CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.

Wielkość: px
Rozpocząć pokaz od strony:

Download "CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia."

Transkrypt

1 CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.com) 1

2 Architektura karty graficznej W porównaniu z tradycyjnym procesorem karta graficzna ma stosunkowo prosty moduł kontrolny, który jest silnie zrównoleglony. Dodatkową cechą charakterystyczną jest duża liczba jednostek obliczeniowych i relatywnie mniej pamięci cache.

3 Potencjał obliczeniowy Uwaga: rysunek przedstawia TEORETYCZNE możliwości sprzętu.

4 Przepustowość pamięci Uwaga: rysunek przedstawia TEORETYCZNE możliwości sprzętu.

5 Wady i zalety Zalety Bardzo dobry stosunek ceny do (potencjalnej) szybkości. Szybki rozwój sprzętu. Rozwojowa technologia. Wady Konieczność przepisania kodu problem przenośności. Uzyskanie rzeczywistej wydajności zbliżonej do teoretycznych możliwości sprzętu wymaga dużo pracy.

6 Technologie CUDA (od Compute Unified Device Architecture) platforma programistyczna i model programowania stworzony przez firmę NVIDIA. (C/C++, Fortran,...) OpenCL (Open Computing Language) szkielet do aplikacji na heterogenicznych platformach z CPU, GPU, DSP. (Język oparty o C99 i API). DirectCompute API dla Windows (Vista, 7, 8) wspierane przez Microsoft, część DirectX.

7 Dojrzałość CUDA wydaje się być rozwiązaniem najbardziej dojrzałym: powstała w 2006 roku ( upubliczniona dla MS Windows i Linuksa); obecna wersja to 5.0 (październik 2012); wsparcie dla wielu języków; zaimplementowane liczne biblioteki.

8 CUDA Specyfikacja architektury urządzenia pozwala wprowadzić drobnoziarnistą równoległość danych (Pcam) wątki, pozwala zoptymalizować współpracę wątków (pcam) grupy wątków, pozwala transparentnie mapować strukturę programu na architekturę urządzenia (pcam). Model programistyczny zbiór rozszerzeń/restrykcji/konwencji dla języków programowania, biblioteki.

9 Streaming Multiprocesor SM podstawowa jednostka architektury karty 8 skalarnych procesorów, wszystkie mogą działać (lub spać) równocześnie, przydział instrukcji za darmo, do 32 wątków (warp) wykonywanych na raz przez SM (w 4 cyklach zegara), do 24 aktywnych warpów w jednym SM, wątki współdzielą część pamięci, każdy wątek ma własną pamięć rejestrową.

10 Architektura GPU dla programu CPU

11 Skalowalność Użytkownik (programista) projektuje sieć wątków dopasowaną do danych. Sprzęt (karta) dopasowuje bloki do aktualnej architektury.

12 Przykład (1) oer:~/downloads/nvidia_cuda 5.0_Samples/bin/linux/release>./deviceQuery [...] Device 0: "GeForce 9800 GT" CUDA Driver Version / Runtime Version 5.0 / 5.0 CUDA Capability Major/Minor version number: 1.1 Total amount of global memory: 1023 MBytes ( bytes) (14) Multiprocessors x ( 8) CUDA Cores/MP: 112 CUDA Cores GPU Clock rate: 1500 MHz (1.50 GHz) Memory Clock rate: 900 Mhz Memory Bus Width: 256 bit Max Texture Dimension Size (x,y,z) 1D=(8192), 2D=(65536,32768), 3D=(2048,2048,2048) Max Layered Texture Size (dim) x layers 1D=(8192) x 512, 2D=(8192,8192) x 512 Total amount of constant memory: bytes Total amount of shared memory per block: bytes Total number of registers available per block: 8192 Warp size: 32 Maximum number of threads per multiprocessor: 768 Maximum number of threads per block: 512 Maximum sizes of each dimension of a block: 512 x 512 x 64 Maximum sizes of each dimension of a grid: x x 1 Maximum memory pitch: bytes Texture alignment: 256 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): No Device PCI Bus ID / PCI location ID: 1 / 0 [...] 1: Tesla

13 Przykład (2) ~/cuda/bin/linux/release]./devicequery [...] Detected 4 CUDA Capable device(s) Device 0: "Tesla C2070" CUDA Driver Version / Runtime Version 5.0 / 5.0 CUDA Capability Major/Minor version number: 2.0 Total amount of global memory: 5375 MBytes ( bytes) (14) Multiprocessors x ( 32) CUDA Cores/MP: 448 CUDA Cores GPU Clock rate: 1147 MHz (1.15 GHz) Memory Clock rate: 1494 Mhz Memory Bus Width: 384 bit L2 Cache Size: bytes Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048) Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048 Total amount of constant memory: bytes Total amount of shared memory per block: bytes Total number of registers available per block: Warp size: 32 Maximum number of threads per multiprocessor: 1536 Maximum number of threads per block: 1024 Maximum sizes of each dimension of a block: 1024 x 1024 x 64 Maximum sizes of each dimension of a grid: x x Maximum memory pitch: bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 2 / 0 [...] 2: Fermi

14 CUDA Kernel Kernel (jądro) to specjalna funkcja, która może być uruchomiona przez wiele wątków na raz. Strukturę sieci wątków używanej do uruchomienia kernela określa się w momencie jego wywołania.

15 Przykład kernela W powyższym przykładzie kernel VecAdd jest uruchamiany na liniowej strukturze N wątków. Numer wątku jest dostępny wewnątrz kernela przy pomocy struktury (dim3) threadidx

16 Struktura wątków Zmienna threadidx ma trzy wymiary (x,y,z) do pozwala naturalnie rozpraszać obliczenia dla danych 1D, 2D i 3D Zmienna threadidx indeksuje wątki w ramach bloku, którego maksymalna wielkość nie może obecnie przekraczać 1024 (starsze karty mogą pozwalać na mniej). W ramach bloku wątki są numerowane zgodnie z zasadą x+y Dx + z Dx Dy

17 Przykład 2D

18 Sieć bloków wątków Bloki wątków można organizować w sieci. Kernel może zostać uruchomiony na dowolnej sieci bloków o identycznym kształcie. Podobnie jak blok, także i sieć może być 1-, 2- lub 3wymiarowa. Numer bloku jest dostępny wewnątrz kernela przez zmieną (strukturę dim3) blockidx.

19 Przykład sieci bloków (1) 256 (16x16) wątków w bloku, N/16 x N/16 = N2/256 bloków = 1 wątek na element tablicy.

20 threadidx.x blockdim.x blockdim.y Przykład sieci bloków (2) Bloki są wykonywane niezależnie, w dowolnym porządku, równolegle lub sekwencyjnie. Wątki w bloku współdzielą część pamięci (szybkiej). Wątki w bloku można synchronizować (lekka bariera).

21 Pamięć Wątki mogą korzystać z kilku obszarów pamięci: Każdy wątek ma przydzieloną prywatną pamięć lokalną Każdy blok wątków ma przydzielony wspólny obszar pamięci Wszystkie sieci wątków mogą korzystać z obszaru pamięci globalnej Wszystkie sieci wątków mogą też czytać pamięć stałą i pamięć tekstur.

22 Model programu Model programu CUDA przypomina trochę model OpenMP: części równoległe wykonywane na urządzeniu CUDA przeplatają się z kodem sekwencyjnym wykonywanym przez procesor. Urządzenie CUDA można traktować jako ko-procesor posiadający własną pamięć. Kopiowanie danych pomiędzy pamięcią procesora i pamięcią karty może być wąskim gardłem programu.

23 Program Pamięć karty może być dostępna na dwa sposoby. Przy pierwszym (dostęp liniowy) jest alokowana przez cudamalloc i zwalniana za pomocą cudafree. Adres jest 32b dla urządzeń 1.x i 40b dla urządzeń 2.x i nowszych (można używać wskaźników pomiędzy adresami). Kopiowanie danych na/z urządzenia za pomocą cudamemcpy.

24 Kompilacja (JIT)

25 Efektywność (szybkość) Maksymalizacja zrównoleglenia Aplikacja (w miarę możliwości asynchronicznie) Urządzenie CUDA (liczba bloków == liczba MP, użycie strumieni) Multiprocesor (aktywne warpy) Optymalizacja dostępu do pamięci Jak najmniej transferów host urządzenie Użycie szybkiej pamięci (shared, cache) Dopasowanie danych do struktury pamięci Optymalizacja użycia instrukcji Użycie lekkich instrukcji/funkcji Minimalizacja zróżnicowania wątków Minimalizacja zróżnicowania używanych instrukcji

26 Zrównoleglenie aplikacja Równoległe działanie hosta i urządzenia Nakładanie transferu danych i kerneli Równoległy transfer danych Strumienie Zdarzenia

27 Równoległe działanie hosta i urządzenia Następujące funkcje są wykonywane asynchronicznie Uruchamianie kerneli Kopiowanie danych w ramach jednego urządzenia Kopiowanie host urządzenie porcji danych <64kB Asynchroniczne funkcje kopiujące (xxxasync) Ustawianie wartości w pamięci Kernele uruchamiane są synchronicznie pod debuggerem, profilerem, przy kontroli pamięci i na urządzeniach 1.x. Można zablokować asynchroniczne uruchamianie kerneli przez ustawienie zmiennej środowiskowej CUDA_LAUNCH_BLOCKING=1

28 Równoległe działanie urządzenia w skali makro (1) Od urządzeń 1.1 kopiowanie danych z/na host może być wykonywane równolegle z wykonywaniem kerneli. Można sprawdzić, czy urządzenie umożliwia to przez wartość właściwości asyncenginecount (0 nie, dodatnie tak). W urządzeniach 1.x dotyczy to tylko liniowych danych. Od urządzeń 2.x wiele urządzeń potrafi kopiować z i na urządzenie równolegle. Można sprawdzić, czy urządzenie umożliwia to przez wartość właściwości asyncenginecount (2 i więcej tak).

29 Równoległe działanie urządzenia w skali makro (2) Od urządzeń 2.x wiele kerneli może być uruchamianych równolegle na tym samym urządzeniu. Można sprawdzić, czy urządzenie umożliwia to przez wartość właściwości concurrentkernels (1 tak). Liczba równoległych kerneli jest ograniczona do 16 (32 dla urządzeń 3.5 i nowszych). Ograniczeniem może też być pamięć używana przez kernel. Wszystkie rónoległe kernele muszą należeć do tego samego kontekstu (CUDA context ~ proces dla CPU).

30 Strumienie Strumień (stream) to sekwencja poleceń. Domyślnie istnieje jeden strumień o numerze 0. Można tworzyć dodatkowe strumienie i używać ich numerów, tworząc w ten sposób równoległe sekwencje poleceń.

31 Strumienie przykład (1) Dwa strumienie, każdy z nich kopiuje z hosta na urządzenie size danych, uruchamia MyKernel dla swoich danych, kopiuje dane na host. Ten kod będzie działał na kartach, które obsługują równoległy transfer danych.

32 Synchronizacja strumieni Jawna zestaw funkcji cudadevicesynchronize() cudastreamsynchronize() cudastream WaitEvent() cudastreamquery() Niejawna Alokacja pamięci na hoscie (cudamalloc) Alokacja/zapis/kopiowanie na urządzeniu Polecenie CUDA dla strumienia 0 Zmiana konfiguracji pamięci w urządzeniach 2.x

33 Wywołania wsteczne Funkcja MyCallback zostanie uruchomiona po zakończeniu wszystkich operacji na strumieniu uruchomionych przed rejestracją wywołania wstecznego.

34 Zdarzenia Zdarzenia są rejestrowane asynchronicznie w strumieniach Zdarzenia są kończone w momencie, gdy skończą się wszystkie zadania i komendy strumienia poprzedzające rejestrację zdarzenia. Zdarzenia w strumieniu 0 są kończone, gdy skończą się wszystkie zadania i komendy we wszystkich strumieniach.

35 Strumienie przykład (2) Dwa strumienie, każdy z nich kopiuje z hosta na urządzenie size danych, uruchamia MyKernel dla swoich danych, kopiuje dane na host. Ten kod będzie działał na kartach, które obsługują równoległy transfer danych i działanie kerneli.

36 Optymalizacja dostępu do pamięci urządzenia Pamięć współdzielona przez blok jest znacznie szybsza, niż pamięć globalna. Odpowiednia organizacja wątków i wykorzystanie pamięci współdzielonej może bardzo znacznie przyspieszyć kod.

37 Mnożenie macierzy (1)

38 Mnożenie macierzy (2.1)

39 Mnożenie macierzy (2.2)

40 Naiwnie Pamięć współdzielona

41 Transpozycja macierzy (1) #define NN (4096) int main(int args, char** vargs) { const int HEIGHT = NN; const int WIDTH = NN; const int SIZE = WIDTH * HEIGHT * sizeof(float); cudaevent_t start, stop; cudaeventcreate(&start); cudaeventcreate(&stop); dim3 blockdim(block_dim,block_dim); dim3 griddim(width / blockdim.x, HEIGHT / blockdim.y); float* m = (float*)malloc(size); float* md = NULL; cudaeventrecord(start, 0); cudamalloc((void**)&md, SIZE); cudamemcpy(md, m, SIZE, cudamemcpyhosttodevice ); float* td = NULL; cudamalloc((void**)&td, SIZE); global void transpose_naive(float *odata, float* idata, int w, int h) { unsigned int x = blockdim.x * blockidx.x + threadidx.x; unsigned int y = blockdim.y * blockidx.y + threadidx.y; if (x < w && y < h ) { transpose_naive<<<griddim, blockdim>>>(td, md, WIDTH, HEIGHT); unsigned int idx_in = x + w * y ; unsigned int idx_out = y + h * x; odata[idx_out] = idata[idx_in]; cudamemcpy(m, td, SIZE, cudamemcpydevicetohost); } } cudaeventrecord(stop, 0); cudaeventsynchronize(stop); float elapsedtime; cudaeventelapsedtime(&elapsedtime, start, stop); cudaeventdestroy(start); cudaeventdestroy(stop); ms printf( "Time=%g\n", elapsedtime ); return 0; }

42 Transpozycja macierzy (2) global void transpose(float *odata, float *idata, int w, int h) { shared float block[block_dim][block_dim+1]; // read the matrix tile into shared memory unsigned int x = blockidx.x * BLOCK_DIM + threadidx.x; unsigned int y = blockidx.y * BLOCK_DIM + threadidx.y; if((x < w ) && (y < h )) { unsigned int index_in = y * w + x ; block[threadidx.y][threadidx.x] = idata[index_in]; } syncthreads(); // write the transposed matrix tile to global memory x = blockidx.y * BLOCK_DIM + threadidx.x; y = blockidx.x * BLOCK_DIM + threadidx.y; if((x < h ) && (y < w )) { unsigned int index_out = y * h + x ; odata[index_out] = block[threadidx.x][threadidx.y]; } }

43 Transpozycja macierzy (3) global void transpose(float *odata, float *idata, int w, int h) { shared float block[block_dim][block_dim+1]; // read the matrix tile into shared memory unsigned int x = blockidx.x * BLOCK_DIM + threadidx.x; unsigned int y = blockidx.y * BLOCK_DIM + threadidx.y; if((x < w ) && (y < h )) { unsigned int index_in = y * w + x ; block[threadidx.y][threadidx.x] = idata[index_in]; } syncthreads(); // write the transposed matrix tile to global memory x = blockidx.y * BLOCK_DIM + threadidx.x; y = blockidx.x * BLOCK_DIM + threadidx.y; if((x < h ) && (y < w )) { unsigned int index_out = y * h + x ; odata[index_out] = block[threadidx.x][threadidx.y]; } } ms

44 Transpozycja na różnych zdolności obliczeniowych oer:~/pliki/dydaktyka/prir/prir/programy/cuda>./a.out Time of copy kernel= Time of transpose_naive kernel= Time of transpose kernel= oer:~/pliki/dydaktyka/prir/prir/programy/cuda> ~/mycuda]./a.out Time of copy kernel= Time of transpose_naive kernel= Time of transpose kernel= ~/mycuda] Tesla (1.1) Fermi (2.0)

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Programowanie aplikacji równoległych i rozproszonych

Programowanie aplikacji równoległych i rozproszonych Programowanie aplikacji równoległych i rozproszonych Dr inż. Krzysztof Rojek krojek@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Strumienie operacji na GPU Domyślne

Bardziej szczegółowo

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski Agenda GPU Dlaczego warto używać GPU Budowa GPU CUDA JCuda Przykładowa implementacja Co to jest? GPU GPU Graphical GPU Graphical Processing GPU

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer 1.2 6.05.2015

Procesory kart graficznych i CUDA wer 1.2 6.05.2015 wer 1.2 6.05.2015 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot, Helion

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Obliczenia na GPU w technologii CUDA

Obliczenia na GPU w technologii CUDA Obliczenia na GPU w technologii CUDA 1 Różnica szybkości obliczeń (GFLOP/s) pomiędzy CPU a GPU źródło NVIDIA 2 Różnica w przepustowości pamięci pomiędzy CPU a GPU źródło NVIDIA 3 Różnice architektoniczne

Bardziej szczegółowo

Programowanie kart graficznych. Architektura i API część 1

Programowanie kart graficznych. Architektura i API część 1 Programowanie kart graficznych Architektura i API część 1 Literatura NVIDIA CUDA Programming Guide version 4.2 http//developer.download.nvidia.com/compute/devzone/ docs/html/c/doc/cuda_c_programming_guide.pdf

Bardziej szczegółowo

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 12 OpenGL + algorytm n ciał Maciej Matyka Instytut Fizyki Teoretycznej CUDA z OpenGL 1. Dane dla kerneli znajdują się na karcie GFX. 2. Chcemy liczyć i rysować używając

Bardziej szczegółowo

CUDA ćwiczenia praktyczne

CUDA ćwiczenia praktyczne CUDA ćwiczenia praktyczne 7 kwietnia 2011, Poznań Marek Błażewicz, marqs@man.poznan.pl Michał Kierzynka, michal.kierzynka@man.poznan.pl Agenda Wprowadzenie do narzędzi umożliwiających tworzenie programów

Bardziej szczegółowo

CUDA. obliczenia na kartach graficznych. Łukasz Ligowski. 11 luty Łukasz Ligowski () CUDA 11 luty / 36

CUDA. obliczenia na kartach graficznych. Łukasz Ligowski. 11 luty Łukasz Ligowski () CUDA 11 luty / 36 CUDA obliczenia na kartach graficznych Łukasz Ligowski 11 luty 2008 Łukasz Ligowski () CUDA 11 luty 2008 1 / 36 Plan 1 Ogólne wrażenia 2 Obliczenia na kartach - wstęp 3 Wprowadzenie 4 CUDA Łukasz Ligowski

Bardziej szczegółowo

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład, 21.01.2013 CUDA, przykłady praktyczne 1 Maciej Matyka Instytut Fizyki Teoretycznej Motywacja l CPU vs GPU (anims) Plan CUDA w praktyce Wykład 1: CUDA w praktyce l aplikacja

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka

CUDA część 1. platforma GPGPU w obliczeniach naukowych. Maciej Matyka CUDA część 1 platforma GPGPU w obliczeniach naukowych Maciej Matyka Bariery sprzętowe (procesory) ok na. 1 10 00 la raz t y Gdzie jesteśmy? a ok. 2 razy n 10 lat (ZK) Rozwój 1985-2004 i dalej? O roku ów

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer PR

Procesory kart graficznych i CUDA wer PR wer 1.3 14.12.2016 PR Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot,

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Jacek Matulewski - Fizyk zajmujący się na co dzień optyką kwantową i układami nieuporządkowanymi na Wydziale Fizyki, Astronomii i Informatyki

Jacek Matulewski - Fizyk zajmujący się na co dzień optyką kwantową i układami nieuporządkowanymi na Wydziale Fizyki, Astronomii i Informatyki Michał Matuszak, Jacek Matulewski CUDA i czyny Technologia NVIDIA CUDA W zeszłomiesięcznym numerze SDJ w artykule pt. Czyń cuda opisaliśmy

Bardziej szczegółowo

GTX260 i CUDA wer

GTX260 i CUDA wer GTX260 i CUDA wer 1.1 25.11.2014 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders,

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

Procesory kart graficznych i CUDA wer

Procesory kart graficznych i CUDA wer wer 1.4 18.04.2016 Litreratura: CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GP, J.Sanders, E.Kandrot,

Bardziej szczegółowo

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz Programowanie równoległe Wprowadzenie do OpenCL Rafał Skinderowicz OpenCL architektura OpenCL Open Computing Language otwarty standard do programowania heterogenicznych platform złożonych ze zbioru CPU,

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

4 NVIDIA CUDA jako znakomita platforma do zrównoleglenia obliczeń

4 NVIDIA CUDA jako znakomita platforma do zrównoleglenia obliczeń Spis treści Spis treści i 1 Wstęp 1 1.1 Wprowadzenie.......................... 1 1.2 Dostępne technologie, pozwalające zrównoleglić obliczenia na kartach graficznych....................... 1 1.2.1 Open

Bardziej szczegółowo

Dodatek A. CUDA. 1 Stosowany jest w tym kontekście skrót GPCPU (od ang. general-purpose computing on graphics processing units).

Dodatek A. CUDA. 1 Stosowany jest w tym kontekście skrót GPCPU (od ang. general-purpose computing on graphics processing units). Dodatek A. CUDA Trzy ostatnie rozdziały książki poświęcone są zagadnieniom związanym z programowaniem równoległym. Skłoniła nas do tego wszechobecność maszyn wieloprocesorowych. Nawet niektóre notebooki

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne Czym jest? PROGRAMOWANIE

Bardziej szczegółowo

Organizacja pamięci w procesorach graficznych

Organizacja pamięci w procesorach graficznych Organizacja pamięci w procesorach graficznych Pamięć w GPU przechowuje dane dla procesora graficznego, służące do wyświetlaniu obrazu na ekran. Pamięć przechowuje m.in. dane wektorów, pikseli, tekstury

Bardziej szczegółowo

Podstawy programowania komputerów

Podstawy programowania komputerów Podstawy programowania komputerów Wykład 10: Sterowanie pamięcią w C Pamięć na stosie!każdy program napisany w języku C ma dostęp do dwóch obszarów pamięci - stosu i sterty, w których może być przechowywana

Bardziej szczegółowo

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł.

Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Akceleracja obliczeń algebry liniowej z wykorzystaniem masywnie równoległych, wielordzeniowych procesorów GPU Świerczewski Ł. Wprowadzenie do koncepcji budowy akceleratorów graficznych Pierwsze procesory

Bardziej szczegółowo

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom). Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo.

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo. Konrad Szałkowski Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo Skisr-kolo@libra.cs.put.poznan.pl Po co? Krótka prezentacja Skąd? Dlaczego? Gdzie? Gdzie nie? Jak? CPU Pamięć DDR3-19200 19,2 GB/s Wydajność

Bardziej szczegółowo

PROE wykład 9 C++11, rzutowanie, optymalizacja. dr inż. Jacek Naruniec

PROE wykład 9 C++11, rzutowanie, optymalizacja. dr inż. Jacek Naruniec PROE wykład 9 C++11, rzutowanie, optymalizacja dr inż. Jacek Naruniec Rzutowanie Różne typy rzutowania są szczególnie istotne przy dziedziczeniu. Załóżmy sobie prostą hierarchię klas: A B C Rzutowanie

Bardziej szczegółowo

Hybrydowy system obliczeniowy z akceleratorami GPU

Hybrydowy system obliczeniowy z akceleratorami GPU Przemysław Stpiczyński Hybrydowy system obliczeniowy z akceleratorami GPU [A hybrid computing system with GPU accelerators] Wstęp Konstrukcja komputerów oraz klastrów komputerowych o dużej mocy obliczeniowej

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 13 Jan Kazimirski 1 KOMPUTERY RÓWNOLEGŁE 2 Klasyfikacja systemów komputerowych SISD Single Instruction, Single Data stream SIMD Single Instruction, Multiple Data stream MISD

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++

Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++ Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++ Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH Krzysztof Skowron, Mariusz Rawski, Paweł Tomaszewicz 1/23 CEL wykorzystanie środowiska Altera OpenCL do celów akceleracji obliczeń

Bardziej szczegółowo

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż.

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż. Rok akademicki 2011/2012, Wykład nr 6 2/46 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012

Bardziej szczegółowo

Wątek - definicja. Wykorzystanie kilku rdzeni procesora jednocześnie Zrównoleglenie obliczeń Jednoczesna obsługa ekranu i procesu obliczeniowego

Wątek - definicja. Wykorzystanie kilku rdzeni procesora jednocześnie Zrównoleglenie obliczeń Jednoczesna obsługa ekranu i procesu obliczeniowego Wątki Wątek - definicja Ciąg instrukcji (podprogram) który może być wykonywane współbieżnie (równolegle) z innymi programami, Wątki działają w ramach tego samego procesu Współdzielą dane (mogą operować

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012 Wykład nr 6 (27.04.2012) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Implementacja modelu FHP w technologii NVIDIA CUDA

Implementacja modelu FHP w technologii NVIDIA CUDA Uniwersytet Wrocławski Wydział Fizyki i Astronomii Instytut Fizyki Teoretycznej Sebastian Szkoda Implementacja modelu FHP w technologii NVIDIA CUDA Opiekun: dr hab. Zbigniew Koza, prof. UWr. 2 Streszczenie

Bardziej szczegółowo

HPC na biurku. Wojciech De bski

HPC na biurku. Wojciech De bski na biurku Wojciech De bski 22.01.2015 - co to jest? High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak,

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, 30.01.2016 Zagadnienia sprzętowe w przetwarzaniu równoległym 1.1 Procesory systemu równoległego

Bardziej szczegółowo

Wstęp do obliczeń równoległych na GPU

Wstęp do obliczeń równoległych na GPU Spis treści 1 Wstęp do obliczeń równoległych na GPU 1.1 Zadanie 1.2 Profilowanie 1.2.1 Zadanie Wstęp do obliczeń równoległych na GPU W tej części ćwiczeń stworzymy pierwszy program wykorzystujący bibliotekę

Bardziej szczegółowo

Szablony funkcji i szablony klas

Szablony funkcji i szablony klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz

Programowanie współbieżne Wprowadzenie do programowania GPU. Rafał Skinderowicz Programowanie współbieżne Wprowadzenie do programowania GPU Rafał Skinderowicz Literatura Sanders J., Kandrot E., CUDA w przykładach, Helion. Czech Z., Wprowadzenie do obliczeń równoległych, PWN Ben-Ari

Bardziej szczegółowo

System komputerowy. System komputerowy

System komputerowy. System komputerowy System komputerowy System komputerowy System komputerowy układ współdziałających ze sobą (według pewnych zasad) dwóch składowych: sprzętu komputerowego (hardware) oraz oprogramowania (software) po to,

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

DYNAMICZNE PRZYDZIELANIE PAMIECI

DYNAMICZNE PRZYDZIELANIE PAMIECI DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne

Bardziej szczegółowo

Wykład 14. Zagadnienia związane z systemem IO

Wykład 14. Zagadnienia związane z systemem IO Wykład 14 Zagadnienia związane z systemem IO Wprowadzenie Urządzenia I/O zróżnicowane ze względu na Zachowanie: wejście, wyjście, magazynowanie Partnera: człowiek lub maszyna Szybkość transferu: bajty

Bardziej szczegółowo

Programowanie Równoległe wykład 13. Symulacje komputerowe cieczy LBM w CUDA. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 13. Symulacje komputerowe cieczy LBM w CUDA. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 13 Symulacje komputerowe cieczy LBM w CUDA Maciej Matyka Instytut Fizyki Teoretycznej Transport cieczy i gazów W wielu dziedzinach trzeba rozwiązać zagadnienie transportu

Bardziej szczegółowo

1. Tworzenie nowego projektu.

1. Tworzenie nowego projektu. Załącznik do Instrukcji 1. Tworzenie nowego projektu. Wybieramy opcję z menu głównego New->QNX C Project. Wprowadzamy nazwę przechodzimy do następnego kroku NEXT. Wybieramy platformę docelową oraz warianty

Bardziej szczegółowo

CUDA - Compute Unified Device Architecture Wykorzystanie kart graficznych firmy NVIDIA do obliczeń

CUDA - Compute Unified Device Architecture Wykorzystanie kart graficznych firmy NVIDIA do obliczeń Rafał Toboła nr albumu 149151 CUDA - Compute Unified Device Architecture Wykorzystanie kart graficznych firmy NVIDIA do obliczeń Wrocław, 13 maja 2009 Spis treści 1. Wstęp.....................................

Bardziej szczegółowo

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Adam Hrazdil Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V hrazdil@op.pl

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

CUDA jako platforma GPGPU w obliczeniach naukowych

CUDA jako platforma GPGPU w obliczeniach naukowych CUDA jako platforma GPGPU w obliczeniach naukowych Seminarium Grupy Neutrinowej, 12.12.2011 Maciej Matyka, Zbigniew Koza Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Bariery sprzętowe (procesory)

Bardziej szczegółowo

CompactPCI. PCI Industrial Computers Manufacturers Group (PICMG)

CompactPCI. PCI Industrial Computers Manufacturers Group (PICMG) PCI Industrial Computers Manufacturers Group (PICMG) nowy standard; nowa jakość komputerów realizujących krytyczne zadania w systemach pracujących w trudnych warunkach; Baza specyfikacji: format kaset

Bardziej szczegółowo

Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych

Wysokowydajna implementacja kodów nadmiarowych typu erasure codes z wykorzystaniem architektur wielordzeniowych Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych Ł. Kuczyński, M. Woźniak, R. Wyrzykowski Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

MS Visual Studio 2005 Team Suite - Performance Tool

MS Visual Studio 2005 Team Suite - Performance Tool MS Visual Studio 2005 Team Suite - Performance Tool przygotował: Krzysztof Jurczuk Politechnika Białostocka Wydział Informatyki Katedra Oprogramowania ul. Wiejska 45A 15-351 Białystok Streszczenie: Dokument

Bardziej szczegółowo

Przegląd dostępnych hypervisorów. Jakub Wojtasz IT Solutions Architect jwojtasz@atom-tech.pl

Przegląd dostępnych hypervisorów. Jakub Wojtasz IT Solutions Architect jwojtasz@atom-tech.pl Przegląd dostępnych hypervisorów Jakub Wojtasz IT Solutions Architect jwojtasz@atom-tech.pl Agenda Podział hypervisorów Architektura wybranych rozwiązań Najwięksi gracze na rynku Podział hypervisorów Hypervisor

Bardziej szczegółowo

XIII International PhD Workshop OWD 2011, October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH

XIII International PhD Workshop OWD 2011, October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH XIII International PhD Workshop OWD 2011, 22 25 October 2011 REALIZACJA OBLICZEŃ W ARCHITEKTURZE MASOWO RÓWNOLEGŁEJ W HETEROGENICZNYCH SYSTEMACH CALCULATIONS IN THE MASSIVELY PARALLEL ARCHITECTURE IN HETEROGENEOUS

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 1 dr inż. Literatura ogólna Ben-Ari, M.: Podstawy programowania współbieżnego i rozproszonego. Wydawnictwa Naukowo-Techniczne, Warszawa, 2009. Czech, Z.J:

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ I

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ I Zp 130-64/15 Załącznik Nr 1 do SIWZ (Załącznik Nr 1 do umowy) SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ I 1 1. Rozbudowa istniejącej platformy sprzętowej systemu teleinformatycznego poprzez dostawę

Bardziej szczegółowo

Programowanie mikrokontrolerów AVR

Programowanie mikrokontrolerów AVR Programowanie mikrokontrolerów AVR Czym jest mikrokontroler? Mikrokontroler jest małym komputerem podłączanym do układów elektronicznych. Pamięć RAM/ROM CPU wykonuje program Układy I/O Komunikacje ze światem

Bardziej szczegółowo

Politechnika Rzeszowska

Politechnika Rzeszowska Politechnika Rzeszowska i m. I g n a c e g o Ł u k a s i e w i c z a Wydział Elektrotechniki i Informatyki Katedra Informatyki i Automatyki Bogusław Rymut ŚLEDZENIE OBIEKTÓW PRZY WYKORZYSTANIU GPU Praca

Bardziej szczegółowo

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią

SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 2. Pamięć rzeczywista 3. Pamięć wirtualna

Bardziej szczegółowo

Wykład 7 Podręczna pamięć buforowa (ang. buffer cache) w systemie Linuks. Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB

Wykład 7 Podręczna pamięć buforowa (ang. buffer cache) w systemie Linuks. Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB Wykład 7 Podręczna pamięć buforowa (ang. buffer cache) w systemie Linuks Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB Wstęp Przyczyną wprowadzenia pamięci buforowej są ogromne różnice

Bardziej szczegółowo

Programowanie niskopoziomowe

Programowanie niskopoziomowe Programowanie niskopoziomowe Programowanie niskopoziomowe w systemie operacyjnym oraz poza nim Tworzenie programu zawierającego procedury asemblerowe 1 Programowanie niskopoziomowe w systemie operacyjnym

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 4 Jan Kazimirski 1 Programowanie GPU 1/2 2 Literatura CUDA w przykładach, J. Sanders, E. Kandrot, 2012 Computing Gems. Emerald Edition, Wen-mei W. Hwu ed.,

Bardziej szczegółowo

Krótka Historia. Co to jest NetBeans? Historia. NetBeans Platform NetBeans IDE NetBeans Mobility Pack Zintegrowane moduły. Paczki do NetBeans.

Krótka Historia. Co to jest NetBeans? Historia. NetBeans Platform NetBeans IDE NetBeans Mobility Pack Zintegrowane moduły. Paczki do NetBeans. GRZEGORZ FURDYNA Krótka Historia Co to jest NetBeans? Historia Wersje NetBeans Platform NetBeans IDE NetBeans Mobility Pack Zintegrowane moduły NetBeans Profiler Narzędzie do projektowania GUI Edytor NetBeans

Bardziej szczegółowo

XIV International PhD Workshop OWD 2012, October 2012 NOWOCZESNE TECHNIKI WYKONYWANIA ZAAWANSOWANYCH OBLICZEŃ NUMERYCZNYCH

XIV International PhD Workshop OWD 2012, October 2012 NOWOCZESNE TECHNIKI WYKONYWANIA ZAAWANSOWANYCH OBLICZEŃ NUMERYCZNYCH XIV International PhD Workshop OWD 2012, 20 23 October 2012 NOWOCZESNE TECHNIKI WYKONYWANIA ZAAWANSOWANYCH OBLICZEŃ NUMERYCZNYCH MODERN ADVANCED COMPUTATIONAL METHOD Konrad Andrzej Markowski, Warsaw University

Bardziej szczegółowo

Czyń CUDA (część 1) Powinieneś wiedzieć: Od czytelnika wymagana jest znajomość C++ oraz podstawowych zasad programowania równoległego.

Czyń CUDA (część 1) Powinieneś wiedzieć: Od czytelnika wymagana jest znajomość C++ oraz podstawowych zasad programowania równoległego. Warsztaty Czyń CUDA (część 1) Architektura GPGPU to skrót, który na ustach informatyków pojawia się coraz częściej. Oznacza general-purpose computing on graphics processing units, czyli możliwość przeprowadzania

Bardziej szczegółowo

Programowanie w języku C++

Programowanie w języku C++ Programowanie w języku C++ Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi

Bardziej szczegółowo

Programowanie procesorów graficznych GPU

Programowanie procesorów graficznych GPU Programowanie procesorów graficznych GPU Uniwersytet Marii Curie-Skłodowskiej Wydział Matematyki, Fizyki i Informatyki Instytut Informatyki Programowanie procesorów graficznych GPU Marcin Denkowski Paweł

Bardziej szczegółowo

JAVA. Java jest wszechstronnym językiem programowania, zorientowanym. apletów oraz samodzielnych aplikacji.

JAVA. Java jest wszechstronnym językiem programowania, zorientowanym. apletów oraz samodzielnych aplikacji. JAVA Java jest wszechstronnym językiem programowania, zorientowanym obiektowo, dostarczającym możliwość uruchamiania apletów oraz samodzielnych aplikacji. Java nie jest typowym kompilatorem. Źródłowy kod

Bardziej szczegółowo

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład II - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Operacje dyskowe - zapis do pliku #include #include

Bardziej szczegółowo

Jak ujarzmić hydrę czyli programowanie równoległe w Javie. dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski

Jak ujarzmić hydrę czyli programowanie równoległe w Javie. dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski Jak ujarzmić hydrę czyli programowanie równoległe w Javie dr hab. Piotr Bała, prof. UW ICM Uniwersytet Warszawski Prawo Moore a Ekonomicznie optymalna liczba tranzystorów w układzie scalonym zwiększa się

Bardziej szczegółowo

IdyllaOS. Prosty, alternatywny system operacyjny. www.idyllaos.org. Autor: Grzegorz Gliński. Kontakt: milyges@gmail.com

IdyllaOS. Prosty, alternatywny system operacyjny. www.idyllaos.org. Autor: Grzegorz Gliński. Kontakt: milyges@gmail.com IdyllaOS www.idyllaos.org Prosty, alternatywny system operacyjny Autor: Grzegorz Gliński Kontakt: milyges@gmail.com Co to jest IdyllaOS? IdyllaOS jest to mały, prosty, uniksopodobny, wielozadaniowy oraz

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Systemy Czasu Rzeczywistego Programowanie wyświetlacza graficznego LCD laboratorium: 01 autor: mgr inż. Paweł Pławiak

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor

Bardziej szczegółowo