PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

Wielkość: px
Rozpocząć pokaz od strony:

Download "PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika"

Transkrypt

1 PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa czwartek

2 Wykład 2 godz. lekcyjne. czwartek Sala C106 Laboratorium 2 godz. lekcyjne Sala D05 środa gr. L środa gr. L środa gr. L

3 Wymagania wstępne Matematyka: Znajomość elementarnej algebry liniowej i analizy matematycznej. Informatyka: umiejętność na poziomie podstawowym zasad programowania w środowisku MATLAB

4 Zaliczenie przedmiotu Wykład: obecność zgodnie z regulaminem studiów, wiedza obowiązkowa, czasem lista obecności Laboratorium: uczestnictwo obowiązkowe, przygotowanie do ćwiczeń, wykonanie ćwiczeń, opracowanie i oddanie sprawozdań, uzyskanie oceny pozytywnej z laboratorium Egzamin: pisemny, zadania obliczeniowe na komputerze, pytania teoretyczne Warunkiem przystąpienia do egzaminu jest uzyskanie oceny pozytywnej z ćwiczeń laboratoryjnych. Terminy egzaminu: uzgodnione z przedstawicielem roku

5 Literatura pomocnicza: E. Majchrzak, B. Mochnacki : Metody Numeryczne Podstawy teoretyczne, aspekty praktyczne i algorytmy J. Brzózka, L. Dorobczyński : Programowanie w Matlab B. Mrozek, Z. Mrozek :Matlab Uniwersalne środowisko do obliczeń naukowo-technicznych J. Krupka, R. Morawski, L. Opalski : Metody numeryczne dla studentów elektroniki i technik informacyjnych E. Dudek-Dyduch i Inni: Metody numeryczne -Wybrane zagadnienia A.Dąbrowski: Materiały dydaktyczne

6 Tematyka wykładów Wprowadzenie informacje wstępne Wstęp do programowania w środowisku MATLAB Macierze, wektory Układy równań liniowych Interpolacja i aproksymacja Przybliżone rozwiązywanie równań nieliniowych Różniczkowanie numeryczne Całkowanie numeryczne Równania różniczkowe zwyczajne Zagadnienia brzegowe Równania różniczkowe cząstkowe Wprowadzenie do optymalizacji

7 Wprowadzenie do metod numerycznych Metody numeryczne są działem matematyki, zajmującej się opracowywaniem i analizą metod przybliżonego rozwiązywania zagadnień matematycznych, których rozwiązanie sposobami analitycznymi (ścisłymi) jest trudne, albo wręcz niemożliwe.

8 Metody numeryczne to dziedzina matematyki zajmująca się problemami obliczeniowymi i konstrukcją algorytmów rozwiązywania zadań matematycznych.

9 Zagadnienia związane z metodami numerycznych metody numeryczne konstrukcja i wykorzystanie algorytmów do rozwiązywania zadań matematycznych; analiza numeryczna badanie właściwości algorytmów, ich optymalności oraz wpływu arytmetyki zmiennopozycyjnej na jakość uzyskanych wyników; matematyka obliczeniowa teoretyczna analiza możliwości dokładnej aproksymacji rozwiązań zadań matematycznych; obliczenia naukowe i techniczne praktyczne zastosowania metod numerycznych, symulacje i implementacje na komputerach o dużej mocy obliczeniowej.

10 Środowisko obliczeniowe W metodach numerycznych, ze względu na ich użytkowy charakter, bardzo ważna jest skuteczna implementacja algorytmu obliczeniowego w konkretnym środowisku programistycznym

11 Sposób 1. Wykorzystanie standardowych języków programowania (Pascal, C, Fortran, asembler) oraz wyspecjalizowanych bibliotek numerycznych (GNU Scientific Library - GSL, Intel Math Kernel Library MKL, AMD Core Math Library ACML) Zaleta to zazwyczaj szybko działający kod wynikowy, ale kosztem długotrwałego i żmudnego programowania. Ponadto wymagana jest dobra znajomość metod i algorytmów obliczeniowych.

12 Sposób 2. Użycie gotowego środowiska programistycznego do obliczeń numerycznych będącego wygodnym interfejsem do wyspecjalizowanych bibliotek numerycznych. Zaleta szybkie otrzymanie rozwiązania problemu ale czasem kosztem ogólnej efektywności uzyskanego rezultatu.

13 Wybrane środowiska obliczeniowe Derive - Texas Instruments Inc, Maple - Waterloo Maple Inc., Mathematica - Wolfram Research Inc., Matlab - Mathworks Inc., Mathcad - MathSoft Inc. Octave - John W. Eaton Uniw. Wisconsin w USA licencja GPL Scilab INRIA Francja

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół

Bardziej szczegółowo

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Specjalnościowy Obowiązkowy Polski Semestr szósty

Specjalnościowy Obowiązkowy Polski Semestr szósty KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical

Bardziej szczegółowo

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja

Bardziej szczegółowo

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja

Bardziej szczegółowo

Informatyka. Wykład 0. Witold Dyrka 13/2/2012

Informatyka. Wykład 0. Witold Dyrka 13/2/2012 Informatyka Wykład 0 Witold Dyrka witold.dyrka@pwr.wroc.pl 13/2/2012 Dzisiejszy wykład w oparciu o... J. Brucker, A Brief History of Matlab. http://www.cpe.ku.ac.th/~anan/courses/204111-matlab/document-2004/2004-01-2-history-matlab-jim.ppt

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* 1,6 1,6

Egzamin / zaliczenie na ocenę* 1,6 1,6 Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność

Bardziej szczegółowo

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Podstawy Informatyki Computer basics

Podstawy Informatyki Computer basics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński

Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:

Bardziej szczegółowo

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku

Bardziej szczegółowo

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13

Bardziej szczegółowo

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Z-ETI-1040 Metody numeryczne Numerical Methods

Z-ETI-1040 Metody numeryczne Numerical Methods Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim

Bardziej szczegółowo

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Metody estymacji parametrów i sygnałów Estimation methods of parameters

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład

Bardziej szczegółowo

Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni. Wykład 7. Karol Tarnowski A-1 p.

Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni. Wykład 7. Karol Tarnowski A-1 p. Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni Wykład 7 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Praca z repozytorium kodu Na podstawie: https://www.gnu.org/software/gsl/doc/html/index.html

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki Program studiów na kierunku matematyka (studia I stopnia o profilu ogólnoakademickim, stacjonarne) dotyczy osób zarekrutowanych w roku 2013/14 i w latach następnych Państwowa Wyższa Szkoła Zawodowa w Tarnowie

Bardziej szczegółowo

Architektura dużych projektów bioinformatycznych

Architektura dużych projektów bioinformatycznych Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie

Bardziej szczegółowo

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć

Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Metody Numeryczne (Matematyka) Politechnika Warszawska

Metody Numeryczne (Matematyka) Politechnika Warszawska Metody Numeryczne (Matematyka) Zajęcia w semestrze zimowym 2017/2018 Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych I. ZALICZENIE LABORATORIUM Siedem zajęć poświęconych jest pakietowi

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Z-LOG-530I Analiza matematyczna II Calculus II

Z-LOG-530I Analiza matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG-530I Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14

Bardziej szczegółowo

PROGRAM STUDIÓW A. GRUPA ZAJĘĆ Z ZAKRESU NAUK PODSTAWOWYCH I OGÓLNOUCZELNIANYCH LICZBA GODZIN (P/K/PW)** PUNKTY ECTS

PROGRAM STUDIÓW A. GRUPA ZAJĘĆ Z ZAKRESU NAUK PODSTAWOWYCH I OGÓLNOUCZELNIANYCH LICZBA GODZIN (P/K/PW)** PUNKTY ECTS II. PROGRAM STUDIÓW FORMA STUDIÓW: stacjonarne LICZBA SEMESTRÓW: LICZBA PUNKTÓW : MODUŁY KSZTAŁCENIA (zajęcia lub grupy zajęć) wraz z przypisaniem zakładanych efektów kształcenia i liczby punktów : A.

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Gospodarka przestrzenna

Bardziej szczegółowo

Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku

Bardziej szczegółowo

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Edukacja techniczno-informatyczna Nazwa przedmiotu: Metody numeryczne i elementy sztucznej inteligencji Charakter przedmiotu: kierunkowy, obowiązkowy

Bardziej szczegółowo

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)

Bardziej szczegółowo

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sterowania Control theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Zwięzły kurs analizy numerycznej

Zwięzły kurs analizy numerycznej Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...

Bardziej szczegółowo

Kierunek: Matematyka w technice

Kierunek: Matematyka w technice Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka. (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Obliczenia inżynierskie. oprogramowanie matematyczne

Obliczenia inżynierskie. oprogramowanie matematyczne Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA1 2. Kod przedmiotu: Ro1 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka Okrętowa

Bardziej szczegółowo

PROGRAM STUDIÓW. WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana

PROGRAM STUDIÓW. WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana PROGRAM STUDIÓW należy do obszaru w zakresie nauk ścisłych, dziedzina nauk matematycznych, dyscyplina matematyka, z kompetencjami

Bardziej szczegółowo

Pakiet matlab odpowiednie narzędzie w nowoczesnym laboratorium. Karol Józefowicz. Państwowa Wyższa Szkoła Zawodowa w Lesznie, Instytut Politechniczny

Pakiet matlab odpowiednie narzędzie w nowoczesnym laboratorium. Karol Józefowicz. Państwowa Wyższa Szkoła Zawodowa w Lesznie, Instytut Politechniczny Pakiet matlab odpowiednie narzędzie w nowoczesnym laboratorium Karol Józefowicz Państwowa Wyższa Szkoła Zawodowa w Lesznie, Instytut Politechniczny Streszczenie W artykule zaprezentowano nowoczesne narzędzie

Bardziej szczegółowo

Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0

Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0 PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego

Bardziej szczegółowo

Fizyka komputerowa(ii)

Fizyka komputerowa(ii) Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub

Bardziej szczegółowo

Podsumowanie wyników ankiety

Podsumowanie wyników ankiety SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne)

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Informatyka 2 Nazwa modułu w języku angielskim Computer science 2 Obowiązuje

Bardziej szczegółowo

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus: Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności

Bardziej szczegółowo

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 1 Nazwa modułu w języku angielskim Mathematics 1 Obowiązuje od

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia niestacjonarne Dla rocznika:

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia niestacjonarne Dla rocznika: Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym wykład 15

Bardziej szczegółowo

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia stacjonarne Dla rocznika: 2018/2019

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia stacjonarne Dla rocznika: 2018/2019 Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia stacjonarne Dla rocznika: 2018/2019 Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym wykład

Bardziej szczegółowo

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Nowoczesne metody nauczania przedmiotów ścisłych

Nowoczesne metody nauczania przedmiotów ścisłych Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika:

Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika: Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym

Bardziej szczegółowo

Równania różniczkowe Differential Equations

Równania różniczkowe Differential Equations KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/016 Z-ID-0a Równania różniczkowe Differential Equations A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Podstawy programowania 2 Nazwa modułu w języku angielskim Fundamentals of

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i wizualizacja procesów fizycznych Nazwa modułu w języku angielskim

Bardziej szczegółowo

Zagadnienia optymalizacji Problems of optimization

Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/04 Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

WSKAŹNIKI ILOŚCIOWE - Punkty ECTS w ramach zajęć: Efekty kształcenia. Wiedza Umiejętności Kompetencje społeczne (symbole) MK_1. Analiza matematyczna

WSKAŹNIKI ILOŚCIOWE - Punkty ECTS w ramach zajęć: Efekty kształcenia. Wiedza Umiejętności Kompetencje społeczne (symbole) MK_1. Analiza matematyczna PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA STOSOANA PLAN STUDIÓ STACJONARNYCH PIERSZEGO STOPNIA semestr: 1. w grupach 14.4- -060 prowadzenie do psychologii 15 15 30 2 S-PP/OH 11.1- -810 stęp do logiki i teorii mnogości 30 30 60 1 8 P1

Bardziej szczegółowo

Rok I, semestr I (zimowy) Liczba godzin

Rok I, semestr I (zimowy) Liczba godzin Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia stacjonarne Dla rocznika: 2018/2019 Rok I, semestr I (zimowy) Lp. Nazwa przedmiotu zajęć

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2015/2016

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2015/2016 PLAN STUDIÓ STACJONARNYCH PIRSZGO STOPNIA MATMATYKA od roku akademickiego 20/2016 Semestr 1 stęp do logiki i teorii mnogości 45 75 1 7 Analiza matematyczna 1 1) 60 90 8 Algebra liniowa 1 60 90 7 Geometria

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Informatyka Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E09_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy

Bardziej szczegółowo

Architektura dużych projektów bioinformatycznych

Architektura dużych projektów bioinformatycznych Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 10.4.2019 Plan na przyszły tydzień: quiz Kto używał

Bardziej szczegółowo

MATEMATYKA PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA

MATEMATYKA PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA MATEMATYKA PLAN STUDIÓ STACJONARNYCH DRUGIEGO STOPNIA semestr: 1 05.1- -810 Pracownia dydaktyki matematyki * 30 30 3 S-D 11.1- -810 Analiza matematyczna 1 30 30 60 4 P1 11.1- -810 Równania różniczkowe

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015

Bardziej szczegółowo

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Matematyka Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3

KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo