Refraktometria. sin β sin β

Wielkość: px
Rozpocząć pokaz od strony:

Download "Refraktometria. sin β sin β"

Transkrypt

1 efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch różnych ośrodków przeźroczystych ulegają częścowo odbcu, a częścowo załamanu (rys. 10). To ostatne zjawsko zwązane jest ze zmaną prędkośc rozchodzena sę promen śwetlnych w różnych ośrodkach. promeń padający promeń odbty ys. 10. Zmana kerunku promen śwetlnych na powerzchn grancznej dwóch ośrodków Na rysunku tym, kąt α mędzy promenem padającym, a prostą prostopadłą do płaszczyzny rozgranczającej dwa ośrodk nos nazwę kąta padana. Kąt α to kąt odbca, a kąt β to kąt załamana. Zgodne z prawem Snellusa, stosunek snusa kąta padana do snusa kąta załamana jest dla danej pary ośrodków welkoścą stałą, zwaną współczynnkem załamana równą stosunkow prędkośc śwatła w obydwu ośrodkach. Zależność ta jest określona równanem: sn α c1 n1, sn β c promeń załamany w którym n 1, jest współczynnkem załamana ośrodka drugego względem perwszego, a c 1 c to prędkośc śwatła w obydwu ośrodkach. Jeżel załamane śwatła następuje w ten sposób, że kąt β < α, to ośrodek drug nos nazwę optyczne gęstszego nż perwszy. Gdy promeń śwetlny przechodząc z ośrodka optyczne rzadszego do gęstszego pada na powerzchnę granczną pod kątem 90 0, to załamane następuje pod kątem β g, który nazywamy kątem grancznym. ównane przedstawone wyżej przyjme wówczas następującą postać: 0 sn 90 1 n1, sn β sn β 1

2 Z zależnośc przedstawonej tym równanem wynka możlwość pomaru współczynnka załamana śwatła przez zmerzene wartośc kąta grancznego. W stałej temperaturze współczynnk załamana śwatła (n) jest welkoścą charakterystyczną dla określonej substancj. Ze wzrostem temperatury wartośc n maleją. Na wartość współczynnka załamana wpływ ma także długość fal śwatła najczęścej stosuje sę śwatło o długośc fal równej ln D wdma emsyjnego sodu (589,3 nm), a współczynnk załamana śwatła odpowadający tej długośc fal oznacza sę symbolem n D. Zastosowane krótszych długośc fal powoduje wzrost n, a przy dłuższych falach wartość współczynnka załamana maleje. Dane dotyczące temperatury długośc fal zaznaczamy przy symbolu współczynnka załamana śwatła: n D 5 (z prawej u góry temperatura, u dołu rodzaj śwatła). Przyrządy służące do pomarów współczynnka załamana śwatła noszą nazwę refraktometrów. Ich dzałane oparte jest na zasadze pomaru kąta grancznego. Najpowszechnej używanym tego typu aparatem jest refraktometr bbego, przy pomocy którego można badać współczynnk załamana ceczy w zakrese od 1,3 do 1,7. Istotną zaletą refraktometru bbego jest możlwość wykonywana pomarów zarówno w śwetle monochromatycznym, jak bałym (zawerającym wszystke długośc fal zakresu wdzalnego np. śwatło słoneczne). Zasadnczą częścą refraktometru bbego są dwa pryzmaty, pomędzy które wprowadza sę cenką warstwę badanej ceczy. Odbte od zwercadła promene padają na perwszy pryzmat załamują sę w nm przechodzą do ceczy. Stykająca sę z ceczą powerzchna perwszego pryzmatu jest matowa, przez co śwatło rozprasza sę na tej powerzchn na cecz padają promene pod wszystkm możlwym kątam. Poneważ cecz jest ośrodkem optyczne rzadszym węc do drugego pryzmatu przechodz tylko część śwatła - promene padające pod kątem mnejszym lub równym kątow grancznemu. Promeń padający pod katem grancznym rozdzela przestrzeń ośwetloną od neośwetlonej. Przez odpowedn obrót pryzmatów właścwe ch ośwetlene prowadz sę promene w ten sposób, aby granca pola cemnego jasnego wypadła w środku okularu (na skrzyżowanu nc pajęczych). Obrót pryzmatów schynchronzowany jest ze skalą przyrządu, na której odczytuje sę wartość współczynnka załamana. Pomary wartośc współczynnka załamana śwatła wykorzystuje sę od celów analtycznych, do dentyfkacj substancj lub badana ch stopna czystośc. Znając wartość współczynnka załamana śwatła, można oblczyć refrakcję molową czystej substancj lub wartość refrakcj molowej oru. efrakcja molowa ( ) jest welkoścą charakterystyczną stałą dla danego zwązku chemcznego, ne zależy od

3 temperatury, cśnena w zasadze od stanu skupena substancj. Na jej welkość wpływ ma natomast długość fal śwatła stosowanego przy wyznaczanu współczynnka załamana śwatła. n 1 n + d [ ] m 3 mol -1 gdze: n współczynnk załamana śwatła (czystej) substancj - masa molowa d- gęstość efrakcja molowa wąże sę główne z polaryzacją elektronową w cząsteczce, występującą przy przejścu śwatłą przez materę. Polaryzacja ta wynka z zaburzena rozkładu gęstośc elektronowej wokół jąder atomowych. Pod wpływem pola elektrycznego ndukowany jest w każdym atome moment dpolowy, proporcjonalny do natężena pola. efrakcja molowa wykazuje właścwośc addytywne, tzn. jest sumą udzałów refrakcj atomów refrakcj wązań występujących w cząsteczce określonego zwązku gdze: n + a 1 1 n a, w - refrakcja atomów, refrakcja wązań n - lczba określonych atomów lub wązań w Na podstawe powyższego wzoru można oblczyć refrakcję molową zwązku, gdy znana jest jego budowa. Welkość tę można wyznaczyć równeż dośwadczalne, merząc współczynnk załamana gęstość substancj. Znając dośwadczalną wartość refrakcj, można ustalć rozmeszczene atomów wązań występujących w cząsteczce zwązku. efrakcja molowa oru także wykazuje właścwośc addytywne równa sę sume udzałów refrakcj molowych poszczególnych składnków oru. Dla orów dwuskładnkowych welkość tę można wyrazć wzorem:. x x gdze: x 1 x - ułamk molowe substancj 1 w orze 1 - refrakcje molowe czystych substancj Dośwadczalną wartość refrakcj molowej oru wyznacza sę z równana: n 1 x11 + x. n + d gdze: n. d. - współczynnk załamana gęstość oru x 1 x oraz 1 - ułamk molowe masy molowe składnków oru Zależność ta może być także wykorzystywana do wyznaczana refrakcj molowej czystego składnka, dla którego pomar gęstośc współczynnka załamana jest technczne trudny. 3

4 Ćwczene 8 Wyznaczane refrakcj molowej sprawdzane jej właścwośc addytywnych. 1. Wyznaczane współczynnka załamana meszanny rozpuszczalnków Sporządzć po 10 g meszanny rozpuszczalnków (rozpuszczalnk wskaże asystent prowadzący ćwczena) wg tabel 1 % wagowy rozpuszcz w Ilość meszanny (g) rozpuszcz (g) rozpuszcz (g) rozpuszcz (cm 3 ) rozpuszcz (cm 3 ) by unknąć ważena orów należy przelczyć masę na objętość na podstawe gęstośc podanych w tabel. Nazwa zwązku asa molowa () Gęstość (d) [g/cm 3 ] chloroform 119,39 1,49 benzen 78,11 0,88 doksan 88,11 1,03 propanol 60,09 0,8004 zo-propanol 60,11 0,787 heksan 86,18 0,66 butanol 74,1 0,8066 glkol etylenowy 6,07 1,11 metanol 3,04 0,79 etanol 46,07 0,791 aceton 58,08 0,791 cykloheksan 78,05 0,779 W stałej temperaturze zmerzyć kolejno współczynnk załamana śwatła przygotowanych orów oraz czystych składnków. Pomarów dokonać przy użycu refraktometru bbego. 4

5 W tym celu należy otworzyć (rozchylć) komorę pryzmatu pomarowego, przetrzeć ją wackem zwlżonym alkoholem delkatne osuszyć. Następne za pomocą ppety nanosmy badany ór, tak aby pokrył on cała powerzchnę dolnego pryzmatu. Po zamknęcu komory pryzmatu dokonujemy pomaru współczynnka załamana śwatła. Kręcąc dużym pokrętłem z prawej strony przyrządu możemy ustawć w polu wdzena lnę rozgranczającą jasną cemną część obrazu. Obracając małym pokrętłem z lewej strony przyrządu możemy uzyskać ostrą, wyraźną, lnę rozgranczającą jasne cemne pole wdzane w okularze. Obracając pokrętłem z prawej strony refraktometru należy tak ustawć grancę fazy ośwetlonej neośwetlonej, aby ta granca przechodzła dokładne przez przecęce skrzyżowanych ln (nc pajęczych) wdocznych w okularze. W drugm okularze można dokonać odczytu współczynnka załamana śwatła. Wynk pomarów wpsać do tabel 3. Tabela 3. % wag. rozpuszcz. w orze ułamek molowy w orze Wzór na oblczane ułamków molowych: współczynnk załamana śwatła (n) oru gęstość oru (d) [g/cm 3 ] refrakcja dośwadcz. oru [cm 3 /mol] x n n + n x n n + n x + x 1 gdze: n - lczba mol składnka n - lczba mol składnka Na podstawe uzyskanych wynków wykonać wykres funkcj f (x ). Prostolnowy przebeg funkcj f (x ) potwerdzałby addytywność refrakcj molowej oru. *) gęstość oru możemy wylczyć z zależnośc m/v ( meszanny (g)/ sumaryczna objętość orów (cm 3 )) 5

Refraktometria. sin β sin β

Refraktometria. sin β sin β Refraktometria Prędkość rozchodzenia się promieni świetlnych zależy od gęstości optycznej ośrodka oraz od długości fali promienienia. Promienie świetlne padając pod pewnym kątem na płaszczyznę graniczących

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń

Bardziej szczegółowo

Ćwiczenie 366. Wyznaczanie współczynnika załamania światła metodą pomiaru kąta najmniejszego odchylenia. I. Wyznaczanie kąta łamiącego pryzmatu

Ćwiczenie 366. Wyznaczanie współczynnika załamania światła metodą pomiaru kąta najmniejszego odchylenia. I. Wyznaczanie kąta łamiącego pryzmatu Katedra Fzyk SGGW Nazwsko Data Nr na lśce Imę Wydzał Dzeń tyg Godzna Ćwczene 3 Wyznaczane współczynnka załamana śwatła metodą pomaru kąta najmnejszego odchylena I Wyznaczane kąta łamącego pryzmatu Położene

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym REFRAKTOMETRIA 19. Oznaczanie stężenia gliceryny w roztworze wodnym Celem ćwiczenia jest zaobserwowanie zmiany współczynnika refrakcji wraz ze zmianą stężenia w roztworu. Odczynniki i aparatura: 10% roztwór

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński 1 Zespół autorsk: Lda Chomcz (ćw. 6, 15, 16) Karol Krzymńsk (ćw. 1, 2, 4, 6, 7, 9, 17, rozdzał III) Artur Skorsk (ćw. 3, 1, rozdzał II) Potr Storonak (ćw. 8) Beata Zadykowcz (ćw. 13, 14, 18) Agneszka Żylcz-Stachula

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych

Bardziej szczegółowo

Bryła fotometryczna i krzywa światłości.

Bryła fotometryczna i krzywa światłości. STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorum PODSTAW TECHNIKI ŚWIETLNEJ Temat: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ ŚWIATŁOŚCI Opracowane wykonano na podstawe: 1. Laboratorum z technk śwetlnej (praca

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Temat 2: Podstawy optyki geometrycznej-1. Zasada Fermata. Prawo odbicia światła

Temat 2: Podstawy optyki geometrycznej-1. Zasada Fermata. Prawo odbicia światła Temat : Podstawy optyk geometrycznej-1 Ilość godzn na temat wykładu: Zagadnena: Zasada Fermata. Zasada Huygensa. Wyprowadzene praw odbca załamana śwatła z zasad Fermata Huygensa. Współczynnk załamana.

Bardziej szczegółowo

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Grupa: Elektrotechnka, sem 3., wersja z dn. 14.1.015 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 5 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

1. Podstawy i podział spektroskopii... 5 1.1 Podział spektroskopii według zakresu promieniowania... 5 1.2 Podział spektroskopii według rodzajów

1. Podstawy i podział spektroskopii... 5 1.1 Podział spektroskopii według zakresu promieniowania... 5 1.2 Podział spektroskopii według rodzajów . Podstawy podzał spektroskop... 5. Podzał spektroskop według zakresu promenowana... 5. Podzał spektroskop według rodzajów układów materalnych... 9.3 Podzał spektroskop według metod otrzymywana wdma.....

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

20. Oznaczanie stężenia acetonu w czterochloroetanie

20. Oznaczanie stężenia acetonu w czterochloroetanie REFRAKTOMETRIA 20. Oznaczanie stężenia acetonu w czterochloroetanie Odczynniki i aparatura: Aceton Czterochloroetan Refraktometr Pulfricha PR-2 Wykonanie ćwiczenia: 1. 15 minut przed pomiarami włączyć

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Część teoretyczna IZOLACYJNOŚĆ AKUSTYCZNA PRZEGRÓD

Część teoretyczna IZOLACYJNOŚĆ AKUSTYCZNA PRZEGRÓD Część teoretyczna ZOLACYJNOŚĆ AKUSTYCZNA PRZEGRÓD Energa dźwęku padającego na przegrodę będze częścowo odbta, częścowo pochłonęta, a ch stosunek będze zależał od stosunku mpedancj akustycznej materału

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii Pomary dawek promenowana wytwarzanego w lnowych przyspeszaczach na użytek radoterap Włodzmerz Łobodzec Zakład Radoterap Szptala m. S. Leszczyńskego w Katowcach Cel radoterap napromenene obszaru PTV zaplanowaną,

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwzee r 4 Temat: Wyzazee współzyka załamaa ezy refraktometrem Abbego.. Wprowadzee Śwatło, przy przejśu przez graę dwóh ośrodków, zmea swój

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI POWIERZCHNII

BADANIE WŁAŚCIWOŚCI POWIERZCHNII 1 POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW BADANIE WŁAŚCIWOŚCI POWIERZCHNII KATALIZATORÓW TLENKOWYCH ZA POMOCĄ REAKCJI TESTOWEJ (KONWERSJI ALKOHOLU IZOPROPYLOWEGO)

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząca(y)... grupa... podgrupa... zespół... semestr roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Laboratorium Akustyki Architektonicznej Ćw. 4

Laboratorium Akustyki Architektonicznej Ćw. 4 Laboratorum Akustyk Archtektoncznej Ćw. 4 POMARY ZOLACYJNOŚC AKUSTYCZNEJ PRZEGRODY BUDOWLANEJ. Cel ćwczena Celem ćwczena jest zapoznane sę z metodą pomaru zolacyjnośc akustycznej przegród budowlanych.

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracowna studencka Katedry Analzy Środowska Instrukcja do ćwczeń laboratoryjnych Ćwczene nr 2 WYZNACZANIE WSPÓŁCZYNNIKA PDZIAŁU WYBRANYCH ZANIECZYSZCZEŃ RGANICZNYCH ŚRDWISKA

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

INSTRUKCJA Do ćwiczenia nr 6

INSTRUKCJA Do ćwiczenia nr 6 MIT Wydzał Chemczny Poltechnka Łódzka INSTUKCJA Do ćwczena nr 6 Semestr letn 011/01 Pomar średnego cężaru cząsteczkowego materałów polmerowych Wersja nstrukcj: 06.03.01 WPOWADZENIE Metodą SLS (ang. Statc

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe Rafał Górnak Wyznaczene promena hydrodynamcznego cząsteczk metodą wskozymetryczną. Część. Symulacje komputerowe Pojęca podstawowe Symulacje komputerowe, zasady dynamk Newtona, dynamka molekularna, potencjał

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI

OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI Oblczane rozkładów natęŝena ośwetlena. OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI T E R E N Y O T W A R T E Stosowana jest tzw. metoda punktowa, która polega na oblczanu w określonych

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Własności optyczne i mikrofizyczne aerozolu atmosferycznego. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski

Własności optyczne i mikrofizyczne aerozolu atmosferycznego. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Własnośc optyczne mkrofzyczne aerozolu atmosferycznego Krzysztof Markowcz Instytut Geofzyk, Wydzał Fzyk Unwersytet Warszawsk Welkośc mkrofzyczne Rozkład welkośc cząstek n(r) Współczynnk załamana śwatłą

Bardziej szczegółowo

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił. 1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało

Bardziej szczegółowo

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Szybkobeżne Pojazdy Gąsencowe (15) nr 1, 2002 Andrzej SZAFRANIEC WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Streszczene. Przedstawono metodę wyważana statycznego wolnoobrotowych wrnków ponowych

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA

SPEKTROSKOPIA MOLEKULARNA SPEKTROSKOPIA MOLEKULARNA Ćwzene 1 Badane wązana wodorowego za pomoą spektroskop absorpyjnej w podzerwen. A. BADANIE AUTOASOCJACJI ALKOHOLU OKTYLOWEGO ODCZYNNIKI Substanja badana: oktanol (d=0.83 g/m 3

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY SZTYWNEJ ZA POMOCĄ WAHADŁA TORSYJNEGO

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY SZTYWNEJ ZA POMOCĄ WAHADŁA TORSYJNEGO PACOWNA FZYCZNA, UMK TOUŃ nstrukja do ćwzena nr 9 * WYZNACZANE MOMENTU BEZWŁANOŚC BYŁY SZTYWNEJ ZA POMOCĄ WAHAŁA TOSYJNEGO. Cel ćwzena Wyznazene momentu bezwładnoś za pomoą wahadła torsyjnego (metoda dynamzna).

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: 1 Statyczna próba rozcągana Sprawozdane pownno zawerać: 1. Rysunek próbk.. Wzory stosowane w trakce wypełnana protokółu. 3. Uzyskany wykres rozcągana. 4. Protokół statycznej próby rozcągana ze zmerzonym

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Ćwczene 18 Anna Jakubowska, Edward Dutkewcz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Zagadnena: Zjawsko adsorpcj, pojęce zotermy adsorpcj. Równane zotermy adsorpcj Gbbsa. Defncja nadmaru

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo