Jacek Naruniec. lato 2014, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jacek Naruniec. lato 2014, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych"

Transkrypt

1 lato 2014,, Wydział Elektroniki i Technik Informacyjnych

2 Wykład (poniedziałek 10:15) dr inż. Jacek Naruniec, dr inż. Maciej Sypniewski Laboratoria (3-godzinne) w 08 Środy 12:15 Projekt Punktacja: Laboratorium (L) Projekt (P) Egzamin (E) Suma = (L + P + E)*0.8 5*10 punktów - 25 punktów - 50 punktów 2

3 Zaliczenie po przekroczeniu progu 50 p. i min. 25 punktów za egzamin, dalsze progi standardowe Laboratorium można oddać maksymalnie tydzień po terminie bez utraty punktów (o ile jest to możliwe ze względów sprzętowych) Za każdy kolejny tydzień opóźnienia laboratorium 2 punkty straty Ostateczny termin oddania projektu do końca sesji 3

4 Wykład: Wprowadzenie do programowania współbieżnego: (4h) (JN) Technologie obliczeń równoległych: (4h) (MS) przegląd Podstawy projektowania algorytmów równoległych: (2h) (JN) Programowanie procesorów graficznych: (6h) (JN+MS) CUDA, OpenCl, C++AMP Proste przykłady realizacji obliczeń na platformach GPU: (2h) (MS) od rozwiązania prostego po zoptymalizowane Wprowadzenie do analizy danych multimedialnych: (2h) (JN) Wybrane algorytmy wspomagające analizę danych multimedialnych: (6h) (JN) Algorytm FDTD analizy elektromagnetycznej: (4h) (MS) 4

5 Laboratorium Szczegóły będą określone w czasie trwania semestru, ogólnie: Realizacja matematycznych algorytmów obliczeniowych 1 (MS). Realizacja matematycznych algorytmów obliczeniowych 2 (JN). Algorytmy filtracji obrazów - CPU (JN). Algorytmy filtracji obrazów - GPU (JN). Uproszczony algorytm FDTD GPU (MS) Co najmniej jedno laboratorium na NVIDIA Grid Co najmniej jedno laboratorium na obliczeniach w chmurze 5

6 Projekt "System analizy obrazu" "Gra interaktywna" Porównanie wydajności obliczeniowej algorytmów FDTD realizowanych w różnych technologiach GPU Projekty samodzielne, można zaproponować (a nawet wskazany jest) własny temat. 6

7 Literatura podstawowa: 1. Notatki wykładowe. 2. Dokumentacja technologii CUDA, OpenCL i C++AMP. Literatura dodatkowa: 1. W. Malina, M. Smiatacz: "Metody cyfrowego przetwarzania obrazów", EXIT, A. Grama: "Introduction to Parallell Computing", Pearson, R. Wyrzykowski: "Klastry komputerów PC i architektury wielordzeniowe: budowa i wykorzystanie", AOW Exit, R.O. Duda: "Pattern Classification (2nd Edition)", Wiley-Interscience, R.Gaster i inni: Heterogeneous Computing with OpenCL ] 7

8 1. Zapoznanie się z możliwościami najnowszych technologii przetwarzania równoległego. 2. Zdobycie doświadczenia w implementacji wielowątkowych aplikacji w najnowszych technologiach umożliwiających współbieżność. 8

9 [źródło: 9

10 Zadanie znajdź część wspólną tak, aby stworzyć obraz panoramiczny Wymagania podpikselowa dokładność (do ułamka piksela) [źródło: 10

11 Typowa droga postępowania: wykryj punkty charakterystyczne (np. narożniki, T punkty SIFT, SURF, itp.), określ charakterystykę każdego z punktów, znajdź przekształcenie jednego z obrazów, które da najlepsze dopasowanie jak największej liczby punktów. Jacek Naruniec 11

12 Znajdź przekształcenie (translację, rotację, skalowanie), które najlepiej wpasuje oba obrazy na siebie. [źródło: 12

13 Detekcja punktów szczególnych (SIFT) dla danych obrazów: ok. 27 sekund dla jednego procesora ok. 7 sekund dla czterech procesorów (3GHz) Obrazy były zmniejszone do wielkości ~1000x500 Oryginalne obrazy były wielkości ~3000x2000 Inne typowe wielkości takich obrazów to np x17000 pikseli, czyli ok. 500x większa powierzchnia niż 1000x500! 13

14 SLAM - Simultaneous localization and mapping automatyczne tworzenie map otoczenia przez robot wymaga szybkiego przetwarzania chmur punktów w celu lokalizacji jeszcze nieznanych terenów chmura może przykładowo zawierać punktów 14

15 Inne przykładowe problemy wymagające szybkich, równoległych obliczeń: przepowiadanie pogody, sztormów analiza danych finansowych wyszukiwanie informacji (data mining) kryptologia przetwarzanie danych radarowych modelowanie zjawisk fizycznych modelowanie urządzeń gry komputerowe W przetwarzaniu obrazów: trenowanie złożonych algorytmów klasyfikacyjnych filtracje obrazów operacje macierzowe/wektorowe (podstawowe, czy też transformaty) detekcja/śledzenie obiektów w czasie rzeczywistym programy graficzne 15

16 Przyspieszenie obliczeń możemy Z osiągnąć np. poprzez: optymalizację algorytmów zrównoleglenie zdań eliminowanie wąskich gardeł minimalizację dostępu IO minimalizację komunikacji między procesami 16

17 Zgodnie z prawem Moora (współzałożyciel Intela) liczba tranzystorów w układzie scalonym będzie podwajać się co 2 lata. W 2006 roku sam Moore stwierdził, że za 2 czy 3 lata prawo przestanie obowiązywać. Informacje producentów sprzętu (m.in. Intela) zaprzeczają temu i twierdzą, że trend będzie się utrzymywał. 17

18 [źródło: 18

19 [źródło: 19

20 Blue Gene (IBM) konstrukcje superkomputerów przetwarzających petabajty operacji / s stosowane, m.in. w symulacji wybuchów jądrowych (USA): testowanie nowych broni, symulowanie podziemnych wybuchów jądrowych. [ 20

21 Ranking superkomputerów ( Z Rmax maksymalna wydajność otrzymana dla biblioteki LINPACK Rpeak teoretyczna szczytowa wydajność Cores liczba rdzeni 21

22 Obliczenia w chmurze. Z udostępniane wirtualne środowisko pracy do wykonywania obliczeń płacimy za określoną liczbę wykorzystywanych maszyn w czasie nie mamy fizycznego kontaktu ze sprzętem skalowalność! Amazon EC2 Google Cloud Windows Azure 22

23 Pamięć podręczna (cache) Szybka pamięć zawierająca najczęściej używane instrukcje, dane oraz odwzorowania adresów wirtualnych na adresy fizyczne. Prowadzi do minimalizacji dostępu do powolnych pamięci. Szybsza od pamięci w której znajdują się pełne dane. Może być wielopoziomowa (L1, L2, L3) CPU 0x25? 0x33 Cache Adres wartość 0x25 0x33 0x28 0xff 0x01 0x00 RAM Adres wartość 0x00 0x02 0x01 0x00 0x02 0x00 0x03 0x82 0x04 0xcd 0x05 0xff 23

24 Pamięć wirtualna odwzorowuje ciągłe, wirtualne adresy na fizyczne adresy w pamięci umożliwia, m.in. wykorzystanie przestrzeni dyskowej jako pamięci programu Pamięć wirtualna Adres 0x00 RAM 0x01 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A Dysk twardy 0x0B 24

25 Pamięć dzielona (shared) pamięć, do której wspólny dostęp ma wiele wątków aplikacji, jeden wątek może rezerwować obszar pamięci, inne korzystają z tego samego wątka. należy pamiętać (w szczególności przy GPU), że nie zawsze tworząc oddzielne podzadania mamy dostęp do tych samych obszarów pamięci! Wątek 1 Pamięć dzielona Adres wartość Wątek 3 0x00 0x02 0x01 0x00 0x02 0x00 0x03 0x82 0x04 0xcd 0x05 0xff Wątek 2 Wątek 4 25

26 Architektury komputerów: Single Instruction Single Data stream (SISD) (pojedyncza instrukcja, pojedynczy strumień danych) Najprostsza architektura procesorów nie umożliwiająca prawdziwej równoległości procesów. Natura sekwencyjna. jednostka sterująca instrukcja procesor dane pamięć 26

27 Architektury komputerów: Multiple Instruction Single Data stream (MISD) (wiele instrukcji, pojedynczy strumień danych) Wiele operacji operujących na tych samych danych. W praktyce w większości niespotykane niepraktyczne ze względu na czasy dostępu do pamięci. instrukcja 1 procesor jednostka sterująca dane dane pamięć instrukcja 2 procesor 27

28 Architektury komputerów: Single Instruction Multiple Data stream (SIMD) (pojedyncze instrukcje, wiele strumieni danych) Wiele procesorów w ramach jednej instrukcji przetwarza wiele danych. Powszechnie stosowane, np. SSE, SEE2, AVX, w GPU. jednostka sterująca instrukcja procesor dane 1 dane 2 pamięć instrukcja procesor 28

29 Architektury komputerów: Multiple Instruction Multiple Data stream (MIMD) (wiele instrukcji, wiele strumieni danych) Wiele procesorów przetwarza wiele danych przy pomocy różnych instrukcji. Spotykane np. w popularnych PCtach wielordzeniowych. jednostka sterująca Instrukcja 1 procesor dane 1 dane 2 pamięć Instrukcja 2 procesor 29

30 Proces: Jest to program dla którego system przygotowuje oddzielny zestaw zasobów, w tym pamięć, licznik rozkazów. Rozpoczyna się wywołaniem głównego wątku procesu. Wątek: Proces może wywołać wątki, które dzielą ze sobą zasoby systemowe i pamięć wirtualną. Każdy wątek ma swój unikalny identyfikator. 30

31 Wielozadaniowość (multitasking) pozwala na wykonywanie wielu zadań jednocześnie. nie musi oznaczać przetwarzania równoległego! jeśli mamy więcej zadań niż procesorów, zwykle przyjmowana jest zasada timeslicing, czyli przydzielanie po krótkim okresie czasu procesora każdemu zadaniu na zmianę czasy powinny być na tyle małe, aby nawet na procesorze jednordzeniowym mieć wrażenie jednoczesnego wykonania wielu zadań. procesor do zadania przydziela planista (sheduler), zgodnie z priorytetami 31

32 Przykład (multitasking): Zadanie wyświetlania (W), złożona operacja Załóżmy jeden procesor i zadania W i L występujące zawsze po sobie (jeden proces) wolny komputer czas [ms] zadanie L(1) W(1) W(2) L(1) W(1) W(2) L(1) Zadanie kroku czasowego ligiki (L), szybka operacja szybki komputer czas [ms] zadanie L(1) W(1) W(2) L(1) W(1) W(2) L(1) W(1) W(2) L(1) 32

33 Przykład (multitasking): Zadanie wyświetlania (W), złożona operacja Załóżmy jeden procesor i zadania W i L występujące w oddzielnych wątkach wolny komputer czas [ms] zadanie L(1) W(1) L(1) W(2) L(1) W(1) L(1) Zadanie kroku czasowego ligiki (L), szybka operacja szybki komputer czas [ms] zadanie L(1) W(1) W(2) L(1) W(1) W(2) L(1) W(1) W(2) L(1) 33

34 Wieloprocesorowość (multiprocessing) pozwala na wykonywanie wielu zadań jednocześnie na osobnych procesorach. rzeczywiste przetwarzanie równoległe wymaga obecności więcej niż jednego procesora time-slicing w przypadku większej liczby zadań niż procesorów 34

35 Przykład (multiprocessing): Zadanie wyświetlania (W), złożona operacja Załóżmy dwa procesory i zadania W i L występujące w oddzielnych wątkach wolny komputer czas [ms] Procesor 1 L(1) L(1) L(1) L(1) Procesor 2 W(1) W(2) W(1) W(2) W(1) W(2) W(1) Zadanie kroku czasowego ligiki (L), szybka operacja szybki komputer czas [ms] Procesor 1 L(1) L(1) L(1) L(1) Procesor 2 W(1) W(2) W(1) W(2) W(1) W(2) W(1) W(2) W(1) W(2) W(1) W(2) W(1) W(2) 35

36 Ziarnistość zadań określa nam liczbę i wielkość przetwarzanych zadań: drobnoziarniste: duża liczba małych zadań Przykład: obrót obrazu o wysokości h, szerokości w, gdzie dla każdego piksela tworzymy oddzielny wątek, otrzymując w*h procesów. Każdy wątek odczytuje wartość jednego piksela, znajduje jego nową pozycję i wpisuje ją do nowej tablicy zawierającej obrócony obraz. jeden wątek Czy taki algorytm byłby efektywny czy może lepiej podzielić obraz na większe bloki? 36

37 Ziarnistość zadań określa nam liczbę i wielkość przetwarzanych zadań: gruboziarniste: mała liczba dużych zadań Przykład: obrót obrazu o wysokości h, szerokości w, gdzie dla każdego bloku pikseli tworzymy oddzielny wątek, otrzymując w*h/(powierzchnia bloku) procesów. Każdy wątek odczytuje wartość pikseli bloku, znajduje ich nową pozycję i wpisuje je do nowej tablicy zawierającej obrócony obraz. jeden wątek Który algorytm będzie efektywniejszy? Na to pytanie odpowiemy sobie później. 37

38 Ziarnistość zadań określa nam liczbę i wielkość przetwarzanych zadań: Często specyfika aplikacji wymusza ziarnistość zadań. Bywa, że w jednej aplikacji mamy wymuszoną mieszaną ziarnistość. [źródło: R.Gaster i inni: Heterogeneous Computing with OpenCL ] 38

39 Dekompozycję pojedynczych zadań na podzadania mogące być wywołane równolegle można przedstawić w postaci grafów zależności zadań. W grafie tym węzeł będzie oznaczał zadanie, natomiast połączenie zależność. Kolejne zadanie nie może zostać wykonane dopóki wszystkie wchodzące do niego zależności nie są spełnione. Przykład: rozwiązanie równania macierzowego Y ( AB CD EF ) G HI AB CD EF (AB +CD+EF)G HI (AB +CD+EF)G + HI 39

40 Inny przykład: detekcja twarzy od szczegółu do ogółu 1 1. Pozyskanie obrazu wejściowego. 2. Detekcja konturów. 3. Detekcja punktów szczególnych w konturach. 4. Wybranie z wybranych punktów tych, które odpowiadają określonej części twarzy (oko, oko, nos, usta). 5. Wybranie kombinacji części twarzy tworzących całą twarz

41 Ścieżka krytyczna jest to określona ścieżka w grafie zadań, której opóźnienie będzie oznaczać opóźnienie całego systemu. jest to najdłuższa ważona ścieżka grafu niewielkie opóźnienie pozostałych elementów nie wpłynie na długość wykonania procesu AB (8) CD (8) EF (10) (AB +CD+EF)G (40) HI (10) (AB +CD+EF)G + HI (10) 41

42 Zdarzenie synchroniczne Będziemy tutaj rozumieli jako funkcję, która po wywołaniu zwraca sterowanie do wywołującego wątku dopiero w momencie wykonania pełnej operacji. Zdarzenie asynchroniczne Będziemy tutaj rozumieli jako funkcję, która po wywołaniu zwraca sterowanie do wywołującego wątku natychmiast. Zakończenie zadania jest zwykle sygnalizowane przez określone zdarzenie. 42

43 Architektury heterogeniczne architektury komputerów przystosowane do rozwiązywania zadań o różnej naturze, np. o różnej ziarnistości. złożone z różnych podsystemów przykładem może być połączenie CPU z FPGA bądź CPU z GPGPU (General Purpose computing on Graphical Processing Unit). Współczesne komputery pozwalają na równoległe wykonywanie zadań GPU i CPU CPU zadania sekwencyjne GPU zadania silnie równoległe 43

44 Architektury heterogeniczne Cel naukowy stworzyć taką obsługę systemową, która dla zaprojektowanych zadań sama wybierze które urządzenie jest najlepsze dla danego zadania. CPU zadania sekwencyjne GPU zadania silnie równoległe 44

45 Problem pisarz/czytelnik Metody tworzenia wątków i synchronizacji między nimi. 45

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 13 Jan Kazimirski 1 KOMPUTERY RÓWNOLEGŁE 2 Klasyfikacja systemów komputerowych SISD Single Instruction, Single Data stream SIMD Single Instruction, Multiple Data stream MISD

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Część teoretyczna Informacje i wstępne wymagania Cel przedmiotu i zakres materiału Zasady wydajnego

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

i3: internet - infrastruktury - innowacje

i3: internet - infrastruktury - innowacje i3: internet - infrastruktury - innowacje Wykorzystanie procesorów graficznych do akceleracji obliczeń w modelu geofizycznym EULAG Roman Wyrzykowski Krzysztof Rojek Łukasz Szustak [roman, krojek, lszustak]@icis.pcz.pl

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 1 dr inż. Literatura ogólna Ben-Ari, M.: Podstawy programowania współbieżnego i rozproszonego. Wydawnictwa Naukowo-Techniczne, Warszawa, 2009. Czech, Z.J:

Bardziej szczegółowo

16. Taksonomia Flynn'a.

16. Taksonomia Flynn'a. 16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 14 Procesory równoległe Klasyfikacja systemów wieloprocesorowych Luźno powiązane systemy wieloprocesorowe Każdy procesor ma własną pamięć główną i kanały wejścia-wyjścia.

Bardziej szczegółowo

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Programowanie współbieżne Wykład 2. Iwona Kochańska

Programowanie współbieżne Wykład 2. Iwona Kochańska Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów 1/3 Architektura Komputerów dr inż. Robert Jacek Tomczak Uniwersytet Przyrodniczy w Poznaniu Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne dla programisty, atrybuty

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE WSPÓŁBIEŻNE I ROZPROSZONE I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez studentów wiedzy na temat architektur systemów równoległych i rozproszonych,

Bardziej szczegółowo

PROBLEMATYKA OBLICZEŃ MASOWYCH W NAUKACH O ZIEMI. Satelitarny monitoring środowiska

PROBLEMATYKA OBLICZEŃ MASOWYCH W NAUKACH O ZIEMI. Satelitarny monitoring środowiska Satelitarny monitoring środowiska Dane satelitarne to obecnie bardzo ważne źródło informacji o powierzchni Ziemi i procesach na niej zachodzących. Obliczono, że na początku roku 2014 na orbitach okołoziemskich

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo

Bardziej szczegółowo

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami Larrabee GPGPU Zastosowanie, wydajność i porównanie z innymi układami Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee

Bardziej szczegółowo

Systemy operacyjne. Systemy operacyjne. Systemy operacyjne. Zadania systemu operacyjnego. Abstrakcyjne składniki systemu. System komputerowy

Systemy operacyjne. Systemy operacyjne. Systemy operacyjne. Zadania systemu operacyjnego. Abstrakcyjne składniki systemu. System komputerowy Systemy operacyjne Systemy operacyjne Dr inż. Ignacy Pardyka Literatura Siberschatz A. i inn. Podstawy systemów operacyjnych, WNT, Warszawa Skorupski A. Podstawy budowy i działania komputerów, WKiŁ, Warszawa

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 24 stycznia 2009 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI ZESZYTY NAUKOWE 105-114 Dariusz CHAŁADYNIAK 1 PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI Streszczenie W artykule poruszono wybrane podstawowe zagadnienia związane z przetwarzaniem równoległym. Przedstawiono

Bardziej szczegółowo

Wprowadzenie do systemów operacyjnych

Wprowadzenie do systemów operacyjnych SOE - Systemy Operacyjne Wykład 1 Wprowadzenie do systemów operacyjnych dr inż. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW System komputerowy Podstawowe pojęcia System operacyjny

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 17 marca 2014 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE ROZPROSZONE I RÓWNOLEGŁE Distributed and parallel programming Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Welcome to the waitless world. Inteligentna infrastruktura systemów Power S812LC i S822LC

Welcome to the waitless world. Inteligentna infrastruktura systemów Power S812LC i S822LC Inteligentna infrastruktura systemów Power S812LC i S822LC Przedstawiamy nową linię serwerów dla Linux Clouds & Clasters IBM Power Systems LC Kluczowa wartość dla klienta Specyfikacje S822LC Technical

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Architektura systemów komputerowych. Przetwarzanie potokowe I

Architektura systemów komputerowych. Przetwarzanie potokowe I Architektura systemów komputerowych Plan wykładu. Praca potokowa. 2. Projekt P koncepcja potoku: 2.. model ścieżki danych 2.2. rejestry w potoku, 2.3. wykonanie instrukcji, 2.3. program w potoku. Cele

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor Plan wykładu 1. Pojęcie podsystemu graficznego i karty graficznej 2. Typy kart graficznych 3. Budowa karty graficznej: procesor graficzny (GPU), pamięć podręczna RAM, konwerter cyfrowo-analogowy (DAC),

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Konsekwencje prawa Moore'a 4 Procesory wielordzeniowe 5 Intel Nehalem 6 Architektura Intel Nehalem

Bardziej szczegółowo

Programowanie współbieżne Wykład 1. Rafał Skinderowicz

Programowanie współbieżne Wykład 1. Rafał Skinderowicz Programowanie współbieżne Wykład 1 Rafał Skinderowicz Wprowadzenie Plan wykładu Historia, znaczenie i cele współbieżności w informatyce. Podstawowe pojęcia, prawo Moore a i bariery technologiczne. Sposoby

Bardziej szczegółowo

GRIDY OBLICZENIOWE. Piotr Majkowski

GRIDY OBLICZENIOWE. Piotr Majkowski GRIDY OBLICZENIOWE Piotr Majkowski Wstęp Podział komputerów Co to jest grid? Różne sposoby patrzenia na grid Jak zmierzyć moc? Troszkę dokładniej o gridach Projekt EGEE Klasyfikacja Flynn a (1972) Instrukcje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego 1 Historia i pojęcia wstępne Przetwarzanie współbieżne realizacja wielu programów (procesów) w taki sposób, że ich

Bardziej szczegółowo

Wstęp. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. 1 Cel zajęć Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów równoległych Przedstawienie sprzętu wykorzystywanego do obliczeń równoległych Nauczenie sposobów

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Architektura Komputerów i Systemy Operacyjne Nazwa w języku angielskim : Computer Architecture and Operating

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu

Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy techniki cyfrowej i mikroprocesorowej Kod przedmiotu 06.5-WE-AiRP-PTCiM Wydział Kierunek Wydział

Bardziej szczegółowo

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Wydział Matematyki i Informatyki Instytut Informatyki i

Bardziej szczegółowo

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Przetwarzanie Rozproszone i Równoległe

Przetwarzanie Rozproszone i Równoległe WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ I KOMPUTEROWEJ KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Przetwarzanie Rozproszone i Równoległe www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński

Bardziej szczegółowo

PROGRAMOWALNE STEROWNIKI LOGICZNE

PROGRAMOWALNE STEROWNIKI LOGICZNE PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu

Bardziej szczegółowo

Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW)

Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW) Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW) Maciej Cytowski, Maciej Filocha, Maciej E. Marchwiany, Maciej Szpindler Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012 Wykład nr 6 (27.04.2012) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż.

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż. Rok akademicki 2011/2012, Wykład nr 6 2/46 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności oraz łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Mariusz Rudnicki PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO CZ.1

Mariusz Rudnicki PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO CZ.1 Mariusz Rudnicki mariusz.rudnicki@eti.pg.gda.pl PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO CZ.1 Przedmiot PSCR Przedmiot PSCR Wykład do połowy semestru Laboratorium od połowy semestru Projekt Zaliczenie

Bardziej szczegółowo

Programowanie współbieżne. Iwona Kochańska

Programowanie współbieżne. Iwona Kochańska 1 Programowanie współbieżne Iwona Kochańska 2 Organizacja przedmiotu Wykład: 1 godzina tygodniowo (piątek, 10:15) 2 kolokwia w trakcie semestru Ocena końcowa: 0.5*(średnia z kolokw.)+0.5*projekt Projekt:

Bardziej szczegółowo

Mikroprocesory rodziny INTEL 80x86

Mikroprocesory rodziny INTEL 80x86 Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając

Bardziej szczegółowo

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład I Podstawowe pojęcia 1, Cyfrowe dane 2 Wewnątrz komputera informacja ma postać fizycznych sygnałów dwuwartościowych (np. dwa poziomy napięcia,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Jednostki obliczeniowe w zastosowaniach mechatronicznych Kierunek: Mechatronika Rodzaj przedmiotu: dla specjalności Systemy Sterowania Rodzaj zajęć: Wykład, laboratorium Computational

Bardziej szczegółowo

Architektura i administracja systemów operacyjnych

Architektura i administracja systemów operacyjnych Architektura i administracja systemów operacyjnych Wykład 1 Jan Tuziemski Część slajdów to zmodyfiowane slajdy ze strony os-booi.com copyright Silberschatz, Galvin and Gagne, 2013 Informacje wstępne Prowadzący

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Intel Nehalem 4 5 NVIDIA Tesla 6 ATI FireStream 7 NVIDIA Fermi 8 Sprzętowa wielowątkowość 9 Architektury

Bardziej szczegółowo

System mikroprocesorowy i peryferia. Dariusz Chaberski

System mikroprocesorowy i peryferia. Dariusz Chaberski System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób

Bardziej szczegółowo

Architektura von Neumanna

Architektura von Neumanna Architektura von Neumanna Klasyfikacja systemów komputerowych (Flynna) SISD - Single Instruction Single Data SIMD - Single Instruction Multiple Data MISD - Multiple Instruction Single Data MIMD - Multiple

Bardziej szczegółowo

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM Juliusz Pukacki,PCSS Co to jest HPC (High Preformance Computing)? Agregowanie dużych zasobów obliczeniowych w sposób umożliwiający wykonywanie obliczeń

Bardziej szczegółowo

Systemy operacyjne. Informatyka Stosowana, I rok. Krzysztof Wilk. Katedra Informatyki Stosowanej i Modelowania

Systemy operacyjne. Informatyka Stosowana, I rok. Krzysztof Wilk. Katedra Informatyki Stosowanej i Modelowania Systemy operacyjne Informatyka Stosowana, I rok Krzysztof Wilk Katedra Informatyki Stosowanej i Modelowania wilk@metal.agh.edu.pl Konsultacje: poniedziałek, 11.30-13; B-4, pok. 207 Systemy operacyjne Wykłady:

Bardziej szczegółowo

Budowa i zasada działania komputera. dr Artur Bartoszewski

Budowa i zasada działania komputera. dr Artur Bartoszewski Budowa i zasada działania komputera 1 dr Artur Bartoszewski Jednostka arytmetyczno-logiczna 2 Pojęcie systemu mikroprocesorowego Układ cyfrowy: Układy cyfrowe służą do przetwarzania informacji. Do układu

Bardziej szczegółowo

Systemy Operacyjne. wykład 1. Adam Kolany. Październik, Instytut Techniczny Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu

Systemy Operacyjne. wykład 1. Adam Kolany. Październik, Instytut Techniczny Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Systemy Operacyjne wykład 1. Adam Kolany Instytut Techniczny Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu dr.a.kolany@wp.pl Październik, 2007 Literatura DrAK (PWSZ) Systemy Operacyjne 11 Październik,

Bardziej szczegółowo

Informatyka. informatyka i nauki komputerowe (computer science)

Informatyka. informatyka i nauki komputerowe (computer science) Informatyka informacja i jej reprezentacje informatyka i nauki komputerowe (computer science) algorytmika efektywność algorytmów poprawność algorytmów złożoność obliczeniowa, problemy NP-trudne (NP-zupełne)

Bardziej szczegółowo

Systemy operacyjne III

Systemy operacyjne III Systemy operacyjne III Jan Kazimirski 1 Opis zajęć Prezentacja budowy i zasad działania współczesnego systemu operacyjnego Prezentacja podstawowych elementów systemów operacyjnych i zasad ich implementacji

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Definicja systemu operacyjnego (1) Miejsce,

Bardziej szczegółowo