Wprowadzenie do Metody Elementu Skończonego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do Metody Elementu Skończonego"

Transkrypt

1 Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland Praca dostępna w internecie: fatcat.ftj.agh.edu.pl/~i6balone/mes.pdf, fatcat.ftj.agh.edu.pl/~i6gozdur/mes.pdf Streszczenie Metoda elementów skończonych (MES) jest jednym z szeroko stosowanych narzędzi obliczeniowych w nauce i inżynierii. W niniejszej pracy staraliśmy się przedstawić podstawowe właściwości metody i jej zastosowania. Na początku przedstawiamy pojęcie elementu skończonego i matematyczne uzasadnienie jego wprowadzenia, następnie opisujemy algorytm wykorzystywany w MES i strukturę wykorzystujących go aplikacji. Na koniec przeglądamy dziedziny w których MES znalazł zastosowanie i określamy jego miejsce wśród narzędzi obliczeniowych.

2 SPIS TREŚCI 2 Spis treści 1 Wprowadzenie 3 2 Analiza Skończenie Elementowa Element Skończony Analiza Skończenie Elementowa Matematyczna teoria FEM 5 4 Etapy rozwiązywania problemu 6 5 Adaptacyjna metoda elementów skończonych 8 6 Zagadnienia wielkiej skali 8 7 Etapy realizacji symulacji 8 8 Struktura aplikacji 8 9 Obszary zastosowań MES 9 10 Podsumowanie 9

3 1 Wprowadzenie 3 1 Wprowadzenie Metoda Elementów Skończonych(z ang FEM - Finite Element Method) jest jednym z podstawowych narzędzi stosowanych w obliczeniach inżynierskich i naukowych. Podstawowym założeniem tej metody jest rezygnacja z analitycznego rozwiazania problemu na rzecz podziału obszaru na elementy skończone (np. odcinki dla przestrzeni jednowymiarowej) i przeprowadzenie obliczeń tylko dla wyróżnionych punktów (węzłów tego podziału). Poza węzłami rozwiązanie przybliżane jest na podstawie wyników otrzymanych dla poszczególnych węzłów. Rozwój MES/FEM przebiegał równolegle z rozwojem komputerów i wynikał głównie z potrzeby analizy coraz bardziej złożonych konstrukcji. Pierwszą pracę na temat metody opublikował w 1943 francuski matematyk Courant (nowa metoda podziału na odcinki/elementy ). Na początku prace dotyczyły tylko prostych przypadków jednowymiarowych: obliczenia prowadzone były dla ciał o stałych własnościach materiałowych, dających się opisać za pomocą równań liniowych, np. w latach pięćdziesiątych w firmie Boeing analizowano za jej pomocą właściwości skrzydeł typu delta. W latach sześćdziesiątych pojawia się nazwa ëlement skończonyï dopracowano do dopracowania matematycznej strony metody, po raz pierwszy zastosowano także FEM w obliczeniach niekonstrukcyjnych. Do lat osiemdziesiątych najbardziej zaawansowane modele zajmowały się w dalszym ciągu prostymi geometriami 1D i 2D, czasem o własnościach opisanych równaniami nieliniowymi. Dopiero wzrost mocy obliczeniowej komputerów pozwolił na modelowanie obiektów 3D o dowolnych geometriach i wprowadzenie metody do aplikacji CAE. 2 Analiza Skończenie Elementowa 2.1 Element Skończony Element skończony jest prostą figurą geometryczną (płaską lub przestrzenną), dla której określone zostały wyróżnione punkty zwane węzłami, oraz pewne funkcje interpolacyjne służące do opisu rozkładu analizowanej wielkości w jego wnętrzu i na jego bokach. Funkcje te nazywa się funkcjami węzłowymi, bądź funkcjami kształtu. Węzły znajdują się w wierzchołkach elementu skończonego, ale mogą być również umieszczone na jego bokach i w jego wnętrzu. Jeżeli węzły znajdują się tylko w wierzchołkach, to element skończony jest nazywany elementem liniowym (ponieważ funkcje interpolacyjne są wtedy liniowe). W pozostałych przypadkach mamy do czynienia z elementami wyższych rzędów. Rząd elementu jest zawsze równy rzędowi funkcji interpolacyjnych (funkcji kształtu). Liczba funkcji kształtu w pojedynczym elemencie skończonym jest równa liczbie jego węzłów. Funkcje kształtu są zawsze tak zbudowane, aby w węzłach których dotyczą ich wartości wynosiły jeden, a pozostałych węzłach przyjmowały wartość zero.

4 2.1 Element Skończony 4 Rysunek 1: Przykłady elementow skończonych w przestrzeniach 1-, 2- i 3- wymiarowej. Rysunek 2: Przykład dyskretyzacji modelu ciągłego. a) model ciągły, b) model dyskretny idealny, c) model dyskretny numeryczny

5 2.2 Analiza Skończenie Elementowa Analiza Skończenie Elementowa FEA (Finite Element Analysis) zajmuje się analizą konstrukcji za pomocą elementów skończonych. Typowym postępowaniem jest tutaj podział analizowanego systemu na podsystemy (elementy) i opis ich zachowań za pomocą zbioru parametrów. Następnie za pomocą macierzy dla każdego elementu określane są zależności tych parametrów; macierze te służą następnie do konstruowania równań opisujących całościowe zachowanie systemu. Widać tutaj ogólne przesłanie towarzyszące wprowadzeniu do obliczeń elementu skończonego: dzięki dyskretyzacji problemu możliwe jest uniknięcie skomplikowanego (często niemożliwego) rozwiązywania problemu od strony analitycznej. W jaki sposób omawiana metoda łączy się z FEM? Otóż każdy przypadek FEA można traktować jako przypadek szczególny FEM. Analiza skończenie elementowa jest dzisiaj szeroko stosowana w inżynierii, daje się także rozszerzyć na zagadnienia nieliniowe, jednak ze względu na mniejszą elastyczność i mniej rozwiniętą teorię ustępuje częściej stosowanej metodzie elementu skończonego. 3 Matematyczna teoria FEM Zajmujemy się przestrzenią liniową F ze zdefiniowanym iloczynem skalarnym <, >. Elementy przestrzeni F to funkcje, dla których zdefiniowane są działania dodawania i mnożenia. Wprowadźmy teraz liniową podprzestrzeń U przestrzeni F, z tym samym iloczynem skalarnym <, >, oraz liniowy operator różniczkowy A. Operator A określony jest na przestrzeni U, a jego wartości należą do F. Przy założeniu, że A jest operatorem symetrycznym i dodatnio określonym, możemy za jego pomocą wprowadzić nowy iloczyn skalarny w przestrzeni U: < u, v > A =< Au, v > dla funkcji u, v U (1) Zdefiniowany w ten sposób iloczyn skalarny nazywamy iloczynem energetycznym względem operatora A; przestrzeń U do której dołączymy ten iloczyn określamy jako przestrzeń energetyczną operatora A, a u A = < u, u > A norma energetyczną. Poszukujemy należącego do przestrzeni U rozwiązania równania różniczkowego Au = f gdzie f jest funkcją należącą do przestrzeni F. Rozwiązanie tego problemu za pomocą FEM polega na przybliżeniu rozwiązania u za pomocą wielomianowej funkcji sklejanej, wybranej z N-wymiarowej podprzestrzeni U N. Funkcję tą nazywamy elementem skończonym, przybliżającym dokładne rozwiązanie u. Spośród wszystkich elementów U N wybieramy tą, która spełnia warunek u u N A = min u u A Metoda elementu skończonego jest szczególnym przypadkiem metody Rayleigha- Ritza, z wprowadzonymi ograniczeniami dla postaci elementów U N.

6 4 Etapy rozwiązywania problemu 6 Algorytm wyznaczania elementu u N opiera się na poszukiwaniu liniowej kombinacji funkcji stanowiących bazę przestrzeni U N, dla której spełniony jest warunek minimalizowania błędu aproksymacji. 4 Etapy rozwiązywania problemu Proces szukania rozwiązania za pomocą FEM można podzielić ogólnie na trzy etapy: 1. zagadnienie różniczkowe jest przekształcane do postaci wariacyjnej lub całkowej 2. obszar dzielony jest na proste figury geometryczne (elementy skończone) 3. w każdym elemencie przybliżamy procesy za pomocą prostych funkcji bazowych Algorytm poszukiwania rozwiązania za pomocą FEM: 1. Na rozważany obszar należy nałożyć siatkę, dzieląc go na skończoną liczbę prostych geometrycznie elementów. 2. Zakłada się że poszczególne elementy połączone są ze sobą jedynie w skończonej liczbie punktów (węzły siatki). W węzłach określone zostaną wartości wielkości fizycznych, tworzące podstawowy układ niewiadomych. 3. Należy określić funkcje określające wartości wielkości fizycznych wewnątrz elementów (funkcje kształtu, funkcje węzłowe) w zależności od wartości w węzłach. 4. Stosując tak zwane funkcje wagowe przekształca się równania różniczkowe w równania algebraiczne 5. Równania poodaje się asemblacji. Korzystając z równań MES oblicza się wartości współczynników stojących przy niewiadomych oraz odpowiadające im wartości prawych stron (dla zadań niestacjonarnych uwzględnia się warunki początkowe). Liczba równań w tak otrzymanym układzie równa jest iloczynowi liczby węzłów w obiekcie i liczbie stopni swobody każdego węzła (liczbie niewiadomych w każdym węźle) 6. Do macierzy współczynników i wektorów prawych stron wprowadza są warunki brzegowe. 7. Otrzymany układ równań liniowych rozwiązuje się, w wyniku otrzymując poszukiwane wielkości fizyczne w węzlach. 8. Dalsze kroki zależą od typu rozwiązywanego zadania, np. oblicza się dodatkowe wielkości, lub (dla zadań niestacjonarnych) powtarza się asemblację i następne kroki aż do spełnienia zadanych warunków. Rozwiązanie uzyskane w ten sposób jest oczywiście rozwiązaniem przybliżonym. Dokładne oszacowanie błędu aproksymacji jest niemożliwe ze względu na nieznajomość prawdziwego rozwiązania, jednak opierając się na postaci rozwiązywanego problemu, kształtach elementów skończonych i własnościach przestrzeni aproksymacji można ograniczyć go z góry w celu określenia jakości metody.

7 4 Etapy rozwiązywania problemu 7 Rysunek 3: Przykład zastosowania Adaptacyjnej MES: siatka adaptacyjna konstruowana tak, aby przeprowadzać poprawę aproksymacji tylko tam, gdzie jest ona najbardziej potrzebna. Ilustracja przedstawia diapir - strukturę geologiczną, powstałą w wyniku migracji skał ku powierzchni Ziemi. Zazwyczaj starsze skały o mniejszej gęstości przebijają skały młodsze (najczęściej osadowe) o gęstości większej. Struktury diapirowe mają najczęściej postać kominów, grzybów, ścian itp. Źródło: diapir 2-phases.gif

8 5 Adaptacyjna metoda elementów skończonych 8 5 Adaptacyjna metoda elementów skończonych Biorąc pod uwagę sposób w jaki szacujemy błąd aproksymacji istnieje możliwość zwiększenia precyzji metody przez zmniejszanie rozmiarów elementów skończonych i podnoszenie stopnia aproksymacji. Oczywiście wiąże się to z większym zapotrzebowaniem na moc obliczeniową rozwiązaniem jest oparcie się na znajomości zjawiska i wprowadzenie tych zmian lokalnie, w miejscach w których szczególnie zależy nam na zminimalizowaniu błędu (zobacz rys. 3). 6 Zagadnienia wielkiej skali jednak Dla uzyskania wysokiej dokładności obliczeń często konstruuje się modele o bardzo dużej liczbie stopni swobody, nierzadko przekraczającej milion. W celu rozwiązaniu tak dużych problemów stosuje się zaawansowane algorytmy o jak najmniejszej złożoności obliczeniowej oraz równoległe systemy komputerowe (klastry, gridy). 7 Etapy realizacji symulacji Pierwszym krokiem jest wybór bądź stworzenie modelu matematycznego zjawiska. Model taki jest następnie przekształcany w model numeryczny równania różniczkowe przekształcane są do postaci całkowej lub wariacyjnej, wybierane są techniki szacowania błędu. Następnym krokiem jest wybór algorytmów które posłużą do rozwiązywania układów równań, całkowania numerycznego, dyskretyzacji czasowej itp. Mając model numeryczny i algorytmy można przejść do implementacji wyboru struktur danych, sposobu realizacji, analizy architektury systemu komputerowego. Problem zostaje wymodelowany geometrycznie, zaprojektowana i nałożona zostaje siatka (istotny jest tutaj wybór kształtu elementu skończonego). Utworzony układ równań liniowych zostaje rozwiązany, a wyniki prezentowane są (najczęściej) w formie graficznej. 8 Struktura aplikacji Współczesne aplikacje komputerowego wspomagania projektowania CAE (ang. Computer Aided Engineering) wykorzystujące metodę elementów skończonych składają się z trzech wzajemnie współpracujących elementów: preprocesor służy m.in. do importu lub przygotowania geometrii, doboru rodzaju elementów skończonych, dyskretyzacji kontinuum, a także przyłożenia warunków brzegowych procesor (solver) - moduł przeznaczony do budowy oraz rozwiązania układu równań, na podstawie którego uzyskuje się poszukiwane wartości danych wielkości fizycznych postprocesor (moduł służący do prezentacji oraz wspomagania interpretacji uzyskanych wyników

9 9 Obszary zastosowań MES 9 9 Obszary zastosowań MES MES znalazła zastosowanie w rozmaitych dziedzinach nauki i inżynierii do aproksymacji podstawowych równań różniczkowych fizyki matematycznej: mechanika ciała odkształcalnego równania teorii sprężystości i plastyczności mechanika płynów równania Naviera - Stokesa akustyka równania falowe elektromagnetyzm równania Maxwella fizyka atomowa równania Schrödingera medycyna modelowanie implantów, pól fizycznych wewnątrz ciała człowieka, tkanek, przepływu krwi 10 Podsumowanie Modelowanie z wykorzystaniem MES pozwala rozwiązać problemy dla których wyznaczenie analitycznego rozwiązania jest często niemożliwe, jednak nie zastąpi całkowicie innych metod modelowania (np. fizycznego). W zasadzie powinno się używać - jeśli tylko to możliwe - kilku metod analizy jednocześnie w celu poprawnej analizy zagadnienia. Przy rozwiązywaniu problemu metodą elementów skończonych należy pamiętać że samo osiatkowanie modelu nie jest jedynym ważnym elementem modelowania (choć niewątpliwie bardzo istotnym z punktu widzenia chociażby dokładności wyników). Otrzymanie pierwszych wyników jest przeważnie łatwe, ale otrzymanie wyników dokładnych wiąże się z rozwiązaniem analitycznym problemu, o czym często się zapomina. Specjaliści radzą aby przed rozpoczęciem rozwiązywania danego problemu MES dobrze zrozumieć rzeczywisty proces. Ze względu na to, że MES jest matematyczną implementacją problemu fizycznego, należy znać założenia i ograniczenia modeli teoretycznych. Kompetentny użytkownik musi wiedzieć jak zachowują się poszczególne elementy a otrzymane wyniki powinny być sprawdzone aby mieć pewność że problem został opisany prawidłowo.

10 References 1. Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, Wyd. Naukowo- Techniczne., Warszawa A. Budzyński. Krótki wstęp do zastosowania Metody Elementów Skończonych do numerycznych obliczeń inżynierskich [online]. Dostępny w Internecie: 3. R. Cacko. Metoda elementów skończonych (MES), wykład z Modelowania Procesów Materiałowych [online]. Dostępny w Internecie: 4. K. Banaś. Metoda Elementów Skończonych [online]. Seminarium BIT CM UJ, 17 maja Dostępny w internecie:

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Projektowanie systemów EM. Metoda elementów skończonych

Projektowanie systemów EM. Metoda elementów skończonych Projektowanie systemów EM Metoda elementów skończonych Wstęp Podstawy obliczeń MES Etapy definicji modelu numerycznego Rodzaje problemów moduły obliczeniowe Wybrane wyniki obliczeń 2 dr inż. Michał Michna

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Fizyka komputerowa(ii)

Fizyka komputerowa(ii) Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU IX Konferencja naukowo-techniczna Programy MES w komputerowym wspomaganiu analizy, projektowania i wytwarzania MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r. Rektor Uniwersytetu Rzeszowskiego al. Rejtana 16c; 35-959 Rzeszów tel.: + 48 17 872 10 00 (centrala) + 48 17 872 10 10 fax: + 48 17 872 12 65 e-mail: rektorur@ur.edu.pl Uchwała nr 282/03/2014 Senatu Uniwersytetu

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

Metody numeryczne w biomechanice

Metody numeryczne w biomechanice Metody numeryczne w biomechanice wykład w 14 odsłonach Jakub J. Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wrocław 2014 Minister Edukacji ostrzega: Slajdy z wykładu, to czasem za mało. Jakub

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas OCENA DOPUSZCZAJĄCA (wymagania na ocenę dopuszczającą są równoważne z minimum programowe dla klasy VI)

Bardziej szczegółowo

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja

Bardziej szczegółowo

Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM. Karol Wędołowski 06.04.2011

Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM. Karol Wędołowski 06.04.2011 Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM Karol Wędołowski 06.04.2011 Część 2. Struktura case'u na przykładzie przepływu w zagłębieniu 1. Potrzebne katalog i pliki W tej

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Metoda elementów skończonych. dr inż. Michał Michna

Metoda elementów skończonych. dr inż. Michał Michna Metoda elementów skończonych dr inż. Michał Michna Wstęp Programy stosowane w KEiME Vector Fields - Opera 3D Cedrat (INPG)- Flux2D, Flux3D Ansoft Maxwell SV 2D ENSEEIHT Tuluza - EFCad Ansys dr inż. Michał

Bardziej szczegółowo

PRACA DYPLOMOWA INŻYNIERSKA

PRACA DYPLOMOWA INŻYNIERSKA PRACA DYPLOMOWA INŻYNIERSKA Katedra Wytrzymałości Materiałów i Metod Mechaniki. Zastosowanie metody elementów skończonych do oceny stanu wytężenia obudowy silnika pompy próżniowej Student: Tomasz Sczesny

Bardziej szczegółowo

PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016

PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016 PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016 data zatwierdzenia przez Radę Wydziału kod programu studiów pieczęć i podpis dziekana Wydział Matematyczno-Fizyczno-Techniczny

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Ruch granulatu w rozdrabniaczu wielotarczowym

Ruch granulatu w rozdrabniaczu wielotarczowym JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano

Bardziej szczegółowo

WPŁYW CIŚNIENIA WEWNĄTRZGAŁKOWEGO NA STRUKTURY OKA LUDZKIEGO

WPŁYW CIŚNIENIA WEWNĄTRZGAŁKOWEGO NA STRUKTURY OKA LUDZKIEGO POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA INŻYNIERIA BIOMEDYCZNA M O D E L O W A N I E I S Y M U L A C J A Z A G A D N I E Ń B I O M E D Y C Z N Y C H PROJEKT WPŁYW CIŚNIENIA WEWNĄTRZGAŁKOWEGO

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo