Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem."

Transkrypt

1 Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów z moodla zrobić) Kartkówka 1 Opracowanie: Próbkowanie - proces tworzenia sygnału dyskretnego, reprezentującego sygnał ciągły za pomocą ciągu wartości. W ustalonych odstępach czasu mierzona jest wartość chwilowa sygnału i na jej podstawie tworzone są próbki. Częstotliwość próbkowania to odwrotność okresu próbkowania. Aby spróbkowany sygnał z postaci dyskretnej dało się przekształcić bez straty informacji z powrotem do postaci ciągłej częstotliwość próbkowania nie może być mniejsza niż podwojona szerokość pasma sygnału przed spróbkowaniem. Jeśli ten warunek nie jest spełniony, wówczas występuje zjawisko aliasingu. CFT (ciągła transformata Fouriera) - jest przekształceniem ogólnym dlatego, że można z niego korzystać zarówno do sygnałów okresowych, jak i nieokresowych. Dla sygnałów okresowych daje ono takie same wyniki jak rozkład na współczynniki szeregu Fouriera. Dla sygnałów nieokresowych w wyniku CFT otrzymuje się ciągłą funkcję rozkładu. Oznacza to, że sygnał nieokresowy rozkładany jest na nieskończony zbiór sinusoid i kosinusoid, których częstotliwość zmienia się w sposób ciągły. Dlatego w wyniku przekształcenia otrzymujemy

2 ciągłą funkcję rozkładu, która pokazuje, jaka jest amplituda sinusoidy lub kosinusoidy o danej częstotliwości lub pulsacji. DFT (dyskretna transformata Fouriera) - służy do wyznaczania zawartości harmonicznej lub częstotliwościowej sygnału dyskretnego. Pochodzenie DFT bierze swój początek od ciągłego przekształcenia Fouriera. Dzięki temu przekształceniu możemy przetransformować sygnał z dziedziny czasu w dziedzinę częstotliwości, czyli wyznaczyć jego widmo w postaci ciągłej. To z kolei pozwala nam określić zawartość częstotliwościową sygnału. Przeciek - powoduje, że dowolny sygnał wejściowy, którego częstotliwość nie jest dokładnie równa częstotliwości dla której jest wyznaczany dany prążek DFT, przecieka do wszystkich innych wyznaczanych prążków DFT. Przeciek jest nie do uniknięcia, kiedy wyznaczamy DFT rzeczywistego ciągu czasowego o skończonej długości. Algorytm FFT zachodzi tylko gdy długość próbkowania jest potęgą dwójki. Bazuje na metodzie dziel i zwyciężaj rekurencyjnie dzieląc transformatę wielkości N = x*y na transformaty wielkości x i y. 1. Wykonaj x DFT wielkości y 2. Pomnóż przez zespolony pierwiastek z jedynki zwany czynnikami fazowymi. 3. Wykonaj y DFT wielkości x Widmo amplitudowe i fazowe. - Transformata Fouriera jest funkcją o wartościach zespolonych, zatem przy wykonywaniu wykresów widma wygodne jest niezależne przedstawianie modułu oraz argumentu. Wykres widma amplitudowego (wykres modułu) jest funkcją parzystą, pokazuje, jakie są amplitudy składowych widmowych sygnału o różnych częstotliwościach. Wykres widma fazowego (wykres argumentu) jest funkcją nieparzystą, pokazuje, jakie są fazy tych składowych. Widmo zespolone zawiera informację o zawartości częstotliwościowej. Powstaje ono w wyniku wyznaczania miary korelacji (podobieństwa) sygnału do poszczególnych funkcji harmonicznych. Pytania: co mozna odczytac ze spektrogramu Porównując spektrogramy możemy próbować rozpoznać głos. W spektrogramie mamy do czynienia z reprezentacją czasowo-częstotliwościową dźwięku. narysowac przykladowy wykres widma randn

3 wykres widma funkcji randn(1,2000); Wykres widma jest graficznym przedstawieniem transformaty Fouriera jako funkcji częstotliwości lub pulsacji. Z wykresu widma można przykładowo odczytać, jakie składowe harmoniczne wchodzą w skład danego sygnału, czy sygnał ma ograniczone pasmo, jaka jest jego szerokość pasma, czy zawiera składowe wolnozmienne (o małych częstotliwościach) oraz szybkozmienne (o dużych częstotliwościach). jakie warunki ma spełniać widmo żeby było dokładne żeby widmo było dokładne sygnał musi spełniać twierdzenie Kotielnikowa-Shannona (nie może występować aliasing) twierdzenie Kotielnikowa-Shannona o próbkowaniu Jeśli sygnał ciągły nie posiada składowych widma o częstotliwości równej lub większej niż B, to może on zostać wiernie odtworzony z ciągu jego próbek tworzących sygnał dyskretny, o ile próbki te zostały pobrane w odstępach czasowych nie większych niż 1/(2B). co to jest decymacja i jakie ma parametry jest to przekształcenie sygnału dyskretnego, polegające na zachowaniu co M-tej próbki, a odrzuceniu pozostałych. Oznaczając sygnał wejściowy jako, a sygnał wyjściowy jako, możemy zapisać decymację w następujący sposób: Parametr M jest nazywany współczynnikiem decymacji.

4 Sygnał po M-krotnej decymacji zawiera M-krotnie mniej próbek od sygnału przed decymacją, czyli jest próbkowany z M-krotnie mniejszą częstotliwością. Takie obniżenie częstotliwości próbkowania wiąże się z niebezpieczeństwem powstania aliasingu, o ile pasmo sygnału przed decymacją nie będzie odpowiednio ograniczone przy pomocy filtru antyaliasowego. narysować wykres chirp o zadanych parametrach (przykładowy wykres chirp) co to jest aliasing i kiedy występuje? to nieodwracalne zniekształcenie sygnału w procesie próbkowania (wynikające z niespełnienia twierdzenia Kotielnikowa-Shannona o próbkowaniu). Objawia się obecnością w sygnale składowych o błędnych częstotliwościach. zakres częstotliwości sygnału mowy 300Hz - 3kHz (w telefonii), jednakże w wielu wypadkach sygnał mowy może mieć częstotliwości do 8 khz widmo zespolone widmo amplitudowe widmo fazowe algorytm FFT Podstawowe wywołanie funkcji fft ma postać fft(x,nf). Funkcja fft realizuje algorytm FFT, jeśli Nf jest potęgą dwójki. W innych przypadkach realizowany jest algorytm DFT. Kartkówka 2

5 Opracowanie: Równanie różnicowe - dyskretny odpowiednik równania różniczkowego. Rozwiązywanie metodami: Eulera (przewidywanie) oraz Metodą transformaty Laurenta, która jest odpowiednikiem transformaty Laplace'a stosowanym do opisu i analizy układów dyskretnych. Odpowiedź impulsowa (Charakterystyka impulsowa) - odpowiedź układu liniowego na wymuszenie w postaci bardzo wąskiego i bardzo wysokiego impulsu o powierzchni jednostkowej, który można uznać za przybliżenie delty Diraca (w przypadku układów dyskretnych impulsem tym jest impuls Kroneckera). Zera i bieguny transmitancji - Pierwiastki licznika transmitancji określane są zerami transmitancji. Pierwiastki mianownika transmitancji określa się mianem biegunów transmitancji. FIR - filtr o skończonej odpowiedzi impulsowej. Oznacza to tyle, że reakcja na wyjściu tego układu na pobudzenie o skończonej długości jest również skończona. Aby warunek ten był spełniony, w filtrach tego typu nie występuje pętla sprzężenia zwrotnego IIR - układ rekursywny. Oznacza nieskończoną odpowiedź impulsową. Znaczy to tyle, że reakcja na pobudzenie o skończonym czasie trwania jest teoretycznie nieskończenie długa. Jest to efektem występowania pętli sprzężenia zwrotnego Pasmo przepustowe filtru - przedział częstotliwości o skończonej lub nieskończonej szerokości, dla którego filtr wnosi tłumienie nie większe niż przyjęte maksymalne tłumienie dla pasma przepustowego. Granicę pasma przepustowego wyznacza częstotliwość graniczna filtru. Pasmo zaporowe filtru przedział częstotliwości o skończonej lub nieskończonej szerokości, dla którego filtr wnosi tłumienie nie mniejsze niż przyjęte minimalne tłumienie dla pasma zaporowego. Składowe widmowe sygnału wejściowego wypadające w przedziale częstotliwości pasma zaporowego są przez filtr tłumione. Pasmo przejściowe są to częstotliwości pomiędzy pasmem przenoszenia, a pasmem zaporowym, w przypadku gdy wartości graniczne obu pasm są równe, przyjmuje się, że pasmo przejściowe nie występuje. Transmitancja iloraz transformat wielkości charakteryzujących sygnały wejściowy i wyjściowy. Okno - funkcja opisująca sposób pobierania próbek z sygnału. Od postaci funkcji okna zależą różnice pomiędzy widmem sygnału obserwowanego, a widmem wyniku obserwacji.

6 Filtr Butterwortha filtr charakteryzujący się maksymalnie płaską charakterystyką amplitudową w paśmie przenoszenia. Częstotliwość graniczną filtru wyznacza spadek sygnału o 3dB. Filtr Czebyszewa którego charakterystyczną cechą jest wykorzystanie wielomianów Czebyszewa do aproksymacji charakterystyki częstotliwościowej amplitudowej. I typu ma zafalowania przebiegu wzmocnienia w paśmie przepustowym, oraz płaski przebieg charakterystyki w paśmie zaporowym. II typu (inwersyjny) ma zafalowania przebiegu wzmocnienia w paśmie zaporowym, oraz płaski przebieg charakterystyki w paśmie przepustowym. Pytania: Jak położenie zer wpływa na transmitancję filtra? Im dalej od środka układu współrzędnych tym mniejsza wartość początkowa modułu transmitancji. Gdy zera są po prawej stronie to wykres maleje a potem rośnie, a gdy po lewej to tylko rośnie. Definicje: okno, odpowiedź impulsowa, częstotliwość graniczna Okno czasowe funkcja opisująca sposób pobierania próbek z sygnału. Wyobraźmy sobie, że obserwujemy pewien sygnał obserwacji jest sygnał: w skończonym przedziale czasu. Wtedy wynikiem naszej gdzie jest właśnie funkcją okna. Od postaci funkcji okna zależą różnice pomiędzy widmem sygnału obserwowanego, a widmem wyniku obserwacji. Częstotliwość graniczna filtru wartość graniczna częstotliwości, dla której kończy się umowne pasmo przepustowe filtru. W popularnej interpretacji, jest to częstotliwość, poza którą tłumienie wnoszone przez filtr staje się większe niż 3dB w stosunku do tłumienia wewnątrz pasma przepustowego, które idealnie powinno wynosić 0dB. W ścisłej definicji, częstotliwość graniczna pasma przepustowego może być wyznaczona przez punkt o dowolnym tłumieniu, które dla danego filtru wyznaczają gabaryty filtru. Zasadnicza różnica między FIR a IIR?

7 Filtr IIR (nieskończonej odpowiedzi impulsowej) jest układem rekursywnym (teoretycznie nieskończona reakcja na pobudzenie o skończonym czasie trwania), a FIR (skończonej odpowiedzi impulsowej) nie. Co wpływa na pasmo przejściowe filtra podczas projektowania go metodą okna? Różnica między filtrami Czebyszewa a Butterwortha? Mają inaczej położone bieguny Definicja transmitancji na płaszczyźnie Z? Równanie różnicowe? To dyskretny odpowiednik równania różniczkowego. Wyznacza zależność między nieznaną funkcją a jej pochodnymi. Narysować parę zer

8 dla pz = 0.25) dla mz = 0.8 i pz = 0.75 (tak samo wyglada Narysować parę biegunów i moduł transmitancji do nich

9 Widmo sygnału mowy dla filtru przepustowo zaporowego (?) Narysować wykres filtrów Czebyszewa I i II oraz Butterwortha.

10 (Butterworth)

11 (Czebyszewa 1)

12 (Czebyszewa 2) FIR metodą okna (prostokątnego)

13 (trójkątnego) Kartkówka 3 Opracowanie: Estymacja to zbiór metod pozwalających na uogólnianie wyników badania próby losowej na nieznaną postać i parametry rozkładu zmiennej losowej całej populacji oraz szacowanie błędów wynikających z tego uogólnienia. -Estymacja parametryczna występuje wówczas, gdy szacujemy jedynie wartość nieznanych parametrów w znanym typie rozkładu. -Estymacja nieparametryczna zajmuje się modelami i metodami, nie wymagającymi założeń co do rozkładu populacji z której losowana jest próba. Funkcja gęstości prawdopodobieństwa sygnału losowego określa prawdopodobieństwo zdarzenia polegającego na tym, że wartość sygnału w dowolnej chwili jest zawarta w określonym przedziale. Korelacja - związek pomiędzy dwiema zmiennymi losowymi X i Y. Taka zależność oznacza, że znając wartość jednej z nich, da się dokładniej przewidzieć wartość drugiej zmiennej, niż bez jej znajomości. Funkcja autokorelacji sygnału losowego x(t) jest wartością średnią iloczynu sygnału x(t) w chwili t oraz x(t+t) w chwili t+t. Jest to funkcja okresowa o takim samym okresie jak okres sygnału obserwowanego. Umożliwia określenie wartości średniej i średniokwadratowej sygnału okresowego oraz jego częstotliwości. Metodą tą wykrywa się i przeprowadza pomiary parametrów sygnału okresowego na tle losowego zakłócenia. Funkcja gęstości widmowej mocy określa rozkład wartości średniokwadratowej sygnału na poszczególne częstotliwości. Dwustronna funkcja gęstości widmowej mocy jest transformatą Fouriera funkcji autokorelacji.

14 Statystyka: I rząd wartość oczekiwana II rząd prosta regresji Proces ergodyczny - proces stacjonarny dla którego wartości parametrów statystycznych (czyli wartość średnia, wariancja i funkcja autokorelacji) są równe wartościom tych parametrów z jego dowolnej realizacji czasowej. proces stacjonarny to proces stochastyczny dla którego rozkłady gęstości prawdopodobieństwa zmiennej losowej X nie zmieniają się wraz z przesunięciem w czasie lub przestrzeni. W efekcie, parametry takie jak średnia i wariancja także nie ulegają zmianie wraz z przesunięciem w czasie lub przestrzeni. Przykładem procesu stacjonarnego jest szum biały. Pytania: Jaką funkcję spełnia gęstość prawdopodobieństwa? Co to korelacja? Teoretyczna i estymowana postać funkcji autokorelacji/widmowej gęstości mocy dla funkcji sinusoidalnej/szumu. - narysować wykresy Różnica pomiędzy szumami wygenerowanymi funkcjami rand() a randn() Co to jest estymator? Co się pojawia na wyjściu radaru?

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

( 1+ s 1)( 1+ s 2)( 1+ s 3)

( 1+ s 1)( 1+ s 2)( 1+ s 3) Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

AiR_CPS_1/3 Cyfrowe przetwarzanie sygnałów Digital Signal Processing

AiR_CPS_1/3 Cyfrowe przetwarzanie sygnałów Digital Signal Processing Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Materiały pomocnicze do wykładu

Materiały pomocnicze do wykładu Materiały pomocnicze do wykładu 1 Plan zajęć Podstawowe wiadomości o sygnałach Szeregi Fouriera Ciągła Transformata Fouriera Sygnały cyfrowe Próbkowanie sygnałów. Zjawisko aliasingu Dyskretna i Szybka

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

Obwód wejściowy układu do pomiaru parametrów napięcia w sieci elektroenergetycznej

Obwód wejściowy układu do pomiaru parametrów napięcia w sieci elektroenergetycznej Obwód wejściowy układu do pomiaru parametrów napięcia w sieci elektroenergetycznej Jakub Rzeszutko W artykule opisano skonstruowany przez autora obwód wejściowy urządzenia służącego do analizy widmowej

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

O sygnałach cyfrowych

O sygnałach cyfrowych O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych

Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,

Bardziej szczegółowo

ANALIZA KORELACYJNA I FILTRACJA SYGNAŁÓW

ANALIZA KORELACYJNA I FILTRACJA SYGNAŁÓW POLIECHNIKA BIAŁOSOCKA KAEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy diagnostyki technicznej Kod przedmiotu: KS05454 Ćwiczenie Nr ANALIZA KORELACYJNA I FILRACJA

Bardziej szczegółowo

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW Kierunek: Elektronika i Telekomunikacja sem. IV Prowadzący: dr inż. ARKADIUSZ ŁUKJANIUK PROGRAM WYKŁADÓW Pojęcie sygnału, sygnał a informacja, klasyfikacja sygnałów,

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Przetwarzanie sygnałów dyskretnych

Przetwarzanie sygnałów dyskretnych Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

1/8 TECHNIKA CYFROWEGO PRZETWARZANIA SYGNAŁÓW. Andrzej Leśnicki

1/8 TECHNIKA CYFROWEGO PRZETWARZANIA SYGNAŁÓW. Andrzej Leśnicki 1/8 TECHIKA CYFROWEGO PRZETWARZAIA SYGAŁÓW Andrzej Leśnicki Gdańsk 2013 2/8 Spis treści Przedmowa Wykaz oznaczeń 1. Wstęp 3 str. 2. Sygnały i systemy dyskretne 2.1. Pojęcie sygnału dyskretnego 2 str. 2.2.

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA SYSTEMÓW

SYMULACJA KOMPUTEROWA SYSTEMÓW SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo