Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1"

Transkrypt

1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1

2 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń (processing element): zazwyczaj jeden wątek wykonywany jest przez jeden rdzeń grupa wątków (work group) jednostka obliczeniowa (compute unit): grupa wątków wykonuje obliczenia na jednej jednostce obliczeniowej grupa wątków powinna mieć więcej wątków niż rdzeni w jednostce obliczeniowej grupa dzielona jest na podgrupy, wavefronts/warps, wątków wykonywanych jednocześnie w modelu SIMD przestrzeń wątków urządzenie: wszystkie watki z przestrzeni realizują zlecony kernel na urządzeniu Krzysztof Banaś Obliczenia równoległe 2

3 Przestrzeń wątków Krzysztof Banaś Obliczenia równoległe 3

4 OpenCL projektowanie kerneli Przypomnienie: wielopoziomowa hierarchia pamięci: rejestry najszybsze zmienne lokalne (jeśli nie jest ich za dużo, register spilling) prywatne dla każdego wątku pamięć wspólna szybka zmienne (tablice) z atrybutem local wspólne dla wątków z jednej grupy roboczej pamięć globalna powolna zmienne lokalne nie mieszczące się w rejestrach zmienne (tablice) z atrybutem local» wspólne dla wszystkich wątków dodatkowe rodzaje pamięci: constant, texture Krzysztof Banaś Obliczenia równoległe 4

5 OpenCL model pamięci Krzysztof Banaś Obliczenia równoległe 5

6 OpenCL ukrywanie opóźnienia Ukrywanie opóźnienia (latency hiding) w dostępie do pamięci dla CPU i GPU Konieczne jest współbieżne wykonywanie co najmniej kilku (najlepiej kilkunastu) grup wątków (AMD wavefronts, NVIDIA warps) Podział na grupy wątków dokonujących jednoczesnego dostępu do pamięci jest ukryty przed programistą Krzysztof Banaś Obliczenia równoległe 6

7 OpenCL zależności danych Krzysztof Banaś Obliczenia równoległe 7

8 Projektowanie kerneli Model równoległości danych (data parallel programming) model zrównoleglenia: dekompozycja danych (data decomposition) każdy wątek realizuje ten sam kod (SPMD) synchronizacja sprzętowa (SIMD, SIMT) wątek operuje na danych, określanych za pomocą identyfikatorów OpenCL pozwala uzyskać informacje o liczbie wymiarów przestrzeni wątków, liczbie wątków (globalnej oraz w pojedynczej grupie), liczbie grup oraz o identyfikatorze wątku: lokalnym (w grupie), globalnym, a także o identyfikatorze grupy: get_work_dim() get_global_id(dim_id), get_local_id(dim_id) get_global_size(dim_id), get_local_size(dim_id) get_num_groups(dim_id), get_group_id(dim_id) Krzysztof Banaś Obliczenia równoległe 8

9 OpenCL model pamięci Spójność pamięci: dla wątków tej samej grupy spójny obraz pamięci jest uzyskiwany w punktach synchronizacji np. wywołanie barrier (CLK_GLOBAL_MEM_FENCE); barrier (CLK_LOCAL_MEM_FENCE); dla wszystkich wątków wykonujących kernel spójny obraz pamięci jest uzyskiwany po wykonaniu kernela Szybkość pamięci: global local: ponad 100GB/s zależna od wzorca dostępu (coalesced memory access) host global: 6GB/s (PCIe 2.0) Krzysztof Banaś Obliczenia równoległe 9

10 Przykład transpozycja macierzy Krzysztof Banaś Obliczenia równoległe 10

11 Przykład transpozycja macierzy Krzysztof Banaś Obliczenia równoległe 11

12 Przykład transpozycja macierzy Wykorzystanie: pamięci wspólnej: jako szybkiej pamięci podręcznej umożliwiającej komunikację pomiędzy watkami jawnej synchronizacji pracy wątków Krzysztof Banaś Obliczenia równoległe 12

13 CUDA kernel global void transpose( float *out, float *in, int w, int h ) { shared float block[block_dim*block_dim]; unsigned int xblock = blockdim.x * blockidx.x; unsigned int yblock = blockdim.y * blockidx.y; unsigned int xindex = xblock + threadidx.x; unsigned int yindex = yblock + threadidx.y; unsigned int index_out, index_transpose; if ( xindex < width && yindex < height ) { unsigned int index_in = width * yindex + xindex; unsigned int index_block = threadidx.y * BLOCK_DIM + threadidx.x; block[index_block] = in[index_in]; index_transpose = threadidx.x * BLOCK_DIM + threadidx.y; index_out = height * (xblock + threadidx.y) + yblock + threadidx.x; synchthreads(); if(xindex<width&&yindex<height) out[index_out]=block[index_transpose]; Krzysztof Banaś Obliczenia równoległe 13

14 Przykład mnożenie macierzy Przypomnienie: mnożenie macierzy jest algorytmem, dla którego przy nieskończonej liczbie rejestrów występuje bardzo korzystny stosunek liczby operacji do liczby dostępów do pamięci s pm = (2n 3 )/(3n 2 ) ~ 2n/3 (n rozmiar macierzy) przy małej liczbie rejestrów i małym rozmiarze pamięci podręcznej naiwna implementacja prowadzi do znacznego spadku stosunku s pm : s pm = (2n 3 )/(n ) ~ 2 implementacja naiwna schemat przechowywania wierszami: c(row, col) = c[row*n + col] for(i=0;i<n;i++){ for(j=0;j<n;j++){ c[i*n+j]=0.0; for(k=0;k<n;k++){ c[i*n+j] += a[i*n+k]*b[k*n+j]; Krzysztof Banaś Obliczenia równoległe 14

15 Przykład mnożenie macierzy Naiwna implementacja GPU jeden wątek na jeden element macierzy wynikowej C Operacje wyłącznie na pamięci globalnej Nieoptymalny dostęp do tablicy A kernel void mat_mul_1_kernel( global float* A, global float* B, global float* C, int N ) { int i; int row = get_global_id(1); int col = get_global_id(0); float temp = 0.0; for (i = 0; i < N; i++) { temp += A[row * N + i] * B[i * N + col]; C[row * N + col] = temp; Krzysztof Banaś Obliczenia równoległe 15

16 Przykład mnożenie macierzy Klasyczna technika optymalizacji blokowanie Wyróżnienie bloków w tablicach A, B i C przechowywanych w szybkiej pamięci Wykonanie jak największej liczby operacji na blokach w szybkiej pamięci Krzysztof Banaś Obliczenia równoległe 16

17 Przykład mnożenie macierzy Implementacja blokowania: wariant 1 duże bloki: rozmiar bloku dobrany tak, żeby blok mieścił się w szybkiej pamięci (cache blocking) pojedynczy wątek wykonuje obliczenia dla wielu wyrazów bloku wariant 2 małe bloki: rozmiar bloku dobrany tak, żeby wartości mogły być przechowywane w rejestrach dla CPU i jednego wątku wiele zmiennych dla GPU np. jedna zmienna, ale wiele wątków Krzysztof Banaś Obliczenia równoległe 17

18 Przykład mnożenie macierzy int row = get_global_id(1); int local_row = get_local_id(1); int col = get_global_id(0); int local_col = get_local_id(0); float temp = 0.0; int nr_blocks = N/BLOCK_SIZE; for(iblock = 0; iblock < nr_blocks; iblock++){ A_local[local_row * BLOCK_SIZE + local_col] = A[row * N + iblock*block_size + local_col]; B_local[local_row * BLOCK_SIZE + local_col] = B[(local_row+iblock*BLOCK_SIZE) * N + col]; barrier(clk_local_mem_fence); for(i=0; i< BLOCK_SIZE; i++){ temp += A_local[local_row*BLOCK_SIZE+i] * B_local[i*BLOCK_SIZE+local_col]; barrier(clk_local_mem_fence); C[row * N + col] = temp; Krzysztof Banaś Obliczenia równoległe 18

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia. CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.com) 1 Architektura karty graficznej W porównaniu z tradycyjnym

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł.

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Wprowadzenie do koncepcji budowy akceleratorów graficznych Pierwsze procesory

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Programowanie aplikacji równoległych i rozproszonych

Programowanie aplikacji równoległych i rozproszonych Programowanie aplikacji równoległych i rozproszonych Dr inż. Krzysztof Rojek krojek@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Strumienie operacji na GPU Domyślne

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski Agenda GPU Dlaczego warto używać GPU Budowa GPU CUDA JCuda Przykładowa implementacja Co to jest? GPU GPU Graphical GPU Graphical Processing GPU

Bardziej szczegółowo

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 12 OpenGL + algorytm n ciał Maciej Matyka Instytut Fizyki Teoretycznej CUDA z OpenGL 1. Dane dla kerneli znajdują się na karcie GFX. 2. Chcemy liczyć i rysować używając

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 GPGPU Modele programowania GPGPU CUDA pierwszy naprawdę popularny model programowania GPGPU OpenCL wzorowany na CUDA,

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka CUDA część 1 platforma GPGPU w obliczeniach naukowych Maciej Matyka Bariery sprzętowe (procesory) ok na. 1 10 00 la raz t y Gdzie jesteśmy? a ok. 2 razy n 10 lat (ZK) Rozwój 1985-2004 i dalej? O roku ów

Bardziej szczegółowo

Wstęp do obliczeń równoległych na GPU

Wstęp do obliczeń równoległych na GPU Spis treści 1 Wstęp do obliczeń równoległych na GPU 1.1 Zadanie 1.2 Profilowanie 1.2.1 Zadanie Wstęp do obliczeń równoległych na GPU W tej części ćwiczeń stworzymy pierwszy program wykorzystujący bibliotekę

Bardziej szczegółowo

CUDA. obliczenia na kartach graficznych. Łukasz Ligowski. 11 luty Łukasz Ligowski () CUDA 11 luty / 36

CUDA. obliczenia na kartach graficznych. Łukasz Ligowski. 11 luty Łukasz Ligowski () CUDA 11 luty / 36 CUDA obliczenia na kartach graficznych Łukasz Ligowski 11 luty 2008 Łukasz Ligowski () CUDA 11 luty 2008 1 / 36 Plan 1 Ogólne wrażenia 2 Obliczenia na kartach - wstęp 3 Wprowadzenie 4 CUDA Łukasz Ligowski

Bardziej szczegółowo

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład, 21.01.2013 CUDA, przykłady praktyczne 1 Maciej Matyka Instytut Fizyki Teoretycznej Motywacja l CPU vs GPU (anims) Plan CUDA w praktyce Wykład 1: CUDA w praktyce l aplikacja

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych

Wysokowydajna implementacja kodów nadmiarowych typu erasure codes z wykorzystaniem architektur wielordzeniowych Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych Ł. Kuczyński, M. Woźniak, R. Wyrzykowski Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

CUDA ćwiczenia praktyczne

CUDA ćwiczenia praktyczne CUDA ćwiczenia praktyczne 7 kwietnia 2011, Poznań Marek Błażewicz, marqs@man.poznan.pl Michał Kierzynka, michal.kierzynka@man.poznan.pl Agenda Wprowadzenie do narzędzi umożliwiających tworzenie programów

Bardziej szczegółowo

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz Programowanie równoległe Wprowadzenie do OpenCL Rafał Skinderowicz OpenCL architektura OpenCL Open Computing Language otwarty standard do programowania heterogenicznych platform złożonych ze zbioru CPU,

Bardziej szczegółowo

Programowanie równoległe Wprowadzenie do programowania GPU. Rafał Skinderowicz

Programowanie równoległe Wprowadzenie do programowania GPU. Rafał Skinderowicz Programowanie równoległe Wprowadzenie do programowania GPU Rafał Skinderowicz CPU Fetch/ Decode ALU (Execute) Data cache (a big one) Execution Context Out-of-order control logic Fancy branch predictor

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Programowanie kart graficznych. Architektura i API część 1

Programowanie kart graficznych. Architektura i API część 1 Programowanie kart graficznych Architektura i API część 1 Literatura NVIDIA CUDA Programming Guide version 4.2 http//developer.download.nvidia.com/compute/devzone/ docs/html/c/doc/cuda_c_programming_guide.pdf

Bardziej szczegółowo

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak,

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, 30.01.2016 Zagadnienia sprzętowe w przetwarzaniu równoległym 1.1 Procesory systemu równoległego

Bardziej szczegółowo

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek Implementacja sieci neuronowych na karcie graficznej Waldemar Pawlaszek Motywacja Czyli po co to wszystko? Motywacja Procesor graficzny GPU (Graphics Processing Unit) Wydajność Elastyczność i precyzja

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Obliczenia na GPU w technologii CUDA

Obliczenia na GPU w technologii CUDA Obliczenia na GPU w technologii CUDA 1 Różnica szybkości obliczeń (GFLOP/s) pomiędzy CPU a GPU źródło NVIDIA 2 Różnica w przepustowości pamięci pomiędzy CPU a GPU źródło NVIDIA 3 Różnice architektoniczne

Bardziej szczegółowo

PROJEKT 3 PROGRAMOWANIE RÓWNOLEGŁE. K. Górzyński (89744), D. Kosiorowski (89762) Informatyka, grupa dziekańska I3

PROJEKT 3 PROGRAMOWANIE RÓWNOLEGŁE. K. Górzyński (89744), D. Kosiorowski (89762) Informatyka, grupa dziekańska I3 PROJEKT 3 PROGRAMOWANIE RÓWNOLEGŁE K. Górzyński (89744), D. Kosiorowski (89762) Informatyka, grupa dziekańska I3 17 lutego 2011 Spis treści 1 Opis problemu 2 2 Implementacja problemu 3 2.1 Kod współdzielony........................

Bardziej szczegółowo

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo.

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo. Konrad Szałkowski Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo Skisr-kolo@libra.cs.put.poznan.pl Po co? Krótka prezentacja Skąd? Dlaczego? Gdzie? Gdzie nie? Jak? CPU Pamięć DDR3-19200 19,2 GB/s Wydajność

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Hybrydowy system obliczeniowy z akceleratorami GPU

Hybrydowy system obliczeniowy z akceleratorami GPU Przemysław Stpiczyński Hybrydowy system obliczeniowy z akceleratorami GPU [A hybrid computing system with GPU accelerators] Wstęp Konstrukcja komputerów oraz klastrów komputerowych o dużej mocy obliczeniowej

Bardziej szczegółowo

Programowanie Równoległe wykład 13. Symulacje komputerowe cieczy LBM w CUDA. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 13. Symulacje komputerowe cieczy LBM w CUDA. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 13 Symulacje komputerowe cieczy LBM w CUDA Maciej Matyka Instytut Fizyki Teoretycznej Transport cieczy i gazów W wielu dziedzinach trzeba rozwiązać zagadnienie transportu

Bardziej szczegółowo

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne Czym jest? PROGRAMOWANIE

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

XIII International PhD Workshop OWD 2011, October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH

XIII International PhD Workshop OWD 2011, October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH XIII International PhD Workshop OWD 2011, 22 25 October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH CALCULATIONS IN THE MASSIVELY PARALLEL ARCHITECTURE IN HETEROGENEOUS

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer PR

Procesory kart graficznych i CUDA wer PR wer 1.3 14.12.2016 PR Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot,

Bardziej szczegółowo

Przetwarzanie wielowątkowe przetwarzanie współbieżne. Krzysztof Banaś Obliczenia równoległe 1

Przetwarzanie wielowątkowe przetwarzanie współbieżne. Krzysztof Banaś Obliczenia równoległe 1 Przetwarzanie wielowątkowe przetwarzanie współbieżne Krzysztof Banaś Obliczenia równoległe 1 Problemy współbieżności wyścig (race condition) synchronizacja realizowana sprzętowo (np. komputery macierzowe)

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer

Procesory kart graficznych i CUDA wer wer 1.4 18.04.2016 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot,

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer 1.2 6.05.2015

Procesory kart graficznych i CUDA wer 1.2 6.05.2015 wer 1.2 6.05.2015 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot, Helion

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Model pamięci. Rafał Skinderowicz

Model pamięci. Rafał Skinderowicz Model pamięci Rafał Skinderowicz Czym jest model pamięci Model pamięci dotyczy programów współbieżnych W programie współbieżnym może się zdarzyć, że dany wątek nie będzie widział od razu wartości zmiennej

Bardziej szczegółowo

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH Krzysztof Skowron, Mariusz Rawski, Paweł Tomaszewicz 1/23 CEL wykorzystanie środowiska Altera OpenCL do celów akceleracji obliczeń

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Jacek Matulewski - Fizyk zajmujący się na co dzień optyką kwantową i układami nieuporządkowanymi na Wydziale Fizyki, Astronomii i Informatyki

Jacek Matulewski - Fizyk zajmujący się na co dzień optyką kwantową i układami nieuporządkowanymi na Wydziale Fizyki, Astronomii i Informatyki Michał Matuszak, Jacek Matulewski CUDA i czyny Technologia NVIDIA CUDA W zeszłomiesięcznym numerze SDJ w artykule pt. Czyń cuda opisaliśmy

Bardziej szczegółowo

Jacek Naruniec. lato 2014, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych

Jacek Naruniec. lato 2014, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych lato 2014,, Wydział Elektroniki i Technik Informacyjnych Wykład (poniedziałek 10:15) dr inż. Jacek Naruniec, dr inż. Maciej Sypniewski Laboratoria (3-godzinne) w 08 Środy 12:15 Projekt Punktacja: Laboratorium

Bardziej szczegółowo

System pamięci. Pamięć wirtualna

System pamięci. Pamięć wirtualna System pamięci Pamięć wirtualna Pamięć wirtualna Model pamięci cache+ram nie jest jeszcze realistyczny W rzeczywistych systemach działa wiele programów jednocześnie Każdy może używać tej samej przestrzeni

Bardziej szczegółowo

Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe. Rafał Skinderowicz

Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe. Rafał Skinderowicz Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe Rafał Skinderowicz Optymalizacja dostępu do pamięci Wątki wewnątrz osnów (ang. warps) wykonują jednocześnie

Bardziej szczegółowo

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Wydział Matematyki i Informatyki Instytut Informatyki i

Bardziej szczegółowo

HPC na biurku. Wojciech De bski

HPC na biurku. Wojciech De bski na biurku Wojciech De bski 22.01.2015 - co to jest? High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one

Bardziej szczegółowo

Programowanie systemów z pamięcią wspólną specyfikacja OpenMP. Krzysztof Banaś Obliczenia równoległe 1

Programowanie systemów z pamięcią wspólną specyfikacja OpenMP. Krzysztof Banaś Obliczenia równoległe 1 Programowanie systemów z pamięcią wspólną specyfikacja OpenMP Krzysztof Banaś Obliczenia równoległe 1 OpenMP Przenośność oprogramowania Model SPMD Szczegółowe wersje (bindings) dla różnych języków programowania

Bardziej szczegółowo

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor Plan wykładu 1. Pojęcie podsystemu graficznego i karty graficznej 2. Typy kart graficznych 3. Budowa karty graficznej: procesor graficzny (GPU), pamięć podręczna RAM, konwerter cyfrowo-analogowy (DAC),

Bardziej szczegółowo

GTX260 i CUDA wer

GTX260 i CUDA wer GTX260 i CUDA wer 1.1 25.11.2014 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders,

Bardziej szczegółowo

Organizacja pamięci w procesorach graficznych

Organizacja pamięci w procesorach graficznych Organizacja pamięci w procesorach graficznych Pamięć w GPU przechowuje dane dla procesora graficznego, służące do wyświetlaniu obrazu na ekran. Pamięć przechowuje m.in. dane wektorów, pikseli, tekstury

Bardziej szczegółowo

CUDA jako platforma GPGPU w obliczeniach naukowych

CUDA jako platforma GPGPU w obliczeniach naukowych CUDA jako platforma GPGPU w obliczeniach naukowych Seminarium Grupy Neutrinowej, 12.12.2011 Maciej Matyka, Zbigniew Koza Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Bariery sprzętowe (procesory)

Bardziej szczegółowo

Zrównoleglenie i przetwarzanie potokowe

Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie wysoka wydajność pozostaje osiągnięta w efekcie jednoczesnego wykonania różnych części zagadnienia. Przetwarzanie potokowe proces jest rozdzielony

Bardziej szczegółowo

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz Programowanie współbieżne Wprowadzenie do programowania GPU Rafał Skinderowicz Literatura Sanders J., Kandrot E., CUDA w przykładach, Helion. Czech Z., Wprowadzenie do obliczeń równoległych, PWN Ben-Ari

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 1 Optymalizacja skalarna Piotr Bała bala@mat.uni.torun.pl Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 2 Optymalizacja skalarna Czas

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

System obliczeniowy laboratorium oraz. mnożenia macierzy

System obliczeniowy laboratorium oraz. mnożenia macierzy System obliczeniowy laboratorium.7. oraz przykładowe wyniki efektywności mnożenia macierzy opracował: Rafał Walkowiak Materiały dla studentów informatyki studia niestacjonarne październik 1 SYSTEMY DLA

Bardziej szczegółowo

Programowanie akceleratorów specyfikacja OpenCL. Krzysztof Banaś Obliczenia równoległe 1

Programowanie akceleratorów specyfikacja OpenCL. Krzysztof Banaś Obliczenia równoległe 1 Programowanie akceleratorów specyfikacja OpenCL Krzysztof Banaś Obliczenia równoległe 1 OpenCL OpenCL Open Computing Language język i środowisko programowania akceleratorów (procesorów wspierających standardowe

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 2. Pamięć rzeczywista 3. Pamięć wirtualna

Bardziej szczegółowo

Współbieżność i równoległość w środowiskach obiektowych. Krzysztof Banaś Obliczenia równoległe 1

Współbieżność i równoległość w środowiskach obiektowych. Krzysztof Banaś Obliczenia równoległe 1 Współbieżność i równoległość w środowiskach obiektowych Krzysztof Banaś Obliczenia równoległe 1 Java Model współbieżności Javy opiera się na realizacji szeregu omawianych dotychczas elementów: zarządzanie

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012 Wykład nr 6 (27.04.2012) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Ogólny schemat komputera Jak widać wszystkie bloki (CPU, RAM oraz I/O) dołączone są do wspólnych

Bardziej szczegółowo

DYNAMICZNE PRZYDZIELANIE PAMIECI

DYNAMICZNE PRZYDZIELANIE PAMIECI DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne

Bardziej szczegółowo

Równoległość i współbieżność

Równoległość i współbieżność Równoległość i współbieżność Wykonanie sekwencyjne. Poszczególne akcje procesu są wykonywane jedna po drugiej. Dokładniej: kolejna akcja rozpoczyna się po całkowitym zakończeniu poprzedniej. Praca współbieżna

Bardziej szczegółowo

Równoległość i współbieżność

Równoległość i współbieżność Równoległość i współbieżność Wykonanie sekwencyjne. Poszczególne akcje procesu są wykonywane jedna po drugiej. Dokładniej: kolejna akcja rozpoczyna się po całkowitym zakończeniu poprzedniej. Praca współbieżna

Bardziej szczegółowo

Procesory. Schemat budowy procesora

Procesory. Schemat budowy procesora Procesory Procesor jednostka centralna (CPU Central Processing Unit) to sekwencyjne urządzenie cyfrowe którego zadaniem jest wykonywanie rozkazów i sterowanie pracą wszystkich pozostałych bloków systemu

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż.

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż. Rok akademicki 2011/2012, Wykład nr 6 2/46 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012

Bardziej szczegółowo

Architektura von Neumanna

Architektura von Neumanna Architektura von Neumanna Klasyfikacja systemów komputerowych (Flynna) SISD - Single Instruction Single Data SIMD - Single Instruction Multiple Data MISD - Multiple Instruction Single Data MIMD - Multiple

Bardziej szczegółowo

Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany. sprzęt L P. Parametry techniczne

Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany. sprzęt L P. Parametry techniczne L P Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany Parametry techniczne Ilość sprzęt Gwaran Cena Cena Wartość Wartość (model cja jednostk % jednostkow ogółem ogółem i parametry

Bardziej szczegółowo

Podstawy programowania w języku C++

Podstawy programowania w języku C++ Podstawy programowania w języku C++ Część ósma Zmienne wskaźnikowe koncepcja, podstawowe zastosowania Wersja skrócona, tylko C++ Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Zastosowanie technologii CUDA w rozpoznawaniu wzorców nieregularnych

Zastosowanie technologii CUDA w rozpoznawaniu wzorców nieregularnych Bi u l e t y n WAT Vo l. LX, Nr 4, 2011 Zastosowanie technologii CUDA w rozpoznawaniu wzorców nieregularnych Witold Żorski, Michał Makowski Wojskowa Akademia Techniczna, Wydział Cybernetyki, Instytut Teleinformatyki

Bardziej szczegółowo

Kto mówi? Inżynier systemów wbudowanych Linux, ARMv7, ARMv8

Kto mówi? Inżynier systemów wbudowanych Linux, ARMv7, ARMv8 Kto mówi? Inżynier systemów wbudowanych Linux, ARMv7, ARMv8 Kto mówi? Inżynier systemów wbudowanych Linux, ARMv7, ARMv8...które mają 16GB RAM Kto mówi? Inżynier systemów wbudowanych Linux, ARMv7, ARMv8...które

Bardziej szczegółowo

Programowanie równoległe i rozproszone. Monitory i zmienne warunku. Krzysztof Banaś Programowanie równoległe i rozproszone 1

Programowanie równoległe i rozproszone. Monitory i zmienne warunku. Krzysztof Banaś Programowanie równoległe i rozproszone 1 Programowanie równoległe i rozproszone Monitory i zmienne warunku Krzysztof Banaś Programowanie równoległe i rozproszone 1 Problemy współbieżności Problem producentów i konsumentów: jedna grupa procesów

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo