Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
|
|
- Renata Sobolewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można zredukować stosując funkcje okien wyznaczające rząd filtru, inne niż o kształcie prostokąta. Na rysunku niżej przedstawiono przypadek stosowania okna prostokątnego w[n]. Z ciągu nieskończonego odpowiedzi impulsowej filtru h [n] wybierana jest żądana liczba współczynników filtru. Operacja ta polega na mnożeniu funkcji w[n] oraz h [n]. h [] n = w[] n h [] n
2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -- W dziedzinie częstotliwości odpowiada to operacji splatania transformat Fouriera funkcji w[n] oraz h [n]. H [ m] = W [ m] H [ m] Rysunek poniżej przedstawia w sposób graficzny, splot w dziedzinie częstotliwości. Jeżeli będziemy interpretować splot jako sumę iloczynów W[m] oraz H [m] dla kolejnych przesunięć W[m] względem H [m] to łatwo zauważyć przyczynę powstawania zafalowań charakterystyki amplitudowej filtru. Możemy także zauważyć, że największe wartości zafalować w paśmie przepustowym charakterystyka osiąga w punkcie, w którym kończy się pasmo przepustowe charakterystyki filtru idealnego, o charakterystyce prostokątnej.
3 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -3- Rysunek poniżej przedstawia obszar nierównomierności oraz obszar przejściowy filtru dolnoprzepustowego, wyznaczanego dla okna prostokątnego, dla dwóch różnych rzędów Zredukowanie nieciągłości okna w[n] Projektowanie metodą okna polega na zredukowaniu nieciągłości w[n] przez zastosowanie okna o innego niż prostokątne. Zastąpimy okno prostokątne oknem, którego dyskretne wartości wyznacza zależność: πn + N 4πn N [] = 0,4 0,5cos 0,08cos dla n = 0,1,,..., N w n
4 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -4- Rysunek poniżej przedstawia zastosowanie okna Blackamana do projektowania filtru SOI, oraz charakterystyki filtrów 31 i 63 rzędu. Dzięki zastosowaniu okna Blackmana znacznie zmniejszono zafalowania w paśmie przepustowym. Oczywiście dla rozpatrywanego dolnoprzepustowego filtru SOI możemy użyć innej, dowolnej funkcji okna. Na tym właśnie polega istota projektowania filtrów SOI tą metodą, tj. metodą okna.
5 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -5- Przykłady i porównanie innych okien wygładzających w[n] Rysunek poniżej przedstawia porównanie charakterystyk filtru o oknie prostokątnym i oknie Blackmana. Dzięki zastosowaniu odpowiedniego okna można zatem poprawić własności filtru, poprzez zmniejszenie poziomu listków bocznych. Należy być jednak świadomym tego, że to polepszenie uzyskuje się dzięki poszerzeniu listka głównego, i projektowanie zwykle polega na znalezieniu odpowiedniego kompromisu między szerokością listka głównego i poziomem listków bocznych
6 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -6- Okno Czebyszewa w [] n = cos N cos cosh m α cos π N [ N cosh ( α )] gdzie 1 γ α = cosh cosh ( 10 ) N m = 0,1,,..., N Funkcja została wyprowadzona, na podstawie analizy macierzowej anten. Parametr gamma umożliwia sterowanie szerokością listka bocznego oraz poziomem listków bocznych.
7 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -7- Okno Kaisera gdzie [] w n = n p I 0 β 1 p I 0 ( ) β n = 0,1,,..., N p = N Równanie pochodzi z badań Kaisera nad funkcjami sferycznymi z użyciem funkcji Bessela zerowego rzędu. Parametr beta umożliwia sterowanie szerokością listka bocznego oraz poziomem listków bocznych.
8 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -8- Projektowanie środkowoprzepustowych filtrów SOI Projektowanie filtru środkowoprzepustowego polega na przesunięciu charakterystyki filtru dolnoprzepustowego. Można tego dokonać przez pomnożenie współczynników filtru dolnoprzepustowego h lp [n] przez funkcję sinusoidalną o częstotliwości f s /4. W wyniku otrzymuje się współczynniki filtru środkowoprzepustowego h bp [n]. Sinusoidę reprezentuje na rysunku ciąg s shift [n], są to próbki sinusoidy pobierane 4 razy w okresie. h hp [] n = h [] n s [] n = h [][ n 0,1,0,,0,1,0,,0,1... ] lp shift lp Przy projektowaniu filtru pasmowego SOI o częstotliwości środkowej f s /4 musimy dokonać jedynie połowę mnożeń, ponieważ co drugi współczynnik jest zerem. Jeżeli jednak środkowa częstotliwość jest różna od f s /4 to musimy wykonać wszystkie mnożenia.
9 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -9- Projektowanie górnoprzepustowych filtrów SOI Aby wyznaczyć współczynniki filtru górnoprzepustowego h hp [n], należy jedynie zmodyfikować ciąg przesuwający. Ciąg s shift [n] powinien reprezentować sinusoidę o częstotliwości f s /. h hp [] n = h [] n s [] n = h [][ n 1,,1,,1,,1,... ] lp shift lp
10 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -10- Charakterystyka fazowa filtrów SOI Jedną z podstawowych właściwości filtrów SOI jest liniowość charakterystyki fazowej. Przykład wyznaczania charakterystyki przedstawia rysunek niżej.
11 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -11- Zauważymy, że charakterystyka fazowa jest liniowa w paśmie przepustowym. Oznacza to jednakowe opóźnienie wszystkich składników częstotliwościowych, a to oznacza że sygnał wejściowy nie jest zniekształcany. Ta cecha dotyczy wszystkich filtrów SOI o symetrycznych współczynnikach.
12 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry o nieskończonej odpowiedzi impulsowej NOI Filtry tego typu zawsze wymagają sprzężenia zwrotnego. Inaczej, każda próbka sygnału wyjściowego zależy od poprzednich próbek sygnału wejściowego i wyjściowego. Filtry NOI w porównaniu z filtrami SOI, są bardziej skomplikowane w projektowaniu i analizie i nie mają liniowej charakterystyki fazowej, są jednak bardziej efektywne. NOI wymagają znacznie mniejszej liczby mnożeń do obliczenia próbki sygnału wyjściowego niż SOI przy zapewnieniu odpowiedniej charakterystyki filtru. Na rysunku porównano charakterystyki amplitudowe dolnoprzepustowego filtru NOI 4 rzędu oraz filtru SOI 19 rzędu. SOI 19 rzędu wymaga 19 operacji mnożenia NOI 4 rzędu wymaga 9 operacji mnożenia Filtr NOI ma mniejsze nierówności w paśmie przepustowym, mniejsze pasmo przejściowe i jest bardziej efektywny ze względu na liczbę operacji matematycznych.
13 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -13- Struktura filtru SOI Na rysunku przedstawiono schemat blokowy przedstawiający strukturę filtru SOI opisanego równaniem różnicowym w dziedzinie czasu: y [] n = h[][] 0 x n + h[][ 1 x n ] + h[][ x n ] + h[][ 3 x n 3]
14 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -14- Struktura filtru NOI Na rysunku przedstawiono schemat blokowy przedstawiający strukturę filtru NOI opisanego równaniem różnicowym w dziedzinie czasu: [] [][] [][ ] [][ ] [][ ] [][ ] [][ ] [][ ] = n y a n y a n y a n x b n x b n x b n x b n y Ciąg d[n] w strukturze filtru NOI jest równy ciągowi y[n] w strukturze filtru SOI
15 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -15- Przykład dolnoprzepustowego filtru NOI drugiego rzędu y [] n = 0,0605x[] n + 0,11x[ n ] + 0,0605x[ n ] + 1,194y[ n ] 0,436y[ n ] Transformata ZET + Y Transmitancja ( z) = 0,0605X ( z) + 0,11X ( z) z + 0,0605X ( z) + 1,194Y ( z) z 0,436Y ( z) z z + H Charakterystyka częstotliwościowa 0, ,11z + 0,0605z 1,194z + 0,436z ( z) = H 0,0605e + 0,11e + 0,0605e 1,194e + 0,436e j0ω j1ω ω 1 ( j ) = j ω j ω jω
16 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -16- Rysunek przedstawia charakterystykę amplitudową i fazową obliczonego filtru: Dla porównania wykreślono charakterystyki filtru SOI 5 rzędu Charakterystyka fazowa filtru NOI jest nieliniowa. Przy tym samym nakładzie obliczeń filtrów charakterystyka amplitudowa filtru NOI ma mniejsze nierówności i jest bardziej stroma w paśmie przejściowym niż SOI.
17 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -17- Projektowanie filtrów NOI metodą niezmienniczości odpowiedzi impulsowej Metoda polega na projektowaniu filtru cyfrowego, którego odpowiedź impulsowa jest spróbkowaną wersją odpowiedzi filtru analogowego. Jeżeli prototypowy filtr analogowy ma żądaną charakterystykę częstotliwościową, to projektowany filtr cyfrowy NOI będzie aproksymował tę charakterystykę Na podstawie tego co wiemy o zjawisku powielania widma na skutek próbkowania sygnału, możemy stwierdzić, widmo ciągłej odpowiedzi impulsowej ulegnie powieleniu o otrzymamy widmo okresowe. Podczas projektowani filtrów NOI efekt nakładania widma (aliasingu) należy uwzględniać podczas projektowani. Z tego powodu w praktyce wybiera się duże częstotliwości próbkowania.
18 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -18-
19 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -19- Przykład projektowania filtru NOI Zaprojektujemy filtr NOI, którego nierówność charakterystyki w paśmie przepustowym wynosi 1dB. Częstotliwość próbkowania 100Hz. (t s =0.01). Częstotliwość graniczna przy spadku o 1dB wynosi 0Hz. Analogowy filtr Czebyszewa odpowiadający wymaganiom ma transmitancję: H c () s = s 17410, ,94536s ,145 Obliczymy odwrotną transformatę Laplace a wykorzystując zależność: Aω ( s + α ) + ω L Ae α t sin ( ωt) 68,97680t () t = 154,7774e sin( 11, t) hc
20 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -0- Obliczymy transformatę ZET wykorzystując zależność Ce αnts sin ( ω nt ) s Z 1 Ce αt s sin( ωts ) ( ωt ) z αts αts [ e cos ] + e z s z H ( z) = 1 154,7774e 68,97680ts sin( 11,485173t s ) ( 11,485173t ) z + e 68,97680ts 68,97680ts [ e cos ] z s z H 70,059517z 1 0, z + 0, z ( z) = Stąd można wyznaczyć równanie różnicowe realizujące filtr NOI X ( z) 70,059517z = Y ( z)[ 1 0, z + 0, z ] Y ( z) = X ( z) 70,059517z + Y ( z) 0, z Y ( z) 0, z Ostatecznie: y [ n] = 70,059517x[ n ] + 0, y[ n ] 0, y[ n ] KONIEC
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
13.2. Filtry cyfrowe
Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:
1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową
Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry
Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie
Rys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych)
Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Wykład 10 2/38 Cyfrowy pomiar czasu i częstotliwości 3/38 Generatory, rezonatory, kwarce f w temperatura pracy np.-10
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne
Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo
Dyskretne przekształcenie Fouriera cz. 2
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie
PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
CYFROWE PRZETWARZANIE SYGNAŁÓW
Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje
Filtry elektroniczne sygnałów ciągłych - cz.1
Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów
Laboratorium EAM. Instrukcja obsługi programu Dopp Meter ver. 1.0
Laboratorium EAM Instrukcja obsługi programu Dopp Meter ver. 1.0 Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Projekt z Układów Elektronicznych 1
Projekt z Układów Elektronicznych 1 Lista zadań nr 4 (liniowe zastosowanie wzmacniaczy operacyjnych) Zadanie 1 W układzie wzmacniacza z rys.1a (wzmacniacz odwracający) zakładając idealne parametry WO a)
Filtry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10. Filtry FIR
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10 Filtry FIR 1. Cel ćwiczenia Przyczynowy system DLS służący do filtrowania synałów i mający skończoną odpowiedź impulsową nazywa się w skrócie
CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.
CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Technika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego
102 10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Realizacja filtrów cyfrowych z buforowaniem próbek
str. 1 Realizacja filtrów cyfrowych z buforowaniem próbek 1. Filtry Cyfrowe Zadaniem filtracji jest przepuszczanie (tłumienie) składowych sygnału leŝących w określonym paśmie częstotliwości. Ogólnie filtr
WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)
WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH (komputerowe metody symulacji) Zagadnienia: Filtr bierny, filtry selektywne LC, charakterystyka amplitudowo-częstotliwościowa, fazowo-częstotliwościowa, przebiegi
2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych
4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg
Temat: Wzmacniacze operacyjne wprowadzenie
Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Projektowania filtrów IIR Metoda niezmienności odpowiedzi impulsowej Podstawowa zasada określajaca: projektujemy
FILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego
Politechnika Wrocławska Instytut Telekomunikacji, Teleinormatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego FILTY AKTYWNE . el ćwiczenia elem ćwiczenia jest praktyczne
Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C)
5. 0. W p r ow adzen ie 1 2 1 Rozdział 5 Przetwarzanie analogowo-cyfrowe (A C) sygnał przetwarzanie A/C sygnał analogowy cyfrowy ciągły dyskretny próbkowanie: zamiana sygnału ciągłego na dyskretny konwersja
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,
BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku
BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza
ZASTOSOWANIA PRZEKSZTAŁCENIA ZET
CPS - - ZASTOSOWANIA PRZEKSZTAŁCENIA ZET Rozwiązywanie równań różnicowych Dyskretny system liniowy-stacjonarny można opisać równaniem różnicowym w postaci ogólnej N M aky[ n k] bkx[ n k] k k Przekształcenie
Przykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza
Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:
Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono
Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
) (2) 1. A i. t+β i. sin(ω i
Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
LABORATORIUM ELEKTRONIKI
INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH
INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Systemy przetwarzania sygnałów
Systemy przetwarzania sygnałów x(t) y(t)? x(t) System przetwarzania sygnałów y(t) 23 P. Strumiłło 1 Systemy przetwarzania sygnałów sygnał cigły x(t) y(t)=h(x(t)) System czasu cigłego y(t) np. megafon -
5 Filtry drugiego rzędu
5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Wykład 1. Reprezentacja układów dynamicznych w przestrzeni zmiennych stanu
Wykład 1. Reprezentacja układów dynamicznych w przestrzeni zmiennych stanu 1 Reprezentacja układów sterowania w przestrzeni zmiennych stanu ma fundamentalne znaczenie w teorii sterowania. Opis układów
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Układy pasywne RLC. 1. Czas trwania: 6h
kłady pasywne LC. Czas trwania: 6h 2. Cele ćwiczenia Badanie własności prostych pasywnych układów LC. Badanie szeregowego obwodu rezonansowego LC. 3. Wymagana znajomość pojęć działania na liczbach zespolonych,
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711