegowego istnieje i jest jednoznaczne.

8 Wybrane podstawy matematyczne MES Słaba (wariacyjna, całkowa) postać równania równowagi V 0 nie jest przestrzenią Hilberta. Ciąg funkcji ciągłych nie jest jednostajnie zbieżny do funkcji ciągłej.

9 Wybrane podstawy matematyczne MES Słaba (wariacyjna, całkowa) postać równania równowagi Sformułujmy zagadnienie brzegowe w słabej postaci: Znaleźć takie u V, że dla każdego v V spełnione jest C ijkl ε ij (u)ε kl (v)dx = T i v i ds. Ω Γ τ Uwagi: Widzimy, że V jest przestrzenią funkcji, wobec których nie wymaga się różniczkowalności w klasycznym sensie, Przestrzeń V jest zupełna, a więc wszystkie ciągi {u n } V są zbieżne do pewnego u V, dzięki czemu można wprowadzić pojęcie zbieżności ciągu rozwiązań MES i, co najistotniejsze, oszacować błąd aproksymacji.

10 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Aproksymacja rozwiązania. Przestrzeń V jest -wymiarowa, co praktycznie uniemożliwia rozwiązanie zadania. W związku z tym, ograniczamy poszukiwania funkcji rozwiązującej zagadnienie wariacyjne do dowolnej podprzestrzeni V h V o skończonym wymiarze, formułując tym samym zadanie dyskretne: Znaleźć takie u h V h, że dla każdego v h V h spełnione jest C ijkl ε ij (u h )ε kl (v h )dx = T i vi h ds. Ω Γ τ Uwagi: Zadanie dyskretne ma jednoznaczne rozwiązanie, ponieważ V h V, Przestrzenie V h nazywa się przestrzeniami elementów skończonych.

11 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Pojęcie elementu skończonego 1. aksjomat MES Podzielmy Ω na skończoną liczbę podzbiorów Ω e, e = 1,..., l e (elementów skończonych), takich że Ω = Ω e, e=1,...,l e Ω i Ω j =, i j, każdy bok dowolnego elementu jest częścią brzegu Γ lub bokiem innego elementu.

12 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Pojęcie elementu skończonego 2. aksjomat MES } Przyjmijmy P e = {u h Ωe : u h V h, e = 1,..., l e i załóżmy, że funkcje ze zbiorów P e są wielomianami stopnia p e. Uwagi: Dodatkowo można przyjąć, że funkcje u h są klasy C k (Ω) (elementy dostosowane), Klasa ciągłości jest zależna od rozpatrywanego zagadnienia brzegowego (PSN: k = 0, teoria płyt cienkich: k = 1), Założenie ciągłości jest automatycznie spełnione wewnątrz elementu skończonego, więc w praktyce dotyczy ono ciągłości u h na granicach elementów i na brzegu Γ u.

13 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Pojęcie elementu skończonego 3. aksjomat MES Zakładamy, że w przestrzeni V h można zdefiniować co najmniej jedną bazę skończeniewymiarową, czyli zbiór funkcji v s, takich że u h = q s v s. s=1,...,l s Uwagi: Widać, że funkcje v s są kawałkami (na każdym elemencie skończonym) wielomianowe, Obcięcie N e = (v s Ωe ) określa tzw. wektor funkcji kształtu na elemencie Ω e, Wektor q = (q s ) określa reprezentację u h w bazie {v s }. Wyznaczenie składowych wektora q jest głównym zadaniem Metody Elementów Skończonych.

14 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Pojęcie elementu skończonego Co to jest element skończony? Element skończony jest to dowolny podobszar Ω e obszaru Ω z przypisanym do niego wektorem funkcji kształtu N e = (v s Ωe ), oraz wektorem stopni swobody q e = (q s Ωe ). Macierzowa postać zadania dyskretnego: Zastąpmy u h, v h w wariacyjnym równaniu równowagi ich skończeniewymiarowymi reprezentacjami. Wykorzystując własność liniowości operacji całkowania otrzymamy C ijkl ε ij (q s v s )ε kl (v s )dx =. Ω } {{ } K q T i (v s ) i ds Γ } τ {{} Q gdzie: K = (K IJ ) s s, q = (q J ) s 1, Q = (Q I ) s 1

15 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Zbieżność MES Załóżmy, że siatka elementów jest: afiniczna (elementy są afinicznymi odwzorowaniami elementu wzorcowego) regularna (określa się pewną stałą C, taką że e = 1,..., n e : he r e < C, tj. elementy nie są zbyt wydłużone w jednym kierunku) Wprowadźmy oznaczenia: h e - najdłuższy bok Ω e, h = max h e, e=1,...,n e p - rząd wielomianu aproksymującego w definicji v h.

16 Wybrane podstawy matematyczne MES Dyskretna postać wariacyjnego równania równowagi. Zbieżność MES Na mocy lematu Céa, i w odniesieniu do zagadnień, których rozwiązania nie zawierają osobliwości, można dowieść, że: Rozwiązanie u h V h jest najlepszym przybliżeniem słabego rozwiązania u V, Dla dwu dowolnych h 1, h 2 zachodzi u u h2 ( h2 h 1 ) p u u h1, gdzie ( v = Ω ) 1/2 C ijkl ε ij (v)ε kl (v)dx

17 Przykłady elementów skończonych Konstrukcję przestrzeni V h zaczynamy od końca, tzn. od zdefiniowania: wektora funkcji kształtu N e = (v s Ωe ), wektora stopni swobody q e = (q s Ωe ), dla pojedynczego elementu Ω e. Pamiętamy przy tym, że: funkcje kształtu są obciętymi do jednego elementu funkcjami bazowymi w V h, rodzina elementów jest afiniczna.

18 Przykłady elementów skończonych Trójkątny element tarczy PSN Wprowadźmy współrzędne punktu P (L 1, L 2, L 3 ), takie że L 1 = F ( P 23) F ( 123 ), L 2 = F ( P 13) F ( 123 ), L 3 = F ( P 12) F ( 123 ), L i = a i+b i x+c i y 2 F ( 123 ), gdzie ( ) 1 F ( 123 ) = 1 2 det x1 y 1 1 x 2 y 2, 1 x 3 y 3 a 1 =x 2 y 3 x 3 y 2, b 1 =y 2 y 3, c 1 =x 3 x 2, a 2 =x 3 y 1 x 1 y 3, b 2 =y 3 y 1, c 2 =x 1 x 3, Element trójkątny. nu nv u= N i u i ; v= N i v i i=1 i=1 a 3 =x 1 y 2 x 2 y 1, b 3 =y 1 y 2, c 3 =x 2 x 1.

19 Przykłady elementów skończonych Trójkątny element tarczy PSN Element trójkątny rzędu 1. Element trójkątny rzędu 2. Funkcja kształtu N 1 = L 1. Funkcja kształtu N 1 = (2 L 1 1) L 1.

20 Przykłady elementów skończonych Trójkąt Pascala Funkcje kształtu stowarzyszone z rozmaitymi elementami skończonymi konstruuje się w oparciu o trójkąt Pascala: 1 rząd 0 x y rząd 1 x 2 xy y 2 rząd 2 x 3 x 2 y xy 2 y 3 rząd 3 x 4 x 3 y x 2 y 2 xy 3 y 4 rząd i.t.d

21 Przykłady elementów skończonych Inne typy elementów tarczowych Element trójkątny rzędu 3. Element prostokątny rzędu 2. (typ Lagrange a) Element prostokątny rzędu 1. Element prostokątny rzędu 2. (typ serendipowski - ang. serendipity)

22 Algorytm MES 1. Podziel obszar Ω na elementy skończone Ω e, e = 1,..., n e, przyjmij wektory funkcji kształtu N e i stopni swobody q e, 2. Oblicz macierze sztywności K e i wektory obciążeń węzłowych Q e każdego elementu, 3. Znajdź macierz sztywności K i wektor obciążeń Q całej konstrukcji, 4. Zdefiniuj wektor niewiadomych q, 5. Uwzględnij warunki brzegowe, 6. Rozwiąż równanie K q = Q, 7. Oblicz odkształcenia i naprężenia w każdym elemencie.

23 Uogólnienia klasycznej MES Przykłady możliwych uogólnień klasycznej wersji MES: bardziej skomplikowane zadania wariacyjne, zagadnienia nieliniowe (np. C ijkl = C ijkl (q s )), zadania z Γ krzywoliniowym, wykorzystanie elementów niedostosowanych, wykorzystanie rodzin elementów nieafinicznych, przybliżone obliczanie całek K = Ω C ijklε ij (v s )ε kl (v s ) dx, Q = Γ τ T i (v s ) i ds (np. w zadaniach teorii powłok lub przez wykorzystanie tzw. całkowania numerycznego).

24 Przykłady zadań z zakresu części 1. do samodzielnego rozwiązania (zaliczenie przedmiotu) 1. Omówić rodzinę elementów trójkątnych z zadanymi stopniami swobody, 2. Omówić rodzinę elementów czworokątnych typu Lagrange a, 3. Omówić rodzinę elementów czworokątnych typu serendipowskiego, 4. Omówić własności wybranego elementu skończonego (na podstawie literatury), 5. Porównać rozwiązania wybranego zadania PSN z użyciem różnych elementów skończonych. Ponadto istnieje możliwość wykonania łączonych prac dyplomowych inżynierskich i magisterskich (KBI) oraz samodzielnych prac dyplomowych magisterskich (TKAK).

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

8. Metody rozwiązywania układu równań

8. Metody rozwiązywania układu równań 8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód. Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,

Bardziej szczegółowo

PODSTAWOWE POJĘCIA MES

PODSTAWOWE POJĘCIA MES Metoda Elementów Skończonych Studium magisterskie PODSTAWOWE POJĘCIA WYKŁAD 1 Wersja elektroniczna, http://www.okno.pg.gda.pl. Literatura KLEIBER M.: Wprowadzenie do metody elementów skończonych. PAN IPPT,

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Zagadnienia stacjonarne

Zagadnienia stacjonarne Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Metody obliczeniowe - modelowanie i symulacje

Metody obliczeniowe - modelowanie i symulacje Metody obliczeniowe - modelowanie i symulacje J. Pamin nstitute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology URL: www.l5.pk.edu.pl Zagadnienia i źródła

Bardziej szczegółowo

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 015/016 Kierunek studiów: Mechanika i Budowa Maszyn Forma

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

Zastosowania twierdzeń o punktach stałych

Zastosowania twierdzeń o punktach stałych 16 kwietnia 2016 Abstrakt Niech X będzie przestrzenią topologiczną. Ustalmy odwzorowanie ciągłe f : X X. Twierdzeniem o punkcie stałym nazywamy prawdę matematyczną postulującą pod pewnymi warunkami istnienie

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo