TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE

Wielkość: px
Rozpocząć pokaz od strony:

Download "TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE"

Transkrypt

1 PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

2 Tematyka wykładu 1 ES tarczowe dla UP Najprostszy ES tarczowy CST ES tarczowy Q4 ES wyższych rzędów 2 ES płytowy czterowęzłowy 3 Podsumowanie i klasyfikacja ES dla UP ES elementy skończone UP ustroje powierzchniowe

3 Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy Y v1 3 v3 u3 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 3 Liczba stopni swobody elementu: LSSE = LSSW LWE = 6 1 u1 2 v2 u2 X Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u i v używane są biliniowe funkcje kształtu N i, i = 1, 2, 3: u n (2 1) = Nn (2 6) qe n (6 1) CST Constant Strain Triangle

4 Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy u n = N n q e n [ N e N e = 1 0 N2 e 0 N3 e 0 0 N1 e 0 N2 e 0 N3 e N 1(x e, y e ) 1 1 x e 2 3 y e N 2(x e, y e ) 1 x e 1 ], q e = 2 q 1 q 2 q 3 q 4 q 5 q 6 3 y e Ogólne właściwości funkcji kształtu: N i = 1 w węźle i 0 w pozostałych węzłach LWE i=1 N i = 1 N 3(x e, y e ) 1 x e y e

5 ES tarczowy Q4 ES tarczowy Q4 prostokątny, 4-węzłowy b u 4 u 1 v 4 v 1 Y η = 2 y/b a v 3 u 3 ξ = 2 x/a X u 2 v 2 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 4 Liczba stopni swobody elementu: LSSE = LSSW LWE = 8 Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 u 4, v 4 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u(ξ, η) i v(ξ, η) używane są funkcje kształtu N i (ξ, η), i = 1, 2, 3, 4, biliniowe (liniowe względem dwu bezwymiarowych unormowanych współrzędnych ξ, η [ 1, +1]): u n (ξ, η) (2 1) = {u(ξ, η), v(ξ, η)} = N n (2 8) qe (8 1) n u(ξ, η) = N 1 u 1 + N 2 u 2 + N 3 u 3 + N 4 u 4 v(ξ, η) = N 1 v 1 + N 2 v 2 + N 3 v 3 + N 4 v 4

6 ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP ES tarczowy Q4 Biliniowe funkcje kształtu dla ES tarczowego 4-węzłowego N1 = 14 (1 ξ)(1 η) N2 = 14 (1 + ξ)(1 η) N3 = 14 (1 + ξ)(1 + η) N4 = 14 (1 ξ)(1 + η)

7 ES tarczowy Q4 Bazowy element wzorcowy dla elementu Q4 Część obliczeń wykonywana jest na elemencie wzorcowym, np. wyznaczanie macierzy pochodnych funkcji kształtu: B = L N. Element wzorcowy: ξ, η [ 1, 1] [ ξ η { x, y = J [ x y } { ξ, η Macierz ] Jacobiego - relacja między pochodnymi ] [ x y ξ ξ, gdzie: J = x η } y η ]

8 ES tarczowy Q4 Wektor zastępników obciążeń powierzchniowych Wektor obciążeń powierzchniowych: Macierz funkcji kształtu: ˆp n e = {ˆp x, ˆp y } T [ ] N n (2 8) = N1 0 N 2 0 N 3 0 N N 1 0 N 2 0 N 3 0 N 4 Wektor zastępników węzłowych obciążeń powierzchniowych: f(8 1) n e = N n (8 2) et ˆpn (2 1) e da A e Gdy fragment brzegu A e leży na brzegu obszaru A σ, to podobnie obliczamy wektor zastępników węzłowych obciążeń brzegowych f n e b(8 1).

9 ES tarczowy Q4 Macierz sztywności tarczowego ES 4-węzłowego Macierz sztywności: k e (8 8) n = B nt (8 3) Dn (3 3) Bn (3 8) da A e Macierz związków kinematycznych: N 1 B n x 0... (3 8) = N 0 1 y... 0 N 1 N 1 y x... N 4 x 0 N 4 y N 4 N 4 y x Macierz związków fizycznych: D n (3 3) = Dn 1 ν 0 ν ν Sztywność tarczowa: D n = E h 1 ν 2

10 ES wyższych rzędów ES izoparametryczne Aproksymacja geometrii: P Ω e : x P (ξ, η) = N(ξ, η) x e, gdzie: x i y i [ ] x j xp x P =, x y e = y j P x k y k x l y l ES jest izoparametryczny jeśli do aproksymacji geometrii i pola przemieszczeń wykorzystujemy te same węzły i te same funkcje kształtu. x(ξ, η) = N(ξ, η) x e u(ξ, η) = N(ξ, η) q e

11 ES wyższych rzędów ES wyższych rzędów tarczowe Typ: LST Q8 Q LSSE = 12 LSSE = 16 LSSE = Wzrastająca liczba węzłów podwyższa stopień wielomianu interpolacyjnego do opisu geometrii i pola przemieszczeń.

12 ES wyższych rzędów Trójkąt Pascala Q9 Q4 1 x y CST x 2 x y y 2 x 3 x 2 y x y 2 y 3 x 2 y 2 Q8 LST

13 ES wyższych rzędów Całkowanie numeryczne ES Kwadratura Gaussa 1 1 k e = B T DB h da = B(ξ, η) T D B(ξ, η) h det J dξdη A e 1 1 n m w i w j B T (i,j) D B (i,j) h det J (i,j) i=1 j=1 Całkowanie Q4 Q8 pełne (FI) zredukowane (RI)

14 ES płytowy dla płyt cienkich prostokątny, 4-węzłowy, dostosowany LSSW = 4 LWE = 4 LSSE = LSSW LWE = 16 Aproksymacji wewnątrz ES podlega funkcja ugięcia w(x, y) z użyciem następującego wektora węzłowych i elementowych SS: q m w(4 1) = {w, ϕ x, ϕ y, χ} T w = {w, w/ y, w/ x, 2 w/ x y} T w q e m (16 1) = {w 1, ϕ x1, ϕ y1, χ χ 4 } T

15 Aproksymacja pola ugięcia Bezwymiarowe współrzędne powierzchniowe ξ = 2 ( x a ) 1, η = 2 ( y b ) 1 Wielomianowa aproksymacja: w(ξ, η) = (α 1 + α 2 ξ + α 3 ξ 2 + α 4 ξ 3 )(β 1 + β 2 η + β 3 η 2 + β 4 η 3 ) = C 1 + C 2 ξ + C 3 η + C 4 ξ 2 + C 5 ξη + C 6 η 2 + C 7 ξ 3 + C 8 ξ 2 η + C 9 ξη 2 + C 10 η 3 + C 11 ξ 3 η + C 12 ξ 2 η 2 + C 13 ξη 3 + C 14 ξ 3 η 2 + C 15 ξ 2 η 3 + C 16 ξ 3 η 3 w(ξ, η) = N m m (1 16)(ξ, η) qe (16 1) = = {N1 1, N2 1, N3 1, N4 1, N N4 4 } {w 1, ϕ x1, ϕ y1, χ 1 w χ 4 } T

16 ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP Bisześcienne funkcje kształtu dla pierwszego węzła elementu płytowego, 4-wezłowego (bazowego) N11 odpowiadająca w1 N12 odpowiadająca ϕx1 N13 odpowiadająca ϕy 1 N14 odpowiadająca χ1

17 Aproksymacja pól wtórnych Pola odkształceń i momentów Odkształcenia: e m = [3 1] [3 1] Lm N [1 16] qe [16 1] = B e [3 16] qe = [16 1] = {B 1, B 2, B 3, B 4 } {q 1, q 2, q 3, q 4 } T B i = L m N i = [3 4] [3 1][1 4] 2 / x 2 2 / y / x y [ N 1 i N 2 i N 3 i N 4 i ] Momenty zginające: s m = [3 1] [3 3] Dm [3 1] em = [3 3] Dm [3 16] Be qe [16 1]

18 Macierz sztywności płytowego ES 4-węzłowego Macierz sztywności: k e (16 16) m = B mt (16 3) Dm (3 3) Bm (3 16) da A e Macierz związków kinematycznych: B m (3 16) = Macierz związków fizycznych: 2 N 1 1 x 2 N x 2 N x 2 N x... 2 N x 2 2 N 1 1 y 2 N y 2 N y 2 N y... 2 N y N 1 1 x y 2 2 N 2 1 x y 2 2 N 3 1 x y 2 2 N 4 1 x y N 4 4 x y D m (3 3) = Dm Sztywność płytowa: D m = Eh3 12(1 ν 2 ) 1 ν 0 ν ν 0 0 2

19 ES płytowe dostosowane i niedostosowane Elementy dostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i ciągłość pochodnych normalnej ( ) w e=1 n = ( ) w e=2 b n i stycznej ( ) w e=1 b s = ( ) w e=2 b s. b Elementy niedostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i pochodnej stycznej ( w s ) e=1 b = ( w s ) e=2 b. 1 2 Dla elementów niedostosowanych powierzchnia w(x, y) nie jest gładka, a załomy na styku elementów mogą prowadzić w konsekwencji do rozwiązania odpowiadającego bardziej wiotkiej konstrukcji.

20 Diagram zależności P P 0 E U P P 0 E U σ E +h/2...z dz h/2 (Lm ) T s m ˆp = {ˆp z } D m ( ) N A fp e F K k e Q=F ɛ z e m L m u = {w} N q e A 1 Q ( ) oznacza [( L m ) T D m ( L m )]u m ˆp = 0 A oznacza symbol agregacji, A 1 oznacza powrót z U do E

21 Niekorzystne kształty ES Duża wartość współczynnika wydłużenia (aspect ratio) a a b b b h h b b α β a Prawie trójkąt: a b Trójkątny czworobok Ukosowanie: α β Położenie węzłów (off-center node) Silnie zakrzywiony brzeg

22 Wymagania dla powierzchniowych ES ES dla UP powinny: spełniać warunek geometrycznej izotropii, który wymaga równouprawnienia kierunków x i y (stosujemy tą samą aproksymację w każdym kierunku), mieć zdolność do zreprodukowania stanów stałych odkształceń oraz bezodkształceniowego ruchu sztywnego, zachować ciągłość na granicach międzyelementowych, posiadać odpowiedni stopień wielomianu interpolacyjnego do aproksymacji pola przemieszczeń i odkształceń (!).

23 Klasa ciągłości ES tarczowych i płytowych Tarczowe ES CST i Q4 Stosujemy biliniowe funkcje kształtu do aproksymacji pola przemieszczeń. Zapewniamy ciągłość pola przemieszczeń u klasy C 0. Pole odkształceń stanu membranowego jest opisane pochodnymi cząstkowymi rzędu p = 1. Wymagana jest ciągłość pochodnych przemieszczeń rzędu p 1 = 0. W konsekwencji na granicach międzyelementowych występują skoki wartości składowych wektora odkształcenia (naprężenia) ciągłość klasy C 1. Płytowe ES czterowęzłowe dostosowane Stosujemy bisześcienne funkcje kształtu do aproksymacji pola przemieszczeń (ugięcia). Pole odkształceń stanu giętnego jest opisane pochodnymi cząstkowymi rzędu p = 2. Wymagana jest ciągłość pochodnych ugięcia rzędu p 1 = 1. Ciągłość C 1 (ciągłość ugięcia i ciągłość pierwszych pochodnych) gwarantuje się w ES dostosowanych.

24 Charakter stanu, jaki panuje w ES Rozróżnia się trzy typowe stany: 1 stan membranowy rozpatrywany w powłokach, analogiczny do tarczowego w niezakrzywionych UP, czyli w tarczach, oznaczony indeksem n, 2 stan giętny, któremu towarzyszą w cienkich płytach i powłokach zerowe odkształcenia poprzecznego ścinania, oznaczony indeksem m, 3 stan poprzecznego ścinania, konieczny do uwzględnienia w zginanych ustrojach powierzchniowych umiarkowanie grubych, oznaczony indeksem t (nie był omawiany).

25 Klasyfikacja ES ze względu na analizowane zadania Wyróżniamy typy ES: dla tarcz (płaskiego stanu naprężenia), dla zginanych płyt cienkich oparte na jednoparametrowej teorii Kirchhoffa-Love a (K-L), dla zginanych płyt umiarkowanie grubych oparte na trójparametrowej teorii płyt Mindlina-Reissnera (M-R), dla zakrzywionych powłok oparte na trójparametrowej teorii powłok cienkich K-L, dla zakrzywionych powłok oparte na pięcioparametrowej teorii powłok umiarkowanie grubych M-R, powłokowe, tzw. zdegenerowane, oparte na równaniach kontinuum 3D, zmodyfikowanych hipotezami powłokowymi, spójne z pięcioparametrową teorią powłok cienkich i umiarkowanie grubych M-R, ES bryłowe do dyskretyzacji powłok grubych, korzystające z równań kontinuum 3D.

26 Literatura M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, A. Borkowski, Cz. Cichoń, M. Radwańska, A. Sawczuk, Z. Waszczyszyn. Mechanika budowli. Ujęcie komputerowe. T.3, rozdz.9, Arkady, Warszwa, Cz. Cichoń, W. Cecot, J.Krok, P. Pluciński. Metody komputerowe w liniowej mechanice konstrukcji. Wybrane zagadnienia. Skrypt PK, wydanie 2, Kraków, G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice konstrukcji. Oficyna Wyd. PW, Warszawa, R.D. Cook, D.S. Malkus, M.E. Plesha, R.J Witt. Concepts and Applications of Finite Element Analysis. University of Wisconsin Madison, John Wiley&Sons, O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. VI edition, Elsevier Butterworth Heineman, 2005.

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Analiza płyt i powłok MES Zagadnienie wyboczenia

Analiza płyt i powłok MES Zagadnienie wyboczenia Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB/BM+BŚ+BO Jerzy Pamin i Marek Słoński nstytut Technologii nformatycznych w nżynierii Lądowej Politechnika

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Projektowanie systemów EM. Metoda elementów skończonych

Projektowanie systemów EM. Metoda elementów skończonych Projektowanie systemów EM Metoda elementów skończonych Wstęp Podstawy obliczeń MES Etapy definicji modelu numerycznego Rodzaje problemów moduły obliczeniowe Wybrane wyniki obliczeń 2 dr inż. Michał Michna

Bardziej szczegółowo

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY WYDZIAŁ INFORMATYKI mgr inż. Bartłomiej Żyliński Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych rozprawa

Bardziej szczegółowo

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (19) nr 1, 2004 Alicja ZIELIŃSKA WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Streszczenie: W artykule przedstawiono weryfikację sztywności konstrukcji

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLIX NR (73) Lesł aw Kyzioł Leszek Kubitz Akademia Marynarki Wojennej ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ STRESZCZENIE Przedstawiono

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,

Bardziej szczegółowo

ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU

ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU PIĘĆDZIESIĄTA PIERWSZA KONFERENCJA NAUKOWA KOMITETU INŻYNIERII LĄDOWEJ I WODNEJ PAN I KOMITETU NAUKI PZITB Gdańsk Krynica 2005 Dariusz KOWALSKI 1 ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Joanna Dulińska Radosław Szczerba Wpływ parametrów fizykomechanicznych betonu i elastomeru na charakterystyki dynamiczne wieloprzęsłowego mostu żelbetowego z łożyskami elastomerowymi Impact of mechanical

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie 1. Materiał budowlany "drewno" 1.1. Budowa drewna 1.2. Anizotropia drewna 1.3. Gęstość drewna 1.4. Szerokość słojów rocznych 1.5. Wilgotność drewna 1.6.

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu..

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu.. SPIS TREŚCI 1. Wstęp.....2 2. Równania naprężeń i odkształceń..4 2.1. Analiza stanu naprężeń i odkształceń. 4 2.2. Prawo Hooke a...5 2.3. Uogólnione prawo Hooke a dla trójosiowego stanu naprężeń....5 2.4.

Bardziej szczegółowo

PRACA DYPLOMOWA INŻYNIERSKA

PRACA DYPLOMOWA INŻYNIERSKA PRACA DYPLOMOWA INŻYNIERSKA Katedra Wytrzymałości Materiałów i Metod Mechaniki. Zastosowanie metody elementów skończonych do oceny stanu wytężenia obudowy silnika pompy próżniowej Student: Tomasz Sczesny

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Wytrzymałość materiałów Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA IMPLANTÓW Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności inżynieria rehabilitacyjna Rodzaj zajęć: wykład, laboratorium

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 1.3. Płyta żelbetowa Ten przykład przedstawia definicję i analizę prostej płyty żelbetowej z otworem. Jednostki danych: (m)

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA Materiały budowlane z technologią betonu EGZAMIN MAGISTERSKI Fizyka budowli Budownictwo ogólne 1. Materiały pokryć dachowych. 2. Wymagania techniczne i rozwiązania

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

2. MODELOWANIE SŁUPÓW

2. MODELOWANIE SŁUPÓW MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 233-238, Gliwice 2006 ROZWIĄZANIE KONSTRUKCYJNE ALUMINIOWYCH SŁUPÓW DO ZAWIESZENIA SYGNALIZACJI ŚWIATEŁ DROGOWYCH JAROSŁAW KACZMARCZYK Katedra Mechaniki Stosowanej,

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

ROTOPOL Spring Meeting

ROTOPOL Spring Meeting ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

ZAAWANSOWANE METODY OBLICZEŃ NAPRĘśEŃ I ODKSZTAŁCEŃ NA PRZYKŁADZIE ANALIZY KORPUSU SILNIKA ELEKTRYCZNEGO DO KOMBAJNU ŚCIANOWEGO KA200

ZAAWANSOWANE METODY OBLICZEŃ NAPRĘśEŃ I ODKSZTAŁCEŃ NA PRZYKŁADZIE ANALIZY KORPUSU SILNIKA ELEKTRYCZNEGO DO KOMBAJNU ŚCIANOWEGO KA200 Zeszyty Problemowe Maszyny Elektryczne Nr 82/2009 87 Mariusz Śladowski BOBRME Komel, Katowice ZAAWANSOWANE METODY OBLICZEŃ NAPRĘśEŃ I ODKSZTAŁCEŃ NA PRZYKŁADZIE ANALIZY KORPUSU SILNIKA ELEKTRYCZNEGO DO

Bardziej szczegółowo

Mechanistyczna analiza gruntów i budowli drogowych

Mechanistyczna analiza gruntów i budowli drogowych Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [1] Sam Helwany (2007), Applied Soil Mechanics: with ABAQUS Applications, John Wiley & Sons [2] Firelej S., (2007), Mechanika nawierzchni

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Metody numeryczne w biomechanice. Jakub J. Słowiński Katedra Mechaniki i Inżynierii Materiałowej

Metody numeryczne w biomechanice. Jakub J. Słowiński Katedra Mechaniki i Inżynierii Materiałowej Metody numeryczne w biomechanice Jakub J. Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wrocław 2014 Wykład 1 Wprowadzenie Jakub J. Słowiński Katedra Mechaniki i Inżynierii Materiałowej Agenda

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Przedmioty Kierunkowe:

Przedmioty Kierunkowe: Zagadnienia na egzamin dyplomowy magisterski w Katedrze Budownictwa, czerwiec-lipiec 2016 Losowanie 3 pytań: 1-2 z przedmiotów kierunkowych i 1-2 z przedmiotów specjalistycznych Przedmioty Kierunkowe:

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB

Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB W artykule przedstawiono wyniki eksperymentu numerycznego - pola temperatury na powierzchni płyty grzejnej dla wybranych

Bardziej szczegółowo

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów Wykład 2: Organizacja studiów Załączniki Zał. 1: mechanika.txt (spis zawartości FTP) Zał. 2: literatura.doc Zał. 3: Zalecenia 1. Ilości

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych. dr inż. Piotr JASKUŁA

Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych. dr inż. Piotr JASKUŁA Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych dr inż. Piotr JASKUŁA 2 Plan prezentacji Wprowadzenie Materiał i aparatura Badania i analizy wyników Laboratoryjne Terenowe

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

STRESZCZENIE PRACY MAGISTERSKIEJ

STRESZCZENIE PRACY MAGISTERSKIEJ WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego STRESZCZENIE PRACY MAGISTERSKIEJ MODELOWANIE D I BADANIA NUMERYCZNE BELKOWYCH MOSTÓW KOLEJOWYCH PODDANYCH DZIAŁANIU POCIĄGÓW SZYBKOBIEŻNYCH Paulina

Bardziej szczegółowo

Autor Tomasz Daniek, promotor Cyprian T. Lachowicz

Autor Tomasz Daniek, promotor Cyprian T. Lachowicz Autor Tomasz Daniek, promotor Cyprian T. Lachowicz 5. NUMERYCZNA ANALIZA PŁYTY SITOWEJ 5.1 Wprowadzenie. Model geometryczny oraz obliczenia wykonane zostały za pomocą interaktywnego i darmowego programu

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Analiza pracy betonowej konstrukcji nawierzchni lotniskowej

Analiza pracy betonowej konstrukcji nawierzchni lotniskowej LINEK Małgorzata 1 NITA Piotr 2 Analiza pracy betonowej konstrukcji nawierzchni lotniskowej WSTĘP Podłoże gruntowe pod nawierzchnią lotniskową, jako integralna część konstrukcji, przejmuje obciążenia generowane

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych

Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Ten fakt, że matematyka obliczeniowa nie daje żadnych przepisów dla tworzenia operatora uwarunkowania wstępnego B, doprowadzi

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica Górnictwo i Geoinżynieria Rok 30 Zeszyt 1 2006 Sławomir Badura*, Dariusz Bańdo*, Katarzyna Migacz** ANALIZA WYTRZYMAŁOŚCIOWA MES SPĄGNICY OBUDOWY ZMECHANIZOWANEJ GLINIK 15/32 POZ 1. Wstęp Obudowy podporowo-osłonowe

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Analiza wytrzymałościowa oraz badania niszczące wirujących dysków

Analiza wytrzymałościowa oraz badania niszczące wirujących dysków Prof. dr hab. inż. Edward Chlebus, Politechnika Wrocławska Prof. Dr.-Ing. habil. Werner Hufenbach, Technische Universität Dresden Dr inż. Piotr Górski, Politechnika Wrocławska Dr inż. Kamil Krot, Politechnika

Bardziej szczegółowo

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Szybkobieżne Pojazdy Gąsienicowe (30) nr 2, 2012 Alicja ZIELIŃSKA PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Streszczenie: W artykule opisano proces weryfikacji wyników

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 3 (162) 2005

ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 3 (162) 2005 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 3 (162) 2005 Bogdan Szturomski WYTYCZNE DO TENSOMETRYCZNYCH POMIARÓW ROZCIĄGANIA PRÓBKI ALUMINIOWEJ PODDANEJ JEDNOSTRONNEMU ODDZIAŁYWANIU CZYNNIKA

Bardziej szczegółowo

PODSTAWY I ZASTOSOWANIA INśYNIERSKIE MES

PODSTAWY I ZASTOSOWANIA INśYNIERSKIE MES PODSTAWY I ZASTOSOWANIA INśYNIERSKIE MES Mechanika i Budowa Maszyn Wprowadzenie do laboratorium podział zadań 1. preprocessing projektant definicja geometrii: obszar lub węzły i elementy wybór typu elementu

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

Dynamiczne zagadnienie własne płyty drogowej o nawierzchni betonowej

Dynamiczne zagadnienie własne płyty drogowej o nawierzchni betonowej PAWLAK Urszula 1 SZCZECINA Michał 2 Dynamiczne zagadnienie własne płyty drogowej o nawierzchni betonowej WSTĘP Nawierzchnia dróg jest konstrukcją inżynierską, która przejmuje i przenosi na podłoże gruntowe

Bardziej szczegółowo

Trzy lekcje metody elementów skończonych

Trzy lekcje metody elementów skończonych Wiesław Śródka Trzy lekcje metody elementów skończonych Materiały pomocnicze do przedmiotu wytrzymałość materiałów Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2004 Recenzent Marek WITKOWSKI Opracowanie

Bardziej szczegółowo

Politechnika Swietokrzyska PRACA DOKTORSKA

Politechnika Swietokrzyska PRACA DOKTORSKA Politechnika Swietokrzyska Wydzial Mechatroniki i Budowy Maszyn PRACA DOKTORSKA mgr inz. Slawomir Koczubiej Model powlokowo-belkowy MES w analizie statycznej i statecznosci konstrukcji o pretach cienkosciennych

Bardziej szczegółowo

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu Obliczenia statyczne ekranu - 1 - dw nr 645 1. OBLICZENIE SŁUPA H = 4,00 m (wg PN-90/B-0300) wysokość słupa H 4 m rozstaw słupów l o 6.15 m 1.1. Obciążenia 1.1.1. Obciążenia poziome od wiatru ( wg PN-B-0011:1977.

Bardziej szczegółowo

Zastosowanie metod numerycznych. Teresa Regińska Instytut Matematyczny PAN. E-mail: reginska@impan.pl http://www.impan.pl/ reginska/wyklady2011

Zastosowanie metod numerycznych. Teresa Regińska Instytut Matematyczny PAN. E-mail: reginska@impan.pl http://www.impan.pl/ reginska/wyklady2011 Zastosowanie metod numerycznych Teresa Regińska Instytut Matematyczny PAN E-mail: reginska@impan.pl http://www.impan.pl/ reginska/wyklady2011 Wykład cz.iii, CSZ PW, semestr letni 2013 Wykład jest współfinansowany

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo