Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
|
|
- Bartłomiej Mróz
- 10 lat temu
- Przeglądów:
Transkrypt
1 Wspomaganie obliczeń matematycznych dr inż. Michał Michna
2 Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja Rozwiązywanie układów równań algebraicznych i różniczkowych Prezentacja wyników, interpolacja, aproksymacja Import / eksport danych 2
3 Wspomaganie obliczeń matematycznych Obliczenia numeryczne Matlab Scilab Octave obliczenia w dużej skali algorytmy numeryczne wizualizacja wyników Toolbox y Matlab Simulink 3
4 Wspomaganie obliczeń matematycznych CAS computer algebra system Obliczenia symboliczne Maple Mathematica MathCad Maxima Algorytmy numeryczne, Wizualizacja wyników możliwości składu tekstów matematycznych 4
5 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Możliwość rozwiązywania trudnych zadań praktycznych Wielość metod o różnej skuteczności Wymaga wiedzy wykraczającej poza rozwiązywane zadanie Wynik zazwyczaj tak tak najczęściej tak skończony zestaw liczb lub rysunek zazwyczaj nie tak najczęściej nie wzór lub informacja o charakterze rozwiązania 5
6 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Potrafi działać na abstrakcyjnych obiektach Dobrze radzi sobie z nieskończonościami Dobrze radzi sobie z mnogością parametrów nie zazwyczaj nie tak tak zazwyczaj tak Precyzja wyniku ograniczona teoretycznie nieskończona Ostateczna jakość wyniku niepewna niepewna nie 6
7 Zestawienie programów CAS Komercyjne: Algebrator ClassPad Manager LiveMath Magma Maple Mathcad Mathematica MuPAD TI InterActive! WIRIS Open source Axiom Cadabra CoCoA DoCon Eigenmath FriCAS GAP GiNaC Macaulay2 Mathomatic Maxima OpenAxiom PARI/GP Reduce Sage SINGULAR SymPy Xcas Octave Scilab Free/shareware Fermat Nierozwijane Derive DCAS Macsyma mumath Yacas 7
8 Wspomaganie obliczeń matematycznych Środowiska zintegrowane/hybrydowe Matlab Simulink Symbolic Math Toolbox (MuPAD) 8
9 Obliczenie numeryczne - Scilab SCILAB I.N.R.I.A. (Institut National de Recherche en Informatique et Automatique) rozwiązywanie układów liniowych, wyznaczanie wartości własnych, wektorów własnych, szybka transformacja Fouriera, rozwiązywanie równań różniczkowych, algorytmy optymalizacji, rozwiązywanie równań nieliniowych, generowanie liczb losowych, 9
10 Scilab Operacje na macierzach dodawanie, odejmowanie, mnożenie macierze jednostkowe 10
11 Scilab Rysowanie przebiegów funkcji 2D 11
12 Scilab Rysowanie przebiegów funkcji 3D 12
13 Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 3.0 Parametric Technology Corporation's 13
14 Obliczenia symboliczne - Mathcad Rozwiązanie równania kwadratowego Język programowania LISP x = (-B+SQRT(B**2-4*A*C))/(2*A) Arkusz kalkulacyjny =(-B1+PIERWIASTEK(B1*B1-4*A1*C1))/(2*A1) Mathcad 14
15 PTC Mathcad Prime 3.0 Środowisko obliczeń Document-centric Zaawansowane odkrywanie matematyki Biblioteki numeryczne Dynamiczna kontrola jednostek Reverse compatibility Edytor równań WYSIWYG Design of Experiments (DoE) 15
16 Mathcad Prime 16
17 Mathcad Prime 17
18 Mathcad Prime jednostki 18
19 Mathcad 14/15 Rozwiązanie równań liniowych 19
20 Mathcad 14/15 Rozwiązanie równań liniowych 20
21 SMathStudio pol 21
22 Obliczenia symboliczne - WolframAlpha 22
23 WolframAlpha Rozwiązywanie równań liniowych 23
24 WolframAlpha Rozwiązywanie równań różniczkowych 24
25 WolframAlpha Regresja liniowa 25
26 WolframAlpha Regresja ekspotencjalna 26
27 WolframAlpha Wykresy funkcji 2D 3D 27
28 28 Wolfram Mathematica
29 29 Wolfram Mathematica
30 WolframAlpha Informacje geograficzne 30
31 WolframAlpha Obwody elektryczne prądu stałego 31
32 WolframAlpha Mathematics Statistics & Data Analysis Physics Chemistry Materials Engineering Astronomy Earth Sciences Life Sciences Computational Sciences Units & Measures Dates & Times Weather Places & Geography People & History Culture & Media Music Words & Linguistics Sports & Games Colors Money & Finance Socioeconomic Data Health & Medicine Food & Nutrition Education Organizations Transportation Technological World Web & Computer Systems 32
33 Maxima Różniczkowanie i całkowanie symboliczne Rozwiązywanie równań i układów równań algebraicznych Rozwiązywanie wybranych typów równań różniczkowych Upraszczanie wyrażeń algebraicznych Tworzenie wykresów 2D i 3D (za pośrednictwem Gnuplota) Szeregi Fouriera Operacje na macierzach Obliczenia dowolnej precyzji Eksport wyników do TeX a Strukturalny język programowania (+Lisp) Wybrane operacje numeryczne Wybrane operacje statystyczne 33
34 Maxima 1968 MIT Departamentu Energii USA programu Macsyma 1988 GPL 34
35 Maxima Rozwiązywanie równań 35
36 Maxima Wykresy 2D 36
37 Maxima Wykresy 3D 37
38 Maxima Rozwiązywanie równań liniowych 38
39 Maxima Pochodne 39
40 Maxima Funkcje 40
41 Maxima Funkcje 41
42 Maxima Web Maxima, a Computer Algebra System elearning.cerfacs.fr/miscellaneous /tools/maxima/index.php 42
43 Analiza i wizualizacja danych AutoSignal DADISP Grapher IRISExplorer MapViewer Origin PeakFit SigmaScan SigmaPlot SigmaStat 43
44 Modelowanie i symulacje Mechatronika SPICE PSpice, LTSpice MAST/VHDL SABER Grafy wiązań - 20-Sim Modelica - Dynasim 44
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja
Obliczenia inżynierskie. oprogramowanie matematyczne
Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric
Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński
Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:
Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby, Programy CAS, Arkusz kalkulacyjny Reprezentacja liczb w komputerze 2 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10
Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0
Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
Architektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie
Top 38 w roku GeoGebra
Top 38 w roku 2017 GeoGebra 6.0.379.0 GeoGebra to opensource'owy i wielokrotnie nagradzany program do nauki matematyki do zainstalowania na komputerach pracujących pod kontrolą systemów operacyjnych z
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
Architektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 10.4.2019 Plan na przyszły tydzień: quiz Kto używał
Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne
SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska
SymPy czyli matematyka w Pythonie
SymPy czyli matematyka w Pythonie Mateusz Paprocki Wrocław University of Technology University of Nevada, Reno 8 października 2010 Plan prezentacji Matematyka w Pythonie Wprowadzenie
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
KARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
PREZENTACJA MODULACJI FM W PROGRAMIE MATHCAD
POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 92 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.92.0034 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZETACJA MODULACJI FM W
KARTA MODUŁU (część I, 2013/2014)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU (, 013/014) Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne
KARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Informatyka. Wykład 0. Witold Dyrka 13/2/2012
Informatyka Wykład 0 Witold Dyrka witold.dyrka@pwr.wroc.pl 13/2/2012 Dzisiejszy wykład w oparciu o... J. Brucker, A Brief History of Matlab. http://www.cpe.ku.ac.th/~anan/courses/204111-matlab/document-2004/2004-01-2-history-matlab-jim.ppt
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Narzędzia informatyczne w warsztacie inżyniera Nazwa jednostki prowadzącej przedmiot Instytut Matematyki, Fizyki Przedmioty:
SymPy matematyka symboliczna w Pythonie
SymPy matematyka symboliczna w Pythonie Mateusz Paprocki Continuum Analytics, Inc. 30 listopada 2015 Co to jest matematyka symboliczna? Python operuje na liczbach zmiennoprzecinkowych
Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż.
INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad dr inż. Paweł Surdacki Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr do Uchwały Senatu nr 0/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Komputerowe wspomaganie nauczania
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały
Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:
Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Egzamin / zaliczenie na ocenę* 1,6 1,6
Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator Dr Zbigniew Leśniak Zespół dydaktyczny: Dr Magdalena Piszczek Opis kursu (cele kształcenia)
Kierunek: Matematyka w technice
Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa
Warsztaty z modelowania i symulacji procesów chemicznych w programie
Warsztaty z modelowania i symulacji procesów chemicznych w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Goście specjalni Jadwiga Horoszkiewicz-Kurnyta Rafał Rabenda Przemysław Trzeciak
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
Programy wykorzystywane do obliczeń
Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra
Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator dr Zbigniew Leśniak Zespół dydaktyczny: dr Magdalena Piszczek Opis kursu (cele kształcenia)
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Informacje o ogłoszeniu
Informacje o ogłoszeniu Data publikacji ogłoszenia 23-10-2018 Termin składania ofert 07-11-2018 Numer ogłoszenia 1143098 Status ogłoszenia Aktualne Miejsce i sposób składania ofert Ofertę należy przesłać
dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium
Rok akademicki: 2016/2017 Kod: JIS s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Pakiety obliczeniowe Rok akademicki: 2016/2017 Kod: JIS-1-016-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów: Studia
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
MATLAB/SIMULINK. w programie. dla studentów wydziału chemicznego. Wydział Chemiczny Politechniki Łódzkiej 11 kwiecień 12 czerwiec 2017
w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Wydział Chemiczny Politechniki Łódzkiej 11 kwiecień 12 czerwiec 2017 Zapisy w dziekanacie do dnia 10 kwietnia Liczba miejsc ograniczona Prowadzący
MATLAB/SIMULINK. w programie. dla studentów wydziału chemicznego. Wydział Chemiczny Politechniki Łódzkiej 11 kwiecień 12 czerwiec 2017
w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Wydział Chemiczny Politechniki Łódzkiej 11 kwiecień 12 czerwiec 2017 Zapisy w dziekanacie do dnia 10 kwietnia Liczba miejsc ograniczona Prowadzący
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
Wykład 6. Pakiety oprogramowania analizy matematycznej. Interpretacja wyników
Wykład 6 Pakiety oprogramowania analizy matematycznej. Interpretacja wyników 1 System algebry komputerowej System algebry komputerowej lub komputerowy system obliczeń symbolicznych (ang. Computer Algebra
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02
3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS
148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems
Excel w obliczeniach naukowych i inżynierskich. Wydanie II.
Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?
Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Wykorzystanie wolnego oprogramowania w nauce
Wykorzystanie wolnego oprogramowania w nauce Piotr Gawron, Jarek Miszczak 24 stycznia 2007 Streszczenie Celem pracy jest porównanie komercyjnych pakietów służących do prac naukowych z ich wolnymi odpowiednikami.
Podstawy Informatyki Computer basics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Wykład z okazji dnia liczby π
Wykład z okazji dnia liczby π O regresji symbolicznej Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 3.14 Czy potrafisz rozpoznać liczby? 3.141592653589793 2.718281828459045
Krótka historia języków programowania
Krótka historia języków programowania Rok Język Twórca, wersje, dialekty, uwagi 1952 asemblery 1957 Fortran 1960 LISP 1960 Algol Algol 60, Algol 68 1960 COBOL 1962 APL 1962 SIMULA 1964 BASIC Do 1959 roku
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator prof. dr hab. Marek Ptak Zespół dydaktyczny dr Zbigniew Leśniak dr Magdalena Piszczek
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność