Programowanie procesorów graficznych GPGPU

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie procesorów graficznych GPGPU"

Transkrypt

1 Programowanie procesorów graficznych GPGPU 1

2 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja potoku przetwarzania grafiki 3D (OpenGL, DirectX) vertex shaders pixel shaders procesory graficzne 3D XXI wiek programowalne układy graficzne (programmable shaders) język Cg początek GPGPU 2

3 GPGPU historia 3

4 GPGPU historia 4

5 GPGPU historia 5

6 GPGPU Listopad 2006: architektura Tesla ujednolicona architektura, zamiast pixel shaders i vertex shaders standardowe skalarne procesory (nazywane obecnie rdzeniami CUDA CUDA cores ) procesor G80 karta graficzna NVIDIA GeForce 8800 model programowania CUDA (Compute Unified Device Architecture) środowisko programowania C for CUDA 6

7 TESLA architecture CUDA G

8 CUDA 8

9 GPGPU historia 9

10 GPGPU historia 10

11 GPGPU Programowanie ogólnego przeznaczenia na procesorach graficznych (GPGPU) nowe narzędzia zbliżone do narzędzi programowania równoległego na CPU rozszerzenia C + biblioteki CUDA, OpenCL dyrektywy OpenACC, OpenMP for accelerators model przetwarzania wyrażany w kategoriach zbliżonych do tradycyjnych rdzenie jako elementy przetwarzania hierarchia pamięci rejestry pamięć lokalna (nowość zarządzana z poziomu programu!) pamięć globalna (brak dostępu do pamięci dyskowej) 11

12 GPGPU Tworzenie programów GPGPU wykrycie współbieżności uwaga: masowa wielowątkowość opłacalność wykonywania na GPU tylko w przypadku wysokiego stopnia współbieżności (setki, tysiące wątków) odwzorowanie na architekturę uwaga: konieczność synchronizacji przy dostępie do pamięci GPU dobrze nadają się do obliczeń w stylu równoległości danych (te same obliczenia dla wielu egzemplarzy danych) duże możliwości konfiguracji obliczeń, a co za tym, idzie optymalizacji optymalizacja jawna (w ramach pojęć modelu programowania) optymalizacja niejawna (taka organizacja obliczeń, aby optymalnie wykorzystać elementy sprzętowe niewidoczne z poziomu modelu (języka, środowiska) programowania 12

13 GPGPU Modele programowania GPGPU Obydwa modele wykorzystują język C i biblioteki CUDA pierwszy naprawdę popularny model programowania GPGPU OpenCL wzorowany na CUDA, dla szerszej grupy urządzeń (GPU, CPU, procesory heterogeniczne, akceleratory) kod dla GPU w języku będącym rozszerzeniem standardu C99 założenie istnienia kompilatora, przetwarzającego kod dla GPU konieczne wsparcie ze strony systemu operacyjnego, który pośredniczy w wykonaniu programu (m.in. poprzez sterownik karty graficznej) Wykonanie programu realizowane jest w modelu SPMD/SIMD(SIMT) ten sam program wykonywany jest przez wiele wątków synchronizowanych sprzętowo 13

14 GPGPU Kod programu dla GPU tradycyjnie nazywa się kernelem Model SPMD jest wprowadzany klasycznie poprzez identyfikatory wątków wątek na podstawie swojego identyfikatora może: zlokalizować dane, na których dokonuje przetwarzania dane[ f(my_id) ] wybrać ścieżkę wykonania programu if(my_id ==...){...} określić iteracje pętli, które ma wykonać for( i=f1(my_id); i< f2(my_id); i += f3(my_id) ){... } w tym aspekcie programowanie GPU jest zbliżone do modeli Pthreads i MPI Środowiska programowania GPU pozwalają na wykorzystanie liczb wątków rzędu milionów 14

15 GPGPU Specyfika programowania GPU: dwa poziomy organizacji obliczeń wątki realizują obliczenia grupy wątków umożliwiają synchronizacją pracy wątków poziom grup wątków można pominąć (np. dla programów zawstydzająco równoległych (embarrassingly parallel) ) dwupoziomowa hierarchia pamięci dostępna programiście: zmienne lokalne dla grupy wątków o szybkim dostępie zmienne globalne o powolnym dostępie istnieje jeszcze poziom rejestrów jak zwykle ukryty przed programistą 15

16 16

17 17

18 18

19 Przebieg obliczeń Model wykonania: Komunikacja: synchroniczny data parallel SPMD (wykorzystanie identyfikatora wątku do podziału zadań) asynchroniczny task parallel poprzez argumenty procedur poprzez pamięć wspólną Synchronizacja bariery 19

20 Przebieg obliczeń Alokacja i inicjowanie pamięci na urządzeniu Przesłanie kernela do urządzenia w OpenCL można dokonywać w locie kompilacji kodu z dostarczanych źródeł Zlecenie wykonania obliczeń Kopiowanie danych z pamięci urządzenia Dodatkowo OpenCL umożliwia realizacje fazy wstępnej, w której pobiera się dane o środowisku wykonania i dostosowuje wykonywany program do konkretnego środowiska (urządzenia) 20

21 Przykład kod CPU iloczyn macierz wektor kod GPU (CUDA) iloczyn macierz wektor 21

22 Przykład Przykład dodawania wektorów (OpenCL) dekompozycja zadania analiza wydajności wydajność przetwarzania wydajność dostępu do pamięci informacje o liczbie wymiarów przestrzeni wątków, liczbie wątków (globalnej oraz w pojedynczej grupie), liczbie grup oraz o identyfikatorze wątku: lokalnym (w grupie), globalnym, a także o identyfikatorze grupy: get_work_dim() get_global_id(dim_id), get_local_id(dim_id) get_global_size(dim_id), get_local_size(dim_id) get_num_groups(dim_id), get_group_id(dim_id) 22

23 Projektowanie kerneli przykład Prosty przykład programu dodawania wektorów dekompozycja danych wariant 1 jeden wątek na jeden element wektora wykorzystanie możliwości tworzenia milionów wątków zawstydzająco równoległy algorytm brak komunikacji, synchronizacji kernel void vecadd_1_kernel( global const float *a, global const float *b, global float *result) { int gid = get_global_id(0); result[gid] = a[gid] + b[gid]; } 23

24 Projektowanie kerneli przykład Prosty przykład programu dodawania wektorów dekompozycja danych wariant 2 wykorzystanie wariantów podziału danych blokowanie jeden wątek operuje na bloku danych kernel void vecadd_2_blocks_kernel(..., const int size, const int size_per_thread) { int gid = get_global_id(0); int index_start = gid * size_per_thread; int index_end = (gid+1) * size_per_thread; for (int i=index_start; i < index_end && i < size; i++) { result[i] = a[i]+b[i]; } } 24

25 Projektowanie kerneli przykład Prosty przykład programu dodawania wektorów dekompozycja danych wariant 3 wykorzystanie wariantów podziału danych podział cykliczny kolejne wątki z grupy operują na kolejnych elementach wektorów strategia niewłaściwa dla CPU, najlepsza dla GPU kernel void vecadd_3_cyclic_kernel(..., const int size) { int index_start = get_global_id(0); int index_end = size; int stride = get_local_size(0) * get_num_groups(0); for (int i=index_start; i < index_end; i+=stride) { result[i] = a[i]+b[i]; } } 25

26 Projektowanie kerneli przykład Prosty przykład programu dodawania wektorów dekompozycja danych wariant 3 wykorzystanie wariantów podziału danych podział cykliczny wykorzystanie typów wektorowych nie zawsze optymalne (zależy od GPU NVIDIA rdzenie skalarne, AMD wektorowe) kernel void vecadd_4_cyclic_vect_kernel( global const float4 *a, global const float4 *b, global float4 *result, const int size) { int index_start = 4 * get_global_id(0); int index_end = size/4; int stride = 4 * get_local_size(0) * get_num_groups(0); for (int i=index_start; i < index_end; i+=stride) { result[i] = a[i]+b[i]; } } 26

27 Analiza wydajności Analiza wydajności może być przeprowadzana ma dwa standardowe sposoby: wydajność względna klasycznie oznacza to przyspieszenie i efektywność jako funkcje liczby procesorów/rdzeni dla pojedynczego GPU trudno przeprowadzać takie analizy analizy porównujące wydajność CPU i GPU stwarzają wiele problemów metodologicznych i powinny być używane tylko jako pewne wskazówki wydajność bezwzględna procent teoretycznej maksymalnej wydajności uzyskany dla danego wykonania programu wydajność może być ograniczana przez wydajność przetwarzania lub wydajność transferu danych z/do pamięci (dla obliczeń na GPU powinno się uwzględnić szybkości transferu dla wszystkich poziomów pamięci) 27

28 Przykład paramerów GPU Przykład karty graficznej (laptop Dell Vostro 3450): AMD Radeon HD 6630M 6 CU 480 PE rejestrów wektorowych (128 bitowych) / CU 32 kb pamięci wspólnej (32 banki) / CU 8 kb L1 / CU, 256 kb L2 / GPU 480 Gflops 25,6 GB/s DDR3, 51,2 GDDR5 ok. 250 GB/s pamięć wspólna maksymalny rozmiar grupy 256 (cztery wavefronts ) maksymalna liczba wavefronts 248 / GPU 28

29 GPGPU 29

30 Dalszy rozwój Platformy GPGPU innych producentów Rozwój architektur NVIDIA Fermi, Kepler AMD Radeon 79xx Środowiska programowania AMD (ATI Radeon) CtM, Stream, Brook IBM (PowerXCell) Cell SDK OpenCL OpenACC, C++AMP, Renderscript Wzrost wydajności 30

31 Problemy GPGPU GPU wymagają specyficznych algorytmów masowa wielowątkowość zgodny dostęp do obszarów pamięci wspólnej mało komunikacji, synchronizacji Aplikacje dostosowane do GPU zyskują wiele Jest wiele aplikacji, które zyskują mało lub nic 31

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 GPGPU Modele programowania GPGPU CUDA pierwszy naprawdę popularny model programowania GPGPU OpenCL wzorowany na CUDA,

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka CUDA część 1 platforma GPGPU w obliczeniach naukowych Maciej Matyka Bariery sprzętowe (procesory) ok na. 1 10 00 la raz t y Gdzie jesteśmy? a ok. 2 razy n 10 lat (ZK) Rozwój 1985-2004 i dalej? O roku ów

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski Agenda GPU Dlaczego warto używać GPU Budowa GPU CUDA JCuda Przykładowa implementacja Co to jest? GPU GPU Graphical GPU Graphical Processing GPU

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Organizacja pamięci w procesorach graficznych

Organizacja pamięci w procesorach graficznych Organizacja pamięci w procesorach graficznych Pamięć w GPU przechowuje dane dla procesora graficznego, służące do wyświetlaniu obrazu na ekran. Pamięć przechowuje m.in. dane wektorów, pikseli, tekstury

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza i obróbka obrazu

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza i obróbka obrazu Synteza i obróbka obrazu GRAFIKA KOMPUTEROWA Rozwiązania sprzętowe i programowe Przyspieszanie sprzętowe Generowanie obrazu 3D wymaga złożonych obliczeń, szczególnie jeżeli chodzi o generowanie płynnej

Bardziej szczegółowo

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład, 21.01.2013 CUDA, przykłady praktyczne 1 Maciej Matyka Instytut Fizyki Teoretycznej Motywacja l CPU vs GPU (anims) Plan CUDA w praktyce Wykład 1: CUDA w praktyce l aplikacja

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza dźwięku i obrazu

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza dźwięku i obrazu Synteza dźwięku i obrazu GRAFIKA KOMPUTEROWA Rozwiązania sprzętowe i programowe Przyspieszanie sprzętowe Generowanie obrazu 3D wymaga złożonych obliczeń, szczególnie jeżeli chodzi o generowanie płynnej

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH Krzysztof Skowron, Mariusz Rawski, Paweł Tomaszewicz 1/23 CEL wykorzystanie środowiska Altera OpenCL do celów akceleracji obliczeń

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 12 OpenGL + algorytm n ciał Maciej Matyka Instytut Fizyki Teoretycznej CUDA z OpenGL 1. Dane dla kerneli znajdują się na karcie GFX. 2. Chcemy liczyć i rysować używając

Bardziej szczegółowo

OpenGL - Open Graphics Library. Programowanie grafiki komputerowej. OpenGL 3.0. OpenGL - Architektura (1)

OpenGL - Open Graphics Library. Programowanie grafiki komputerowej. OpenGL 3.0. OpenGL - Architektura (1) OpenGL - Open Graphics Library Programowanie grafiki komputerowej Rados$aw Mantiuk Wydzia$ Informatyki Zachodniopomorski Uniwersytet Technologiczny! OpenGL: architektura systemu do programowania grafiki

Bardziej szczegółowo

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia. CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.com) 1 Architektura karty graficznej W porównaniu z tradycyjnym

Bardziej szczegółowo

Programowanie niskopoziomowe. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Programowanie niskopoziomowe. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Programowanie niskopoziomowe dr inż. Paweł Pełczyński ppelczynski@swspiz.pl 1 Literatura Randall Hyde: Asembler. Sztuka programowania, Helion, 2004. Eugeniusz Wróbel: Praktyczny kurs asemblera, Helion,

Bardziej szczegółowo

Jak ujarzmić hydrę czyli programowanie równoległe w Javie. dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski

Jak ujarzmić hydrę czyli programowanie równoległe w Javie. dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski Jak ujarzmić hydrę czyli programowanie równoległe w Javie dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski Prawo Moore a Ekonomicznie optymalna liczba tranzystorów w układzie scalonym zwiększa się

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Adam Hrazdil Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V hrazdil@op.pl

Bardziej szczegółowo

Przyspieszanie sprzętowe

Przyspieszanie sprzętowe Synteza dźwięku i obrazu GRAFIKA KOMPUTEROWA Rozwiązania sprzętowe i programowe Przyspieszanie sprzętowe Generowanie obrazu 3D wymaga złoŝonych obliczeń, szczególnie jeŝeli chodzi o generowanie płynnej

Bardziej szczegółowo

PROE wykład 9 C++11, rzutowanie, optymalizacja. dr inż. Jacek Naruniec

PROE wykład 9 C++11, rzutowanie, optymalizacja. dr inż. Jacek Naruniec PROE wykład 9 C++11, rzutowanie, optymalizacja dr inż. Jacek Naruniec Rzutowanie Różne typy rzutowania są szczególnie istotne przy dziedziczeniu. Załóżmy sobie prostą hierarchię klas: A B C Rzutowanie

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz Programowanie współbieżne Wprowadzenie do programowania GPU Rafał Skinderowicz Literatura Sanders J., Kandrot E., CUDA w przykładach, Helion. Czech Z., Wprowadzenie do obliczeń równoległych, PWN Ben-Ari

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

CUDA ćwiczenia praktyczne

CUDA ćwiczenia praktyczne CUDA ćwiczenia praktyczne 7 kwietnia 2011, Poznań Marek Błażewicz, marqs@man.poznan.pl Michał Kierzynka, michal.kierzynka@man.poznan.pl Agenda Wprowadzenie do narzędzi umożliwiających tworzenie programów

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

Karty graficzne możemy podzielić na:

Karty graficzne możemy podzielić na: KARTY GRAFICZNE Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest odbiór i przetwarzanie otrzymywanych od komputera

Bardziej szczegółowo

Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany. sprzęt L P. Parametry techniczne

Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany. sprzęt L P. Parametry techniczne L P Załącznik nr 6 do SIWZ nr postępowania II.2420.1.2014.005.13.MJ Zaoferowany Parametry techniczne Ilość sprzęt Gwaran Cena Cena Wartość Wartość (model cja jednostk % jednostkow ogółem ogółem i parametry

Bardziej szczegółowo

Szablony funkcji i szablony klas

Szablony funkcji i szablony klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Zaawansowane systemy programowania grafiki. Wprowadzenie. Podstawy OpenGL

Zaawansowane systemy programowania grafiki. Wprowadzenie. Podstawy OpenGL Zaawansowane systemy programowania grafiki. Wprowadzenie. Podstawy OpenGL Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 7 października 2014 1 /

Bardziej szczegółowo

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł.

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Wprowadzenie do koncepcji budowy akceleratorów graficznych Pierwsze procesory

Bardziej szczegółowo

CZYM JEST KARTA GRAFICZNA.

CZYM JEST KARTA GRAFICZNA. Karty Graficzne CZYM JEST KARTA GRAFICZNA. Karta graficzna jest kartą rozszerzeń, umiejscawianą na płycie głównej poprzez gniazdo PCI lub AGP, która odpowiada w komputerze za obraz wyświetlany przez monitor.

Bardziej szczegółowo

Dlaczego wiedza na temat architektury sprzętowej, systemu operacyjnego i kompilatora przydaje się w pisaniu wydajnych aplikacji

Dlaczego wiedza na temat architektury sprzętowej, systemu operacyjnego i kompilatora przydaje się w pisaniu wydajnych aplikacji Dlaczego wiedza na temat architektury sprzętowej, systemu operacyjnego i kompilatora przydaje się w pisaniu wydajnych aplikacji Adam Strzelecki, 8 kwietnia 2008, Uniwersytet Jagielloński Coś o mnie Prowadzę

Bardziej szczegółowo

PORÓWNANIE WYDAJNOŚCI JĘZYKÓW CIENIOWANIA CG I HLSL

PORÓWNANIE WYDAJNOŚCI JĘZYKÓW CIENIOWANIA CG I HLSL Inżynieria Rolnicza 7(125)/2010 PORÓWNANIE WYDAJNOŚCI JĘZYKÓW CIENIOWANIA CG I HLSL Jerzy Dąbkowski Instytut Teleinformatyki, Politechnika Krakowska Instytut Inżynierii Rolniczej i Informatyki, Uniwersytet

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/7 Język C Instrukcja laboratoryjna Temat: Wprowadzenie do języka C 2 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie do języka C. Język C jest językiem programowania ogólnego zastosowania

Bardziej szczegółowo

HPC na biurku. Wojciech De bski

HPC na biurku. Wojciech De bski na biurku Wojciech De bski 22.01.2015 - co to jest? High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one

Bardziej szczegółowo

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Wydział Matematyki i Informatyki Instytut Informatyki i

Bardziej szczegółowo

Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI

Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI plan Cechy, właściwości procesów Multitasking Scheduling Fork czym jest proces? Działającą instancją programu Program jest kolekcją

Bardziej szczegółowo

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor Plan wykładu 1. Pojęcie podsystemu graficznego i karty graficznej 2. Typy kart graficznych 3. Budowa karty graficznej: procesor graficzny (GPU), pamięć podręczna RAM, konwerter cyfrowo-analogowy (DAC),

Bardziej szczegółowo

Większe możliwości dzięki LabVIEW 2009: programowanie równoległe, technologie bezprzewodowe i funkcje matematyczne w systemach czasu rzeczywistego

Większe możliwości dzięki LabVIEW 2009: programowanie równoległe, technologie bezprzewodowe i funkcje matematyczne w systemach czasu rzeczywistego Większe możliwości dzięki LabVIEW 2009: programowanie równoległe, technologie bezprzewodowe i funkcje matematyczne w systemach czasu rzeczywistego Dziś bardziej niż kiedykolwiek narzędzia używane przez

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 13 Jan Kazimirski 1 KOMPUTERY RÓWNOLEGŁE 2 Klasyfikacja systemów komputerowych SISD Single Instruction, Single Data stream SIMD Single Instruction, Multiple Data stream MISD

Bardziej szczegółowo

Systemy operacyjne III

Systemy operacyjne III Systemy operacyjne III WYKŁAD Jan Kazimirski Pamięć wirtualna Stronicowanie Pamięć podzielona na niewielki bloki Bloki procesu to strony a bloki fizyczne to ramki System operacyjny przechowuje dla każdego

Bardziej szczegółowo

Wstęp. do języka C na procesor 8051. (kompilator RC51)

Wstęp. do języka C na procesor 8051. (kompilator RC51) Wstęp do języka C na procesor 8051 (kompilator RC51) Kompilator języka C Kompilator RC51 jest kompilatorem języka C w standardzie ANSI Ograniczeń w stosunku do ANSI jest niewiele głównie rzadkie operacje

Bardziej szczegółowo

Architektura współczesna.. Dzisiejsza architektura czołowych producentów chipsetów odbiega od klasycznego układu North and South Bridge. Największe zmiany wprowadzono na poziomie komunikacji między układami

Bardziej szczegółowo

4 NVIDIA CUDA jako znakomita platforma do zrównoleglenia obliczeń

4 NVIDIA CUDA jako znakomita platforma do zrównoleglenia obliczeń Spis treści Spis treści i 1 Wstęp 1 1.1 Wprowadzenie.......................... 1 1.2 Dostępne technologie, pozwalające zrównoleglić obliczenia na kartach graficznych....................... 1 1.2.1 Open

Bardziej szczegółowo

Pamięci masowe. ATA (Advanced Technology Attachments)

Pamięci masowe. ATA (Advanced Technology Attachments) Pamięci masowe ATA (Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się

Bardziej szczegółowo

2 099,00 PLN OPIS PRZEDMIOTU AMIGO CORE I7 8X3,7GHZ 8GB 1TB USB3.0 WIN8.1 883-364-274 SKLEP@AMIGOPC.PL. amigopc.pl CENA: CZAS WYSYŁKI: 24H

2 099,00 PLN OPIS PRZEDMIOTU AMIGO CORE I7 8X3,7GHZ 8GB 1TB USB3.0 WIN8.1 883-364-274 SKLEP@AMIGOPC.PL. amigopc.pl CENA: CZAS WYSYŁKI: 24H amigopc.pl 883-364-274 SKLEP@AMIGOPC.PL AMIGO CORE I7 8X3,7GHZ 8GB 1TB USB3.0 WIN8.1 CENA: 2 099,00 PLN CZAS WYSYŁKI: 24H PRODUCENT: AMIGOPC NUMER KATALOGOWY: AMIGO XEON 1 RODZAJ PROCESORA: CORE I7 LICZBA

Bardziej szczegółowo

Test dysku Intel SSD DC S3500 480GB. Wpisany przez Mateusz Ponikowski Wtorek, 22 Październik 2013 16:22

Test dysku Intel SSD DC S3500 480GB. Wpisany przez Mateusz Ponikowski Wtorek, 22 Październik 2013 16:22 W połowie bieżącego roku na rynku pojawiły się profesjonalne nośniki Intel z serii DC S3500. Producent deklaruje, że sprzęt przeznaczony jest do bardziej wymagających zastosowań takich jak centra danych

Bardziej szczegółowo

Od wielkoskalowych obliczeń równoległych do innowacyjnej diagnostyki w kardiologii.

Od wielkoskalowych obliczeń równoległych do innowacyjnej diagnostyki w kardiologii. Od wielkoskalowych obliczeń równoległych do innowacyjnej diagnostyki w kardiologii. Opiekun naukowy: dr hab. prof. UŚ Marcin Kostur Celem tych badań jest zastosowanie symulacji układu krwionośnego do diagnostyki

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

DLA SEKTORA INFORMATYCZNEGO W POLSCE

DLA SEKTORA INFORMATYCZNEGO W POLSCE DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej

Bardziej szczegółowo

msgbox("akcja: Początek, argument: " + argument.tostring()); Thread.Sleep(1000); //opóźnienie msgbox("akcja: Koniec"); return DateTime.Now.

msgbox(akcja: Początek, argument:  + argument.tostring()); Thread.Sleep(1000); //opóźnienie msgbox(akcja: Koniec); return DateTime.Now. Programowanie asynchroniczne. Operator await i modyfikator async Język C# 5.0 wyposażony został w nowy operator await, ułatwiający synchronizację dodatkowych zadań uruchomionych przez użytkownika. Poniżej

Bardziej szczegółowo

Zasoby i usługi Wrocławskiego Centrum Sieciowo-Superkomputerowego

Zasoby i usługi Wrocławskiego Centrum Sieciowo-Superkomputerowego Zasoby i usługi Wrocławskiego Centrum Sieciowo-Superkomputerowego Mateusz Tykierko WCSS 20 stycznia 2012 Mateusz Tykierko (WCSS) 20 stycznia 2012 1 / 16 Supernova moc obliczeniowa: 67,54 TFLOPS liczba

Bardziej szczegółowo

Informatyka kl. 1. Semestr I

Informatyka kl. 1. Semestr I Informatyka kl. 1 Znajomość roli informatyki we współczesnym świecie. Rozróżnianie zestawu urządzeń w komputerze, rodzajów pamięci komputera, urządzeń wejścia i wyjścia. Umiejętność tworzenia dokumentu

Bardziej szczegółowo

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom). Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154

Bardziej szczegółowo

Dane Techniczne TH ALPLAST ADS-S25

Dane Techniczne TH ALPLAST ADS-S25 Dane Techniczne komputer PC TH ALPLAST ADS-S25 Komputer ADS-S25 charakteryzuje się najwyższymi parametrami technicznymi oraz nieporównywalną niezawodnością, dzięki doświadczonej i wysoko wykwalifikowanej

Bardziej szczegółowo

Wsparcie dla OpenMP w kompilatorze GNU GCC Krzysztof Lamorski Katedra Informatyki, PWSZ Chełm

Wsparcie dla OpenMP w kompilatorze GNU GCC Krzysztof Lamorski Katedra Informatyki, PWSZ Chełm Wsparcie dla OpenMP w kompilatorze GNU GCC Krzysztof Lamorski Katedra Informatyki, PWSZ Chełm Streszczenie Tematem pracy jest standard OpenMP pozwalający na programowanie współbieŝne w systemach komputerowych

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Programowanie niskopoziomowe

Programowanie niskopoziomowe Programowanie niskopoziomowe Programowanie niskopoziomowe w systemie operacyjnym oraz poza nim Tworzenie programu zawierającego procedury asemblerowe 1 Programowanie niskopoziomowe w systemie operacyjnym

Bardziej szczegółowo

Karty graficzne: budowa, zasada działania, standardy, parametry, dodatkowe funkcje

Karty graficzne: budowa, zasada działania, standardy, parametry, dodatkowe funkcje 018 URZĄDZENIA TECHNIKI KOMPUTEROWEJ Karty graficzne: budowa, zasada działania, standardy, parametry, dodatkowe funkcje 1 UTK Treść niniejszej prezentacji oparto na artykułach pisma Komputer Świat Ekspert

Bardziej szczegółowo

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) -

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) - Chipset i magistrala Chipset - Układ ten organizuje przepływ informacji pomiędzy poszczególnymi podzespołami jednostki centralnej. Idea chipsetu narodziła się jako potrzeba zintegrowania w jednym układzie

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 2. Pamięć rzeczywista 3. Pamięć wirtualna

Bardziej szczegółowo

Grafika komputerowa. Grafika komputerowa. Grafika komputerowa

Grafika komputerowa. Grafika komputerowa. Grafika komputerowa OpenGL - Koncepcja i architektura Aplikacja odwo!uje si" poprzez funkcje API OpenGL bezpo#rednio do karty graficznej (z pomini"ciem systemu operacyjnego). Programowanie grafiki komputerowej Rados!aw Mantiuk

Bardziej szczegółowo

Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński

Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński Plan Prezentacji. Programowanie ios. Jak zacząć? Co warto wiedzieć o programowaniu na platformę ios? Kilka słów na temat Obiective-C.

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 1 dr inż. Literatura ogólna Ben-Ari, M.: Podstawy programowania współbieżnego i rozproszonego. Wydawnictwa Naukowo-Techniczne, Warszawa, 2009. Czech, Z.J:

Bardziej szczegółowo

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne Czym jest? PROGRAMOWANIE

Bardziej szczegółowo

Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel

Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel Bibliografia: pl.wikipedia.org www.intel.com Historia i rodzaje procesorów w firmy Intel Specyfikacja Lista mikroprocesorów produkowanych przez firmę Intel 4-bitowe 4004 4040 8-bitowe x86 IA-64 8008 8080

Bardziej szczegółowo

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com). Lp Towar Nazwa BUCMOAK0000 Obudowa COOLERMASTER ELITE 30 BLACK/BLUE bez zasilacza COOLERMASTER Obudowy COOLERMASTER ELITE 30 BLACK/BLUE Typ obudowy Midi Tower ATX Kolor obudowy black-blue (czarno-niebieski)

Bardziej szczegółowo

DYNAMICZNE PRZYDZIELANIE PAMIECI

DYNAMICZNE PRZYDZIELANIE PAMIECI DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne

Bardziej szczegółowo

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 1 Optymalizacja skalarna Piotr Bała bala@mat.uni.torun.pl Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 2 Optymalizacja skalarna Czas

Bardziej szczegółowo

Grzegorz Cygan. Wstęp do programowania mikrosterowników w języku C

Grzegorz Cygan. Wstęp do programowania mikrosterowników w języku C Grzegorz Cygan Wstęp do programowania mikrosterowników w języku C Mikrosterownik Inne nazwy: Microcontroler (z języka angielskiego) Ta nazwa jest powszechnie używana w Polsce. Mikrokomputer jednoukładowy

Bardziej szczegółowo

Politechnika Poznańska, Instytut Informatyki, TWO/GE. Programowanie dla ios

Politechnika Poznańska, Instytut Informatyki, TWO/GE. Programowanie dla ios Politechnika Poznańska, Instytut Informatyki, TWO/GE Programowanie dla ios 13 stycznia 2012 Urządzenia ios Urządzenie Data prezentacji iphone 9.01.2007/06.2007 ipod touch 5.09.2007 iphone 3G 9.06.2008

Bardziej szczegółowo

Optymalizacja kodu. Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych.

Optymalizacja kodu. Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych. Optymalizacja kodu Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych Rozwijanie pętli Opcje kompilatora 1 Usunięcie skoków danych: for(i=1;

Bardziej szczegółowo

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem

Bardziej szczegółowo

Kompilator języka C na procesor 8051 RC51 implementacja

Kompilator języka C na procesor 8051 RC51 implementacja Kompilator języka C na procesor 8051 RC51 implementacja Implementowane typy danych bit 1 bit char lub char signed 8 bitów char unsigned 8 bitów int lub signed int 16 bitów unsigned int 16 bitów long lub

Bardziej szczegółowo

Wykład V. Rzut okiem na języki programowania. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład V. Rzut okiem na języki programowania. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład V Rzut okiem na języki programowania 1 Kompilacja vs. interpretacja KOMPILACJA Proces, który przetwarza program zapisany w języku programowania,

Bardziej szczegółowo

Programowanie współbieżne Wykład 1. Rafał Skinderowicz

Programowanie współbieżne Wykład 1. Rafał Skinderowicz Programowanie współbieżne Wykład 1 Rafał Skinderowicz Plan wykładu Historia, znaczenie i cele współbieżności w informatyce. Podstawowe pojęcia, prawo Moore a i bariery technologiczne. Sposoby realizacji

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 9 Pamięć operacyjna Właściwości pamięci Położenie Pojemność Jednostka transferu Sposób dostępu Wydajność Rodzaj fizyczny Własności fizyczne Organizacja Położenie pamięci

Bardziej szczegółowo

Opracował: Jan Front

Opracował: Jan Front Opracował: Jan Front Sterownik PLC PLC (Programowalny Sterownik Logiczny) (ang. Programmable Logic Controller) mikroprocesorowe urządzenie sterujące układami automatyki. PLC wykonuje w sposób cykliczny

Bardziej szczegółowo