dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
|
|
- Leszek Tomczak
- 9 lat temu
- Przeglądów:
Transkrypt
1
2 dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
3 Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja Rozwiązywanie układów równań: algebraicznych różniczkowych Prezentacja wyników, interpolacja, aproksymacja Import / eksport danych 2013/14 Politechnika Gdańska 3
4 Obliczenia numeryczne Matlab Scilab Octave obliczenia w dużej skali algorytmy numeryczne wizualizacja wyników toolbox y Matlab Simulink Wspomaganie obliczeń matematycznych 2013/14 Politechnika Gdańska 4
5 CAS (computer algebra system) obliczenia symboliczne Maple Mathematica MathCad Maxima algorytmy numeryczne, wizualizacja wyników możliwości składu tekstów Wspomaganie obliczeń matematycznych 2013/14 Politechnika Gdańska 5
6 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Możliwość rozwiązywania trudnych zadań praktycznych Wielość metod o różnej skuteczności Wymaga wiedzy wykraczającej poza rozwiązywane zadanie Wynik zazwyczaj tak tak najczęściej tak skończony zestaw liczb lub rysunek zazwyczaj nie tak najczęściej nie wzór lub informacja o charakterze rozwiązania 2013/14 Politechnika Gdańska 6
7 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Potrafi działać na abstrakcyjnych obiektach Dobrze radzi sobie z nieskończonościami Dobrze radzi sobie z mnogością parametrów Precyzja wyniku Ostateczna jakość wyniku nie zazwyczaj nie tak ograniczona niepewna tak zazwyczaj tak nie teoretycznie nieskończona niepewna 2013/14 Politechnika Gdańska 7
8 Zestawienie programów CAS Komercyjne Algebrator ClassPad Manager LiveMath Magma Maple Mathcad Mathematica MuPAD Open source Axiom Cadabra CoCoA FriCAS GAP Maxima Octave Scilab 2013/14 Politechnika Gdańska 8
9 Wspomaganie obliczeń matematycznych Środowiska zintegrowane/hybrydowe Matlab Simulink Symbolic Math Toolbox (MuPAD) 2013/14 Politechnika Gdańska 9
10 Obliczenie numeryczne - Scilab SCILAB I.N.R.I.A. (Institut National de Recherche en Informatique et Automatique) rozwiązywanie układów liniowych, wyznaczanie wartości własnych, wektorów własnych, szybka transformacja Fouriera, rozwiązywanie równań różniczkowych, algorytmy optymalizacji, rozwiązywanie równań nieliniowych, generowanie liczb losowych, 2013/14 Politechnika Gdańska 10
11 Scilab Operacje na macierzach dodawanie, odejmowanie, mnożenie macierze jednostkowe 2013/14 Politechnika Gdańska 11
12 Scilab Rysowanie przebiegów funkcji 2D 2013/14 Politechnika Gdańska 12
13 Scilab Rysowanie przebiegów funkcji 3D 2013/14 Politechnika Gdańska 13
14 Mathcad Mathcad 15.0 Mathcad Prime 3.0 Parametric Technology Corporation's 2013/14 Politechnika Gdańska 14
15 Obliczenia symboliczne - Mathcad Rozwiązanie równania kwadratowego Język programowania LISP Arkusz kalkulacyjny x = (-B+SQRT(B**2-4*A*C))/(2*A) =(-B1+PIERWIASTEK(B1*B1-4*A1*C1))/(2*A1) Mathcad 2013/14 Politechnika Gdańska 15
16 PTC Mathcad Prime 3.0 Środowisko obliczeń Document-centric Zaawansowane odkrywanie matematyki Biblioteki numeryczne Dynamiczna kontrola jednostek Reverse compatibility Edytor równań WYSIWYG Design of Experiments (DoE) 2013/14 Politechnika Gdańska 16
17 Mathcad Prime 2013/14 Politechnika Gdańska 17
18 Mathcad Prime 2013/14 Politechnika Gdańska 18
19 Mathcad Prime jednostki 2013/14 Politechnika Gdańska 19
20 Mathcad 14/15 Rozwiązanie równań liniowych 2013/14 Politechnika Gdańska 20
21 Mathcad 14/15 Rozwiązanie równań liniowych 2013/14 Politechnika Gdańska 21
22 SMathStudio /14 Politechnika Gdańska 22
23 Obliczenia symboliczne - WolframAlpha 2013/14 Politechnika Gdańska 23
24 WolframAlpha Rozwiązywanie równań liniowych 2013/14 Politechnika Gdańska 24
25 WolframAlpha Rozwiązywanie równań różniczkowych 2013/14 Politechnika Gdańska 25
26 WolframAlpha Regresja liniowa 2013/14 Politechnika Gdańska 26
27 WolframAlpha Regresja ekspotencjalna 2013/14 Politechnika Gdańska 27
28 WolframAlpha Wykresy funkcji 2D 3D 2013/14 Politechnika Gdańska 28
29 WolframAlpha Obwody elektryczne prądu stałego 2013/14 Politechnika Gdańska 29
30 Wolfram Mathematica 2013/14 Politechnika Gdańska 30
31 Wolfram Mathematica 2013/14 Politechnika Gdańska 31
32 Maxima Różniczkowanie i całkowanie symboliczne Rozwiązywanie równań i układów równań algebraicznych Rozwiązywanie wybranych typów równań różniczkowych Upraszczanie wyrażeń algebraicznych Tworzenie wykresów 2D i 3D (za pośrednictwem Gnuplota) Szeregi Fouriera Operacje na macierzach Obliczenia dowolnej precyzji Eksport wyników do TeX a Strukturalny język programowania (+Lisp) Wybrane operacje numeryczne Wybrane operacje statystyczne 2013/14 Politechnika Gdańska 32
33 Maxima 1968 MIT Departamentu Energii USA programu Macsyma 1988 GPL 2013/14 Politechnika Gdańska 33
34 Maxima Rozwiązywanie równań 2013/14 Politechnika Gdańska 34
35 Maxima Wykresy 2D 2013/14 Politechnika Gdańska 35
36 Maxima Wykresy 3D 2013/14 Politechnika Gdańska 36
37 Maxima Rozwiązywanie równań liniowych 2013/14 Politechnika Gdańska 37
38 Maxima Pochodne 2013/14 Politechnika Gdańska 38
39 Maxima Funkcje 2013/14 Politechnika Gdańska 39
40 Maxima Funkcje 2013/14 Politechnika Gdańska 40
41 Maxima Web Maxima, a Computer Algebra System /14 Politechnika Gdańska 41
42 AutoSignal DADISP Grapher IRISExplorer MapViewer Origin PeakFit SigmaScan SigmaPlot SigmaStat Analiza i wizualizacja danych 2013/14 Politechnika Gdańska 42
43 Modelowanie i symulacje Mechatronika SPICE PSpice, LTSpice MAST/VHDL SABER Grafy wiązań - 20-Sim Modelica - Dynasim 2013/14 Politechnika Gdańska 43
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Obliczenia inżynierskie. oprogramowanie matematyczne
Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric
Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby, Programy CAS, Arkusz kalkulacyjny Reprezentacja liczb w komputerze 2 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10
Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński
Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:
Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl
Architektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd
Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
KARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Architektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 10.4.2019 Plan na przyszły tydzień: quiz Kto używał
KARTA MODUŁU (część I, 2013/2014)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU (, 013/014) Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne
Top 38 w roku GeoGebra
Top 38 w roku 2017 GeoGebra 6.0.379.0 GeoGebra to opensource'owy i wielokrotnie nagradzany program do nauki matematyki do zainstalowania na komputerach pracujących pod kontrolą systemów operacyjnych z
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie
KARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Programy wykorzystywane do obliczeń
Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra
Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne
SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy
Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
Excel w obliczeniach naukowych i inżynierskich. Wydanie II.
Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań
SYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Wspomaganie komputerowe procesów projektowania. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny 3.
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Kierunek: Matematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska
Kierunek: atematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska Przedmiot Kierunek Semestr Podstawy ekonomii 1 Podstawy prawa i ergonomii pracy 1 25 2 etody uczenia się i studiowania
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr do Uchwały Senatu nr 0/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Komputerowe wspomaganie nauczania
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Narzędzia informatyczne w warsztacie inżyniera Nazwa jednostki prowadzącej przedmiot Instytut Matematyki, Fizyki Przedmioty:
SymPy czyli matematyka w Pythonie
SymPy czyli matematyka w Pythonie Mateusz Paprocki Wrocław University of Technology University of Nevada, Reno 8 października 2010 Plan prezentacji Matematyka w Pythonie Wprowadzenie
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
Metody Numeryczne (Matematyka) Politechnika Warszawska
Metody Numeryczne (Matematyka) Zajęcia w semestrze zimowym 2017/2018 Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych I. ZALICZENIE LABORATORIUM Siedem zajęć poświęconych jest pakietowi
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Kierunek: Matematyka w technice
Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa
Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Komputerowe wspomaganie projektowania procesów Computer Aided Design of Processes Kierunek: Kod przedmiotu: Zarządzanie i Inżynieria Produkcji ZIP2.D1F.O.16.88 Management and Production
Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator Dr Zbigniew Leśniak Zespół dydaktyczny: Dr Magdalena Piszczek Opis kursu (cele kształcenia)
Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:
Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
PREZENTACJA MODULACJI FM W PROGRAMIE MATHCAD
POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 92 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.92.0034 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZETACJA MODULACJI FM W
Informatyka. Wykład 0. Witold Dyrka 13/2/2012
Informatyka Wykład 0 Witold Dyrka witold.dyrka@pwr.wroc.pl 13/2/2012 Dzisiejszy wykład w oparciu o... J. Brucker, A Brief History of Matlab. http://www.cpe.ku.ac.th/~anan/courses/204111-matlab/document-2004/2004-01-2-history-matlab-jim.ppt
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Informatyka wspomaga przedmioty ścisłe w szkole
Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019 Kierunek studiów: Transport Forma sudiów:
Warsztaty z modelowania i symulacji procesów chemicznych w programie
Warsztaty z modelowania i symulacji procesów chemicznych w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Goście specjalni Jadwiga Horoszkiewicz-Kurnyta Rafał Rabenda Przemysław Trzeciak
Informacje o ogłoszeniu
Informacje o ogłoszeniu Data publikacji ogłoszenia 23-10-2018 Termin składania ofert 07-11-2018 Numer ogłoszenia 1143098 Status ogłoszenia Aktualne Miejsce i sposób składania ofert Ofertę należy przesłać
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator prof. dr hab. Marek Ptak Zespół dydaktyczny dr Zbigniew Leśniak dr Magdalena Piszczek
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
Dr inż. hab. Siergiej Fialko, IF-PK,
Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.
MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: KOMPUTEROWA ANALIZA KONSTRUKCJI
Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami
EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Okręgowa Komisja Egzaminacyjna w Krakowie 1
Okręgowa Komisja Egzaminacyjna w Krakowie 1 Egzamin maturalny Egzamin maturalny, zastąpi dotychczasowy egzamin dojrzałości, czyli tzw. starą maturę i przeprowadzany będzie: od roku 2005 dla absolwentów
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Informatyczne podstawy projektowania Kod przedmiotu
Informatyczne podstawy projektowania - opis przedmiotu Informacje ogólne Nazwa przedmiotu Informatyczne podstawy projektowania Kod przedmiotu Infor.003_pNadGenE34J2 Wydział Kierunek Wydział Budownictwa,
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator dr Zbigniew Leśniak Zespół dydaktyczny: dr Magdalena Piszczek Opis kursu (cele kształcenia)
Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Spis treści. Przedmowa. Podstawy R
Spis treści Przedmowa Podstawy R 1. Środowisko R i program RStudio 1.1. Cechy języka R 1.2. Organizacja pracy w R i RStudio 1.2.1. Konsola R 1.2.2. Program RStudio 1.2.3. Pierwsze kroki w trybie interaktywnym
Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE
Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium
Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16
Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Internet i sieci Temat lekcji Wymagania programowe 6 5 4 3 2 1 Sieci komputerowe. Rodzaje sieci, topologie,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej
Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
PROJEKT INŻYNIERSKI I
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 20.02.2013 Podstawowe informacje Krzysztof Burnecki C-11, pok. 5.14 Krzysztof.Burnecki@pwr.wroc.pl Konsultacje: poniedziałek 11-13,
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika. Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak
Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak Mathematica Pakiet obliczeniowy do rozwiązywania zagadnień
Dr hab. inż. Jan Staszak. kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski III
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013