TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE

Wielkość: px
Rozpocząć pokaz od strony:

Download "TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE"

Transkrypt

1 PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

2 Tematyka wykładu 1 ES tarczowe dla UP Najprostszy ES tarczowy CST ES tarczowy Q4 ES wyższych rzędów 2 ES płytowy czterowęzłowy 3 Podsumowanie i klasyfikacja ES dla UP ES elementy skończone UP ustroje powierzchniowe

3 Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy Y v1 3 v3 u3 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 3 Liczba stopni swobody elementu: LSSE = LSSW LWE = 6 1 u1 2 v2 u2 X Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u i v używane są biliniowe funkcje kształtu N i, i = 1, 2, 3: u n (2 1) = Nn (2 6) qe n (6 1) CST Constant Strain Triangle

4 Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy u n = N n q e n [ N e N e = 1 0 N2 e 0 N3 e 0 0 N1 e 0 N2 e 0 N3 e N 1(x e, y e ) 1 1 x e 2 3 y e N 2(x e, y e ) 1 x e 1 ], q e = 2 q 1 q 2 q 3 q 4 q 5 q 6 3 y e Ogólne właściwości funkcji kształtu: N i = 1 w węźle i 0 w pozostałych węzłach LWE i=1 N i = 1 N 3(x e, y e ) 1 x e y e

5 ES tarczowy Q4 ES tarczowy Q4 prostokątny, 4-węzłowy b u 4 u 1 v 4 v 1 Y η = 2 y/b a v 3 u 3 ξ = 2 x/a X u 2 v 2 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 4 Liczba stopni swobody elementu: LSSE = LSSW LWE = 8 Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 u 4, v 4 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u(ξ, η) i v(ξ, η) używane są funkcje kształtu N i (ξ, η), i = 1, 2, 3, 4, biliniowe (liniowe względem dwu bezwymiarowych unormowanych współrzędnych ξ, η [ 1, +1]): u n (ξ, η) (2 1) = {u(ξ, η), v(ξ, η)} = N n (2 8) qe (8 1) n u(ξ, η) = N 1 u 1 + N 2 u 2 + N 3 u 3 + N 4 u 4 v(ξ, η) = N 1 v 1 + N 2 v 2 + N 3 v 3 + N 4 v 4

6 ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP ES tarczowy Q4 Biliniowe funkcje kształtu dla ES tarczowego 4-węzłowego N1 = 14 (1 ξ)(1 η) N2 = 14 (1 + ξ)(1 η) N3 = 14 (1 + ξ)(1 + η) N4 = 14 (1 ξ)(1 + η)

7 ES tarczowy Q4 Bazowy element wzorcowy dla elementu Q4 Część obliczeń wykonywana jest na elemencie wzorcowym, np. wyznaczanie macierzy pochodnych funkcji kształtu: B = L N. Element wzorcowy: ξ, η [ 1, 1] [ ξ η { x, y = J [ x y } { ξ, η Macierz ] Jacobiego - relacja między pochodnymi ] [ x y ξ ξ, gdzie: J = x η } y η ]

8 ES tarczowy Q4 Wektor zastępników obciążeń powierzchniowych Wektor obciążeń powierzchniowych: Macierz funkcji kształtu: ˆp n e = {ˆp x, ˆp y } T [ ] N n (2 8) = N1 0 N 2 0 N 3 0 N N 1 0 N 2 0 N 3 0 N 4 Wektor zastępników węzłowych obciążeń powierzchniowych: f(8 1) n e = N n (8 2) et ˆpn (2 1) e da A e Gdy fragment brzegu A e leży na brzegu obszaru A σ, to podobnie obliczamy wektor zastępników węzłowych obciążeń brzegowych f n e b(8 1).

9 ES tarczowy Q4 Macierz sztywności tarczowego ES 4-węzłowego Macierz sztywności: k e (8 8) n = B nt (8 3) Dn (3 3) Bn (3 8) da A e Macierz związków kinematycznych: N 1 B n x 0... (3 8) = N 0 1 y... 0 N 1 N 1 y x... N 4 x 0 N 4 y N 4 N 4 y x Macierz związków fizycznych: D n (3 3) = Dn 1 ν 0 ν ν Sztywność tarczowa: D n = E h 1 ν 2

10 ES wyższych rzędów ES izoparametryczne Aproksymacja geometrii: P Ω e : x P (ξ, η) = N(ξ, η) x e, gdzie: x i y i [ ] x j xp x P =, x y e = y j P x k y k x l y l ES jest izoparametryczny jeśli do aproksymacji geometrii i pola przemieszczeń wykorzystujemy te same węzły i te same funkcje kształtu. x(ξ, η) = N(ξ, η) x e u(ξ, η) = N(ξ, η) q e

11 ES wyższych rzędów ES wyższych rzędów tarczowe Typ: LST Q8 Q LSSE = 12 LSSE = 16 LSSE = Wzrastająca liczba węzłów podwyższa stopień wielomianu interpolacyjnego do opisu geometrii i pola przemieszczeń.

12 ES wyższych rzędów Trójkąt Pascala Q9 Q4 1 x y CST x 2 x y y 2 x 3 x 2 y x y 2 y 3 x 2 y 2 Q8 LST

13 ES wyższych rzędów Całkowanie numeryczne ES Kwadratura Gaussa 1 1 k e = B T DB h da = B(ξ, η) T D B(ξ, η) h det J dξdη A e 1 1 n m w i w j B T (i,j) D B (i,j) h det J (i,j) i=1 j=1 Całkowanie Q4 Q8 pełne (FI) zredukowane (RI)

14 ES płytowy dla płyt cienkich prostokątny, 4-węzłowy, dostosowany LSSW = 4 LWE = 4 LSSE = LSSW LWE = 16 Aproksymacji wewnątrz ES podlega funkcja ugięcia w(x, y) z użyciem następującego wektora węzłowych i elementowych SS: q m w(4 1) = {w, ϕ x, ϕ y, χ} T w = {w, w/ y, w/ x, 2 w/ x y} T w q e m (16 1) = {w 1, ϕ x1, ϕ y1, χ χ 4 } T

15 Aproksymacja pola ugięcia Bezwymiarowe współrzędne powierzchniowe ξ = 2 ( x a ) 1, η = 2 ( y b ) 1 Wielomianowa aproksymacja: w(ξ, η) = (α 1 + α 2 ξ + α 3 ξ 2 + α 4 ξ 3 )(β 1 + β 2 η + β 3 η 2 + β 4 η 3 ) = C 1 + C 2 ξ + C 3 η + C 4 ξ 2 + C 5 ξη + C 6 η 2 + C 7 ξ 3 + C 8 ξ 2 η + C 9 ξη 2 + C 10 η 3 + C 11 ξ 3 η + C 12 ξ 2 η 2 + C 13 ξη 3 + C 14 ξ 3 η 2 + C 15 ξ 2 η 3 + C 16 ξ 3 η 3 w(ξ, η) = N m m (1 16)(ξ, η) qe (16 1) = = {N1 1, N2 1, N3 1, N4 1, N N4 4 } {w 1, ϕ x1, ϕ y1, χ 1 w χ 4 } T

16 ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP Bisześcienne funkcje kształtu dla pierwszego węzła elementu płytowego, 4-wezłowego (bazowego) N11 odpowiadająca w1 N12 odpowiadająca ϕx1 N13 odpowiadająca ϕy 1 N14 odpowiadająca χ1

17 Aproksymacja pól wtórnych Pola odkształceń i momentów Odkształcenia: e m = [3 1] [3 1] Lm N [1 16] qe [16 1] = B e [3 16] qe = [16 1] = {B 1, B 2, B 3, B 4 } {q 1, q 2, q 3, q 4 } T B i = L m N i = [3 4] [3 1][1 4] 2 / x 2 2 / y / x y [ N 1 i N 2 i N 3 i N 4 i ] Momenty zginające: s m = [3 1] [3 3] Dm [3 1] em = [3 3] Dm [3 16] Be qe [16 1]

18 Macierz sztywności płytowego ES 4-węzłowego Macierz sztywności: k e (16 16) m = B mt (16 3) Dm (3 3) Bm (3 16) da A e Macierz związków kinematycznych: B m (3 16) = Macierz związków fizycznych: 2 N 1 1 x 2 N x 2 N x 2 N x... 2 N x 2 2 N 1 1 y 2 N y 2 N y 2 N y... 2 N y N 1 1 x y 2 2 N 2 1 x y 2 2 N 3 1 x y 2 2 N 4 1 x y N 4 4 x y D m (3 3) = Dm Sztywność płytowa: D m = Eh3 12(1 ν 2 ) 1 ν 0 ν ν 0 0 2

19 ES płytowe dostosowane i niedostosowane Elementy dostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i ciągłość pochodnych normalnej ( ) w e=1 n = ( ) w e=2 b n i stycznej ( ) w e=1 b s = ( ) w e=2 b s. b Elementy niedostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i pochodnej stycznej ( w s ) e=1 b = ( w s ) e=2 b. 1 2 Dla elementów niedostosowanych powierzchnia w(x, y) nie jest gładka, a załomy na styku elementów mogą prowadzić w konsekwencji do rozwiązania odpowiadającego bardziej wiotkiej konstrukcji.

20 Diagram zależności P P 0 E U P P 0 E U σ E +h/2...z dz h/2 (Lm ) T s m ˆp = {ˆp z } D m ( ) N A fp e F K k e Q=F ɛ z e m L m u = {w} N q e A 1 Q ( ) oznacza [( L m ) T D m ( L m )]u m ˆp = 0 A oznacza symbol agregacji, A 1 oznacza powrót z U do E

21 Niekorzystne kształty ES Duża wartość współczynnika wydłużenia (aspect ratio) a a b b b h h b b α β a Prawie trójkąt: a b Trójkątny czworobok Ukosowanie: α β Położenie węzłów (off-center node) Silnie zakrzywiony brzeg

22 Wymagania dla powierzchniowych ES ES dla UP powinny: spełniać warunek geometrycznej izotropii, który wymaga równouprawnienia kierunków x i y (stosujemy tą samą aproksymację w każdym kierunku), mieć zdolność do zreprodukowania stanów stałych odkształceń oraz bezodkształceniowego ruchu sztywnego, zachować ciągłość na granicach międzyelementowych, posiadać odpowiedni stopień wielomianu interpolacyjnego do aproksymacji pola przemieszczeń i odkształceń (!).

23 Klasa ciągłości ES tarczowych i płytowych Tarczowe ES CST i Q4 Stosujemy biliniowe funkcje kształtu do aproksymacji pola przemieszczeń. Zapewniamy ciągłość pola przemieszczeń u klasy C 0. Pole odkształceń stanu membranowego jest opisane pochodnymi cząstkowymi rzędu p = 1. Wymagana jest ciągłość pochodnych przemieszczeń rzędu p 1 = 0. W konsekwencji na granicach międzyelementowych występują skoki wartości składowych wektora odkształcenia (naprężenia) ciągłość klasy C 1. Płytowe ES czterowęzłowe dostosowane Stosujemy bisześcienne funkcje kształtu do aproksymacji pola przemieszczeń (ugięcia). Pole odkształceń stanu giętnego jest opisane pochodnymi cząstkowymi rzędu p = 2. Wymagana jest ciągłość pochodnych ugięcia rzędu p 1 = 1. Ciągłość C 1 (ciągłość ugięcia i ciągłość pierwszych pochodnych) gwarantuje się w ES dostosowanych.

24 Charakter stanu, jaki panuje w ES Rozróżnia się trzy typowe stany: 1 stan membranowy rozpatrywany w powłokach, analogiczny do tarczowego w niezakrzywionych UP, czyli w tarczach, oznaczony indeksem n, 2 stan giętny, któremu towarzyszą w cienkich płytach i powłokach zerowe odkształcenia poprzecznego ścinania, oznaczony indeksem m, 3 stan poprzecznego ścinania, konieczny do uwzględnienia w zginanych ustrojach powierzchniowych umiarkowanie grubych, oznaczony indeksem t (nie był omawiany).

25 Klasyfikacja ES ze względu na analizowane zadania Wyróżniamy typy ES: dla tarcz (płaskiego stanu naprężenia), dla zginanych płyt cienkich oparte na jednoparametrowej teorii Kirchhoffa-Love a (K-L), dla zginanych płyt umiarkowanie grubych oparte na trójparametrowej teorii płyt Mindlina-Reissnera (M-R), dla zakrzywionych powłok oparte na trójparametrowej teorii powłok cienkich K-L, dla zakrzywionych powłok oparte na pięcioparametrowej teorii powłok umiarkowanie grubych M-R, powłokowe, tzw. zdegenerowane, oparte na równaniach kontinuum 3D, zmodyfikowanych hipotezami powłokowymi, spójne z pięcioparametrową teorią powłok cienkich i umiarkowanie grubych M-R, ES bryłowe do dyskretyzacji powłok grubych, korzystające z równań kontinuum 3D.

26 Literatura M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, A. Borkowski, Cz. Cichoń, M. Radwańska, A. Sawczuk, Z. Waszczyszyn. Mechanika budowli. Ujęcie komputerowe. T.3, rozdz.9, Arkady, Warszwa, Cz. Cichoń, W. Cecot, J.Krok, P. Pluciński. Metody komputerowe w liniowej mechanice konstrukcji. Wybrane zagadnienia. Skrypt PK, wydanie 2, Kraków, G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice konstrukcji. Oficyna Wyd. PW, Warszawa, R.D. Cook, D.S. Malkus, M.E. Plesha, R.J Witt. Concepts and Applications of Finite Element Analysis. University of Wisconsin Madison, John Wiley&Sons, O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. VI edition, Elsevier Butterworth Heineman, 2005.

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

Bardziej szczegółowo

Analiza statyczna MES dla dźwigarów powierzchniowych

Analiza statyczna MES dla dźwigarów powierzchniowych Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego Tematyka zajęć 1 Analiza statyczna MES algorytm, porównanie z MRS 2 ES tarczowe

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Metody obliczeniowe - modelowanie i symulacje

Metody obliczeniowe - modelowanie i symulacje Metody obliczeniowe - modelowanie i symulacje J. Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechniki Krakowskiej Strona domowa: www.l5.pk.edu.pl Zagadnienia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

ZWIĘKSZENIE NOŚNOŚCI ŁOŻYSK WIELKOGABARYTOWYCH METODĄ KOREKCJI BIEŻNI. 1. Wstęp. Tadeusz Smolnicki*, Grzegorz Przybyłek*, Mariusz Stańco*

ZWIĘKSZENIE NOŚNOŚCI ŁOŻYSK WIELKOGABARYTOWYCH METODĄ KOREKCJI BIEŻNI. 1. Wstęp. Tadeusz Smolnicki*, Grzegorz Przybyłek*, Mariusz Stańco* Górnictwo i Geoinżynieria Rok 31 Zeszyt 2 2007 Tadeusz Smolnicki*, Grzegorz Przybyłek*, Mariusz Stańco* ZWIĘKSZENIE NOŚNOŚCI ŁOŻYSK WIELKOGABARYTOWYCH METODĄ KOREKCJI BIEŻNI 1. Wstęp Obrót nadwozia jest

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Analiza płyt i powłok MES Zagadnienie wyboczenia

Analiza płyt i powłok MES Zagadnienie wyboczenia Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB/BM+BŚ+BO Jerzy Pamin i Marek Słoński nstytut Technologii nformatycznych w nżynierii Lądowej Politechnika

Bardziej szczegółowo

Rozwiązywanie zagadnień nieliniowych

Rozwiązywanie zagadnień nieliniowych Rozwiązywanie zagadnień nieliniowych Wykład 4 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika Krakowska Podziękowania:

Bardziej szczegółowo

Program zajęć z przedmiotu Mechanika Budowli I na studiach niestacjonarnych I stopnia, na 2 roku Wydziału Inżynierii Lądowej (semestry: 5 i 6)

Program zajęć z przedmiotu Mechanika Budowli I na studiach niestacjonarnych I stopnia, na 2 roku Wydziału Inżynierii Lądowej (semestry: 5 i 6) Program zajęć z przedmiotu Mechanika Budowli I na studiach niestacjonarnych I stopnia, na 2 roku Wydziału Inżynierii Lądowej (semestry: 5 i 6) Wymagania: Zaliczenie Wytrzymałości materiałów z semestru

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY WYDZIAŁ INFORMATYKI mgr inż. Bartłomiej Żyliński Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych rozprawa

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Analiza wyboczenia MES

Analiza wyboczenia MES Analiza wyboczenia MES Jerzy Pamin i Marek Słoński e-mails: {JPamin,MSlonski}@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com ROBOT http://www.autodesk.com Zjawisko

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Projektowanie systemów EM. Metoda elementów skończonych

Projektowanie systemów EM. Metoda elementów skończonych Projektowanie systemów EM Metoda elementów skończonych Wstęp Podstawy obliczeń MES Etapy definicji modelu numerycznego Rodzaje problemów moduły obliczeniowe Wybrane wyniki obliczeń 2 dr inż. Michał Michna

Bardziej szczegółowo

Rozważania o metodzie elementów skończonych Some considerations on the finite element method

Rozważania o metodzie elementów skończonych Some considerations on the finite element method Przegląd Naukowy Inżynieria i Kształtowanie Środowiska nr 62, 2013: 502 510 (Prz. Nauk. Inż. Kszt. Środ. 62, 2013) Scientific Review Engineering and Environmental Sciences No 62, 2013: 502 510 (Sci. Rev.

Bardziej szczegółowo

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (19) nr 1, 2004 Alicja ZIELIŃSKA WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Streszczenie: W artykule przedstawiono weryfikację sztywności konstrukcji

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLIX NR (73) Lesł aw Kyzioł Leszek Kubitz Akademia Marynarki Wojennej ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ STRESZCZENIE Przedstawiono

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem

Bardziej szczegółowo

VI. FIGURY GEOMETRYCZNE i MODELE

VI. FIGURY GEOMETRYCZNE i MODELE VI. FIGURY GEOMETRYCZNE i MODELE 6.1. Wprowadzenie Jednym z głównych zastosowań grafiki komputerowej jest modelowanie obiektów, czyli ich opis matematyczny, na podstawie którego na ekranie można stworzyć

Bardziej szczegółowo

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

MES w zagadnieniach nieliniowych

MES w zagadnieniach nieliniowych MES w zagadnieniach nieliniowych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,

Bardziej szczegółowo

Mechanika Teoretyczna Kinematyka

Mechanika Teoretyczna Kinematyka POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl

Bardziej szczegółowo

ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU

ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU PIĘĆDZIESIĄTA PIERWSZA KONFERENCJA NAUKOWA KOMITETU INŻYNIERII LĄDOWEJ I WODNEJ PAN I KOMITETU NAUKI PZITB Gdańsk Krynica 2005 Dariusz KOWALSKI 1 ANALIZY NUMERYCZNE POWŁOK WALCOWYCH Z IMPERFEKCJAMI KSZTAŁTU

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

I. Temat ćwiczenia: Definiowanie zagadnienia fizycznie nieliniowego omówienie modułu Property

I. Temat ćwiczenia: Definiowanie zagadnienia fizycznie nieliniowego omówienie modułu Property POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 8 Opracował: dr inż. Hubert Dębski I. Temat

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2030/2031 Kod: MEI-1-305-s Punkty ECTS: 2 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Specjalność:

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Matematyka stosowana Rok akademicki: 2013/2014 Kod: WGG-1-304-s Punkty ECTS: 5 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Górnictwo i Geologia Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wytrzymałość materiałów IMiR - IA - Wykład Nr 1 Wprowadzenie. Pojęcia podstawowe. Literatura, podstawowe pojęcia, kryteria oceny obiektów, założenia wytrzymałości materiałów, siły wewnętrzne i ich wyznaczanie,

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES 4 Zbieżność. Wskaźniki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Wytrzymałość materiałów Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

3 Podstawy teorii drgań ośrodków ciągłych

3 Podstawy teorii drgań ośrodków ciągłych 3 Podstawy teorii drgań ośrodków ciągłych 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny o końcach

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Joanna Dulińska Radosław Szczerba Wpływ parametrów fizykomechanicznych betonu i elastomeru na charakterystyki dynamiczne wieloprzęsłowego mostu żelbetowego z łożyskami elastomerowymi Impact of mechanical

Bardziej szczegółowo

STATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO

STATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO MODELOWNIE INŻYNIERSKIE ISSN 896-77X 44, s. 99-08, Gliwice 0 STTECZNOŚĆ SPRĘŻYST TRÓJKĄT HMULCOWEGO KRZYSZTOF MGNUCKI,), SZYMON MILECKI ), ) Instytut Mechaniki Stosowanej, Politechnika Poznańska, ) Instytut

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Podstawowa wiedza i umiejętności z zakresu matematyki oraz fizyki. Znajomość jednostek układu SI

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Podstawowa wiedza i umiejętności z zakresu matematyki oraz fizyki. Znajomość jednostek układu SI KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Wytrzymałość 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: I Stopnia 4. ROK/ SEMESTR STUDIÓW: II/ 3 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 w, 15

Bardziej szczegółowo

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Budownictwo 16 Halina Kubiak, Maksym Grzywiński WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Wstęp Zadaniem analizy wrażliwości konstrukcji jest opisanie zależności pomiędzy odpowiedzią determinowaną

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5 Tablice i wzory do projektowania konstrukcji żelbetowych z przykładami obliczeń / Michał Knauff, Agnieszka Golubińska, Piotr Knyziak. wyd. 2-1 dodr. Warszawa, 2016 Spis treści Podstawowe oznaczenia Spis

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

8. WIADOMOŚCI WSTĘPNE

8. WIADOMOŚCI WSTĘPNE Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie 1. Materiał budowlany "drewno" 1.1. Budowa drewna 1.2. Anizotropia drewna 1.3. Gęstość drewna 1.4. Szerokość słojów rocznych 1.5. Wilgotność drewna 1.6.

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo