1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej"

Transkrypt

1 ul.potrowo 3a Grupa: Elektrotechnka, wersja z dn Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych Ŝarówek dod śwecących o ukerunkowanym rozsyle Opracowane wykonano na podstawe następującej lteratury: 1. Laboratorum z technk śwetlnej (praca zborowa pod redakcją Władysława Golka). Skrypt nr 179. Wydawnctwo Poltechnk Poznańskej, Poznań Bąk J., Pabjańczyk W.: Podstawy technk śwetlnej. Wydawnctwo Poltechnk Łódzkej, Łódź PN-90/E Technka Śwetlna. Termnologa 1. Wstęp Celem ćwczena jest zbadane porównane parametrów fotometrycznych źródeł śwatła o ukerunkowanym rozsyle. Badanym obektam będą dody śwecące z odbłyśnkem (Rys.1) oraz Ŝarówk halogenowe z odbłyśnkem (Rys.) Rys. 1 Doda śwecąca z odbłyśnkem Rys. śarówka halogenowa z odbłyśnkem 1

2 ul.potrowo 3a Krzywa śwatłośc Krzywa śwatłośc jest to krzywa, przedstawona najczęścej w układze współrzędnych begunowych, która powstaje po przecęcu bryły fotometrycznej płaszczyzną ponową przechodzącą przez oś optyczną środek śwetlny źródła śwatła. Dla projektorów źródeł śwatła o ukerunkowanym rozsyle, które wysyłają strumeń śwetlny w obrębe newelkego kąta bryłowego, krzywe śwatłośc (dla uzyskana wększej dokładnośc odczytu) przedstawa sę we współrzędnych prostokątnych. Rys. 3 Krzywe śwatłośc przedstawone w układze begunowym (po lewej) oraz prostokątnym (po prawej) Środek śwetlny Środek śwetlny oprawy lub źródła śwatła jest charakterystycznym punktem toŝsamym ze środkem geometrycznym źródła śwatła lub płaszczyzny otworu wyjścowego oprawy ośwetlenowej. Według normy PN-91 E-04040/0 Pomary promenowana optycznego Pomary fotometryczne Pomar śwatłośc fotometryczny środek śwetlny obektu pomarowego defnowany jest, jako umowny punkt przyjęty, jako początkowy przy pomarach oblczenach fotometrycznych. Środek śwetlny obektu pomarowego pownen znajdować sę w os ścśle określonym punkce gonometru, zaleŝnym od rodzaju jego konstrukcj.

3 ul.potrowo 3a Środek śwetlny źródła śwatła z odbłyśnkem pokrywa sę ze środkem otworu wyjścowego. (Rys.4 ) Rys. 4 Środek śwetlny źródła śwatła z odbłyśnkem UŜyteczny kąt rozsyłu wązk śwatła δ 0.5 δ 0.1 Dla źródeł śwatła o ukerunkowanym rozsyle, oprócz krzywej śwatłośc stotnym parametrem jest uŝyteczny kąt rozwarca wązk. δ. Jest to kąt w płaszczyźne przechodzącej przez oś wązk, w zakrese którego śwatłość spada do określonej wartośc procentowej swojej maksymalnej wartośc, dla δ 0.5 do 50% max, a dla δ 0.1 do 10% max (Rys.5). Wewnątrz tego kąta zachodz zaleŝność m > lub m. > 10 Rys.5 Krzywa śwatłośc uŝyteczne kąty rozwarca wązk δ 0.5 δ 0.1 3

4 ul.potrowo 3a Gonometr Do pomaru śwatłośc źródeł śwatła o ukerunkowanym rozsyle wykorzystuje sę gonometr (Rys.6). Jest to urządzene pozwalające na precyzyjny obrót badanego źródła śwatła o określony kąt, dookoła os ponowej oraz os pozomej w płaszczyźne prostopadłej do os optycznej. Przez obrót ramena gonometru dookoła os pozomej wyznacza sę krzywą śwatłośc źródła śwatła w kerunkach określonych kątam odczytywanym z podzałk na gonometrze. Dokonując pomaru śwatłośc w róŝnych płaszczyznach wyznaczyć moŝna bryłę fotometryczną źródła śwatła. Podczas pomaru środek śwetlny źródła śwatła z odbłyśnkem mus znajdować sę na przecęcu pozomej ponowej os obrotu. Odległość źródła śwatła od przetwornka fotoelektrycznego umeszczonego na ławe fotometrycznej ne pownna być mnejsza nŝ granczna odległość fotometrowana. Rys.6 Gonometr Granczna odległość fotometrowana Granczną odległość fotometrowana moŝna wyznaczyć dośwadczalne. W tym celu naleŝy wyznaczyć zmany śwatłośc źródła śwatła w funkcj odległośc fotoprzetwornka od źródła. Za granczną odległość fotometrowana naleŝy uznać taką, powyŝej której śwatłość ne ulega zmane (róŝnce mogą wynosć 1%) spełnone jest prawo odwrotnośc kwadratu odległośc. 4

5 ul.potrowo 3a Prawo odwrotnośc kwadratu odległośc Dla punktowych źródeł śwatła natęŝene ośwetlena w punkce A jest wprost proporcjonalne do śwatłośc źródła śwatła w kerunku punktu A odwrotne proporcjonalne do kwadratu odległośc pomędzy źródłem śwatła, a punktem A. (Rys. 7) Rys.7 nterpretacja prawa odwrotnośc kwadratu odległośc E A = (1) r α Wyznaczane śwatłośc kerunkowej Śwatłość kerunkową na ławe fotometrycznej wyznaczyć moŝna na podstawe wskazań mernka prądu fotoelektrycznego oraz kalbracj układu pomarowego lub na podstawe wskazać luksomerza. Śwatłość kerunkową, w przypadku wykorzystana do pomaru mernka prądu fotoelektrycznego, oblczmy z zaleŝnośc (): gdze: K- stała układu pomarowego [cd/dzm ] = K r () -wskazane mernka prądu fotoelektrycznego (przetwornka /U) dla obektu badanego [dz] r odległość ognwa fotoprzetwornka od badanego obektu [m] W przypadku wykorzystana do pomaru luksomerza śwatłość wyznacza sę na podstawe zaleŝnośc (3): = E r (3) Skalowane układu pomarowego Stałą K układu w równanu () wyznaczyć korzystając z wzorca śwatłośc kerunkowej (Ŝarówka o znanej śwatłośc W ) zamocowanego na ławe fotometrycznej, zaslonego 5

6 ul.potrowo 3a zgodne z metryką kalbracj wzorca. Skalowane najlepej wykonać na tym samym zakrese mernka prądu fotoelektrycznego, na którym wykonywane były pomary. W trakce pomaru odczytać naleŝy wskazana mernka prądu fotoelektrycznego W oraz odległośc na jakej znajduje sę wzorzec - r w. Stałą układu pomarowego wyznacza sę na podstawe zaleŝnośc (4): K W cd (4) r dz m = w w gdze: K- stała układu pomarowego cd dz m w -wskazane mernka prądu fotoelektrycznego (przetwornka /U) [dz] r w odległość ognwa fotoprzetwornka od wzorca [m] - śwatłość wzorca [cd] W Uwaga: zwrócć szczególną uwagę na to, aby płaszczyzna, w której rozpęty jest Ŝarnk Ŝarówk wzorcowej (wzorzec śwatłośc) była równoległa do płaszczyzny fotoprzetwornka. Wykorzystując do pomaru śwatłośc kerunkowej luksomerz z głowcą pomarową skorygowaną do V (λ) ne ma konecznośc kalbracj układu pomarowego. Wyznaczene strumena śwetlnego za pomocą metody strumen cząstkowych Strumeń cząstkowy φ ω zawarty w kące bryłowym ω sr. ω Strumeń śwetlny całkowty oblczany jest ze wzoru (6): Z przedzałem kąta bryłowego ω oblczany jest ze wzoru (5) φ = ω (5) 0 n n ω sr ω (6) = 1 = 1 φ = φ = ω ω zwązany jest przedzał kata płaskego [ ] ω = π cos cos( + ) (7) Ostateczne cząstkowy strumeń śwetlny oblczany jest ze wzoru (8): Φ = π sr [cos cos( + )] (8) ω 6

7 ul.potrowo 3a Przebeg ćwczena Pomaru rozsyłu śwatłośc naleŝy dokonać na ławe fotometrycznej z wykorzystanem gonometru (schemat układu pomarowego na rysunku 8). Przed przystąpenem do badań naleŝy poprawne ustawć połoŝene badanego źródła śwatła względem głowcy przetwornka fotoelektrycznego. Na jednym z końców ławy fotometrycznej naleŝy zamocować przetwornk fotoelektryczny, natomast na drugm końcu ławy fotometrycznej w odległośc r r gonometr z badanym źródłem śwatła. Pomary wykonać dla źródeł śwatła wskazanych przez prowadzącego. Pomary naleŝy przeprowadzć dla kątów od 0 º do 50 º, co º. W przypadku korzystana w trakce pomaru ze mernka prądu fotoelektrycznego trzeba wykonać skalowane układu pomarowego. Po wyznaczenu wartośc stałej K (zaleŝność (4)), naleŝy wyznaczyć (zaleŝność (). W opracowanu narysować krzywe śwatłośc badanych źródeł śwatła w układze gr współrzędnych prostokątnych =f(). Wyznaczyć całkowty strumeń śwetlny emtowany przez badane źródło śwatła (8) oraz uŝyteczne kąty rozsyłu δ 0.5 δ 0.1 Rys. 8 Schemat układu pomarowego 3. Tabele pomarowe Skalowane układu pomarowego Dane wzorca śwatłośc: Moc P N =.[W], Napęce znamonowe U N = [V] Napęce fotometrowana U fot =..[V], Śwatłość wzorca W = [cd] W [dz] Stała układu pomarowego r w [m] W K= r W * w cd [ ] dzm 7

8 ul.potrowo 3a Wyznaczane śwatłośc strumena śwetlnego źródła śwatła Nazwa badanego źródła śwatła: Moc P N = [W] Napęce pomarowe U pom = [V] Napęce znamonowe U N =..[V] Odległość źródła od głowcy fotoprzetwornka r = [m] [ ] [ dz] (E [lx]) [ cd] [ ]. [ cd] ω[ sr] φ ω [lm] sr 0 0 0, , , , , , , , , , , , , , , , , , , , , , , , , φ o = 8

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Grupa: Elektrotechnka, sem 3., wersja z dn. 14.1.015 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 5 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej

Bardziej szczegółowo

Bryła fotometryczna i krzywa światłości.

Bryła fotometryczna i krzywa światłości. STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorum PODSTAW TECHNIKI ŚWIETLNEJ Temat: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ ŚWIATŁOŚCI Opracowane wykonano na podstawe: 1. Laboratorum z technk śwetlnej (praca

Bardziej szczegółowo

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH 6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 2.11.212 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium TECHNIKI ŚWIETLNEJ TEMAT: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ 60-965 Poznań Grupa: Elektrotechnika, sem 3., Podstawy Techniki Świetlnej Laboratorium wersja z dn. 03.11.2015 Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ Opracowanie wykonano na podstawie

Bardziej szczegółowo

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 18.03.2011 aboratorium Techniki Świetlnej Ćwiczenie nr 2. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓśYCH WŁAŚCIWOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 29.03.2016 aboratorium Techniki Świetlnej Ćwiczenie nr 5. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓŻYCH WŁASOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI

OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI Oblczane rozkładów natęŝena ośwetlena. OBLICZANIE ROZKŁADÓW NATĘśENIA OŚWIETLENIA I ROZKŁADÓW LUMINANCJI T E R E N Y O T W A R T E Stosowana jest tzw. metoda punktowa, która polega na oblczanu w określonych

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Szybkobeżne Pojazdy Gąsencowe (15) nr 1, 2002 Andrzej SZAFRANIEC WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Streszczene. Przedstawono metodę wyważana statycznego wolnoobrotowych wrnków ponowych

Bardziej szczegółowo

Grupa: Elektrotechnika, sem 3., wersja z dn Technika Świetlna Laboratorium

Grupa: Elektrotechnika, sem 3., wersja z dn Technika Świetlna Laboratorium tel. (0-61) 665688 fax (0-61) 665389 Grupa: Elektrotechnika, sem 3., wersja z dn. 0.10.007 Technika Świetlna Laboratorium Ćwiczenie nr 4 Temat: POMIAR ŚWIATŁOŚCI KIERUNKOWEJ METODĄ OBIEKTYWNĄ Opracowanie

Bardziej szczegółowo

Badanie parametrów fotometrycznych opraw parkowych z lampami sodowymi

Badanie parametrów fotometrycznych opraw parkowych z lampami sodowymi Badanie parametrów fotometrycznych opraw parkowych z lampami sodowymi Zamawiający: PPHU HARPIS Piotr Skubel, ul. Wyczółkowskiego 107 65-140 Zielona Góra Wykonawcy: mgr inż. Przemysław Skrzypczak mgr inż.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Laboratorium Sprzętu Oświetleniowego

Laboratorium Sprzętu Oświetleniowego Laboratorium Sprzętu Oświetleniowego Specjalność: Technika Świetlna, sem. 9, studia stacjonarne jednolite Termin: Wtorek godz. 11:15-14:00, Czwartek godz. 11:45 14:30 Prowadzący: Krzysztof Wandachowicz

Bardziej szczegółowo

Refraktometria. sin β sin β

Refraktometria. sin β sin β efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Laboratorium Sprzętu Oświetleniowego

Laboratorium Sprzętu Oświetleniowego Laboratorium Sprzętu Oświetleniowego Specjalność: Technika Świetlna, sem.7, studia I stopnia Wersja z dnia 24.10.2011 Prowadzący: Krzysztof Wandachowicz Nr ćw. Temat 1 Badanie parametrów początkowych,

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ MASZYN METODĄ KSZTAŁTOWANIA WIĄZKI SYGNAŁU (BEAMFORMING)

IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ MASZYN METODĄ KSZTAŁTOWANIA WIĄZKI SYGNAŁU (BEAMFORMING) dr nż. Jerzy Motylewsk mgr nż. Potr Pawłowsk mgr nż. Mchał Rak dr nż. Tomasz G. Zelńsk Zakład Technolog Intelgentnych Instytut Podstawowych Problemów Technk PAN IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

5. Rezonans napięć i prądów

5. Rezonans napięć i prądów ezonans napęć prądów W-9 el ćwczena: 5 ezonans napęć prądów Dr hab nŝ Dorota Nowak-Woźny Wyznaczene krzywej rezonansowej dla szeregowego równoległego obwodu Zagadnena: Fzyczne podstawy zjawska rezonansu

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych Techniki świetlne Wykład 4 Obliczenia podstawowych wielkości fotometrycznych Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID Symulator układu regulacj automatycznej z samonastrajającym regulatorem PID Założena. Należy napsać program komputerowy symulujący układ regulacj automatycznej, który: - ma pracować w trybe sterowana ręcznego

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

POMIAR STRUMIENIA ŚWIETLNEGO ORAZ SPRAWNOŚCI OPRAWY OŚWIETLENIOWEJ

POMIAR STRUMIENIA ŚWIETLNEGO ORAZ SPRAWNOŚCI OPRAWY OŚWIETLENIOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O4 Temat ćwiczenia POMIAR STRUMIENIA ŚWIETLNEGO ORAZ SPRAWNOŚCI OPRAWY OŚWIETLENIOWEJ Ćwiczenie O4 POMIAR STRUMIENIA ŚWIETLNEGO ORAZ

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta

Bardziej szczegółowo

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł 1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych

Bardziej szczegółowo

STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ. Temat: POMIAR STRUMIENIA ŚWIETLNEGO I WYZNACZANIE CHARAKTERYSTYK

STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ. Temat: POMIAR STRUMIENIA ŚWIETLNEGO I WYZNACZANIE CHARAKTERYSTYK STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ Temat: POMIAR STRUMIENIA ŚWIETLNEGO I WYZNACZANIE CHARAKTERYSTYK NAPIĘCIOWYCH śarówek Opracowanie wykonano na podstawie następującej

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych Ćwczene arametry statyczne tranzystorów bpolarnych el ćwczena odstawowym celem ćwczena jest poznane statycznych charakterystyk tranzystorów bpolarnych oraz metod dentyfkacj parametrów odpowadających m

Bardziej szczegółowo

Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH

Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH Grupa: Elektrotechnika, sem 3., wersja z dn. 03.10.2011 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH Opracowanie wykonano

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząca(y)... grupa... podgrupa... zespół... semestr roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła Zakład Wydzałowy Inżyner Bomedycznej Pomarowej Laboratorum Pomarów Automatyk w Inżyner Chemcznej Regulacja Cągła Wrocław 2005 . Mary jakośc regulacj automatycznej. Regulacja automatyczna polega na oddzaływanu

Bardziej szczegółowo

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej:

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej: Pojedyncy rekord obserwacyjny: SS,PG,.,,3.746,357.774,9:39:8, OZNCZENIE REKORDU NZW ODLEGŁOŚĆ KĄ POZIOY KĄ PIONOWY CZS Schema opracowana jednej ser obserwacyjnej: Ką poomy H L H P H P H P H P3 H L H L

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Wykonał: Grzegorz Bączek

Wykonał: Grzegorz Bączek Praca dyplomowa magisterska Kierujący pracą: dr inż. Piotr Tomczuk Konsultant: dr inż. Marek Buda Wykonał: Grzegorz Bączek Zakres pracy: 1. Wstęp. 2. Charakterystyka rodzajów sygnalizatorów stosowanych

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

POMIAR NATĘŻENIA OŚWIETLENIA

POMIAR NATĘŻENIA OŚWIETLENIA POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O1 Temat ćwiczenia POMIAR NATĘŻENIA OŚWIETLENIA Ćwiczenie O1 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie studentów z

Bardziej szczegółowo

Zasilacze: prostowniki, prostowniki sterowane, stabilizatory

Zasilacze: prostowniki, prostowniki sterowane, stabilizatory Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - protokół Zasilacze: prostowniki, prostowniki sterowane, stabilizatory Data

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA Przekroje Kłady

GRAFIKA KOMPUTEROWA Przekroje Kłady Przekroje Przekroje służą do przedstawiania wewnętrznej budowy obiektów. Wybór odpowiedniego przekroju zależy od stopnia złożoności wewnętrznej budowy przedmiotu.. Przekroje całkowite to rzuty przedstawiające

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION

INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION Journal of KONES Powertran and Transport, Vol. 3, No. 3 INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION Andrzej Reńsk, Janusz Pokorsk, Marek Belńsk, Hubert Sar Warsaw Unversty

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo