Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
|
|
- Laura Wieczorek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki
2 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony
3 Mathematica Komercyjny system obliczeń symbolicznych i numerycznych opracowany w 1988 przez Stephena Wolframa (University of Illinois). Obecnie jest dostępna na większość platform 32- i 64-bitowych. Komercyjną konkurencją dla pakietu Mathematica jest Maple. Najnowsza wersja oprogramowania Mathematica 9.0 pojawiła się w listopadzie 2012 roku.
4 Strona www
5 Polska strona firmy Gambit
6 Mathematica. Cechy charakterystyczne Mathematica do realizacji nawet najbardziej zaawansowanych obliczeń nie wymaga żadnych dodatkowych modułów obliczeniowych. Każdy wynik obliczeń symbolicznych może z łatwością być zamieniony na wartość numeryczną z dowolną liczbą cyfr znaczących. Mathematica obliczenia symboliczne i numeryczne są ściśle zintegrowane, co pozwala wykorzystywać hybrydowe metody obliczeniowe do rozwiązywania wielu problemów.
7 Mathematica. Cechy charakterystyczne, cd. Jedno środowisko obliczeniowe zapewnia wszelkie narzędzia na etapie wstępnego stawiania hipotezy, poprzez analizę i rozwiązanie problemu, aż do raportu i publikacji wyników prac. Mathematica tworzy dokumenty o strukturze gotowej do druku, wydawnictwa przyjmują prace składane w środowisku programu. Dostęp do internetowego serwisu Wolfram Alpha.
8 Mathematica jako kalkulator Program Mathematica możesz użyć jako kalkulator. Wpisujesz pytanie a Mathematica wyświetla odpowiedź. Przykłady prostych obliczeń: 6^20
9 Mathematica jako kalkulator Mathematica automatycznie obsługuje wielocyfrowe liczby: 6^200
10 Mathematica. Macierze Ta funkcja mówi programowi Mathematica aby podał wartości własne macierzy.
11 Mathematica. Równania To wyrażenie każe programowi Mathematica rozwiązać równość. Odpowiedzią jest formuła zależna od parametru.
12 Mathematica. Całki To wyrażenie każe programowi Mathematica obliczyć całkę.
13 Mathematica. Wykresy 2D Wykres 2D prostej funkcji.
14 Mathematica. Wykresy 3D Wykres 3D. Spacja pomiędzy x i y oznacza mnożenie. PlotPoints->30 wyznacza gęstość siatki.
15 Mathematica. Wykresy 3D Można dowolnie wpływać na wygląd rysunku. Parametr PlotLabel -> definiuje postać etykiety rysunku, zaś polecenie Mesh->False usuwa z rysunku siatkę.
16 Mathematica. Wykresy 3D Można dowolnie zmieniać punkt obserwacji rysunku poprzez edycje parametru ViewPoint - >{_,_,_}
17 Mathematica. Wykresy 3D W bardzo łatwy sposób można tworzyć rysunki złożone. Przykład pokazuje cztery poprzednie wykresy umieszczone na wspólnym rysunku. Show[GraphicsArray[{{Rys1,Rys2},{Rys3,Rys4}}]];
18 Mathematica. Możliwości obliczeniowe Na większości komputerów Mathematica wyznacza silnię 1000 w czasie poniżej sekundy.
19 Mathematica. Oliczenia symboliczne Mathematica przeznaczona jest przede wszystkim do obliczeń symbolicznych i dlatego w obliczeniach na liczbach, jeżeli to tylko możliwe generuje dokładne wyniki. Gdy zapytać ile wynosi pierwiastek z 2 otrzymamy odpowiedź:...
20 Mathematica. Dokładność Dzieje się tak dlatego, że Mathematica podaje wynik dokładny. Jeżeli chcemy znać wynik numeryczny należy użyć funkcji N[...] lub...//n aby otrzymać standardową liczbę cyfr.
21 Mathematica. Dokładność Mathematica może prowadzić obliczenia z dowolna, podaną przez Ciebie precyzją. Oto liczba Pi wyznaczona z dokładnością 500 cyfr znaczących.
22 Mathematica. Algebra Mathematica może wykonać obliczenia algebraiczne, których wykonanie "ręczne" mogłoby trwać wiele lat. Przykładowym problemem jest rozkład wielomianu na czynniki.
23 Mathematica. Upraszczanie fomuł Mathematica umożliwia upraszczanie formuł. % oznacza ostatni wynik.
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński
Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Obliczenia inżynierskie. oprogramowanie matematyczne
Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric
Programy wykorzystywane do obliczeń
Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy
Elementy metod numerycznych - zajęcia 11
Elementy metod numerycznych - zajęcia 11 Mathematica - Wolfram Alpha 1 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie zwięzłe odpowiedzi na pytania oznaczone symbolem ( x, p) i numerkiem (x),
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Nowoczesne metody nauczania przedmiotów ścisłych
Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
MS Excel. Podstawowe wiadomości
MS Excel Podstawowe wiadomości Do czego służy arkusz kalkulacyjny? Arkusz kalkulacyjny wykorzystywany jest tam gdzie wykonywana jest olbrzymia ilość żmudnych, powtarzających się według określonego schematu
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Architektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Zastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 3: Macierze i wykresy Cel: wykonywanie obliczeń na wektorach i macierzach, wykonywanie wykresów Czas wprowadzenia 25 minut,
Podstawy obsługi pakietu GNU octave.
Podstawy obsługi pakietu GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z obsługą pakietu GNU octave. W ćwiczeniu wprowadzono opis podstawowych komend
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Wprowadzenie do formuł i funkcji
Wprowadzenie do formuł i funkcji Wykonywanie obliczeń, niezależnie od tego, czy są one proste czy złożone, może być nużące i czasochłonne. Przy użyciu funkcji i formuł programu Excel można z łatwością
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
Informacje o ogłoszeniu
Informacje o ogłoszeniu Data publikacji ogłoszenia 23-10-2018 Termin składania ofert 07-11-2018 Numer ogłoszenia 1143098 Status ogłoszenia Aktualne Miejsce i sposób składania ofert Ofertę należy przesłać
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
KARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 20.02.2013 Podstawowe informacje Krzysztof Burnecki C-11, pok. 5.14 Krzysztof.Burnecki@pwr.wroc.pl Konsultacje: poniedziałek 11-13,
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
MATHCAD Obliczenia symboliczne
MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
ARKUSZ KALKULACYJNY komórka
ARKUSZ KALKULACYJNY Arkusz kalkulacyjny program służący do obliczeń, kalkulacji i ich interpretacji graficznej w postaci wykresów. Przykłady programów typu Arkusz Kalkulacyjny: - Ms Excel (*.xls; *.xlsx)
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
Maxima i Visual Basic w Excelu
25 marca 2014 Jak komunikować się z komputerem? Trzy podstawowe elementy programu: 1 wprowadzenie danych (wejście), 2 wykonanie operacji przewidzianych programem (najczęściej obliczeń), 3 zwrócenie wyniku
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Matematyka dyskretna. Andrzej Łachwa, UJ, A/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych
Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 14czerwca2013r. STEPHEN
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wstęp do chemii kwantowej - laboratorium. Zadania
Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz
KARTA MODUŁU (część I, 2013/2014)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU (, 013/014) Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Technologie informacyjne Information technologies
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
TP1 - TABELE PRZESTAWNE od A do Z
TP1 - TABELE PRZESTAWNE od A do Z Program szkolenia 1. Tabele programu Excel 1.1. Wstawianie tabeli 1.2. Style tabeli 1.3. Właściwości tabeli 1.4. Narzędzia tabel 1.4.1. Usuń duplikaty 1.4.2. Konwertuj
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Top 38 w roku GeoGebra
Top 38 w roku 2017 GeoGebra 6.0.379.0 GeoGebra to opensource'owy i wielokrotnie nagradzany program do nauki matematyki do zainstalowania na komputerach pracujących pod kontrolą systemów operacyjnych z
egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA
PROJEKT EDUKACYJNY ROK SZK. 2011/2012 Program zajęć przygotowujących do egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA Opracowanie: Jadwiga Głazman Projekt zajęć przygotowujących do egzaminu
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,