Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1"

Transkrypt

1 Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

2 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności Ogólnie, choć nie do końca ściśle, oznacza ona dobre zachowanie systemu (sprzętu, środowiska wykonania, programu) w sytuacji rosnącego obciążenia i, najczęściej, rosnących zasobów Mówiąc o skalowalności często rozważa się wydajność jako funkcję rosnącego obciążenia i, ewentualnie, rosnących zasobów Wydajność definiowana jest zależnie od dziedziny (jak to już było wielokrotnie podkreślane) stąd też pojęcia skalowalności bywają różne W dziedzinie Obliczeń Wysokiej Wydajności wprowadza się ścisłe definicje i miary związane ze skalowalnością obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 2

3 Przyspieszenie i efektywność obliczeń Miary wydajności obliczeń równoległych: przyspieszenie obliczeń: S(p) = Ts / T (p) Ts czas rozwiązania zadania najlepszym algorytmem sekwencyjnym na pojedynczym procesorze T (p) czas rozwiązania zadania rozważanym algorytmem równoległym na p procesorach (w praktyce często zamiast Ts używa się T (1) ) efektywność zrównoleglenia: E(p) = S(p) / p ideałem jest uzyskanie liniowego przyspieszenia i 100% efektywności (jak musi się zachowywać narzut obliczeń, T narz (p) = T (p) T (1)/p, aby uzyskać przyspieszenie liniowe?) Krzysztof Banaś Obliczenia Wysokiej Wydajności 3

4 Przyspieszenie i efektywność obliczeń Miary wydajności obliczeń równoległych: obserwacja dla danej liczby procesorów przyspieszenie obliczeń równoległych jest większe dla zadań większych (ten sam problem, ten sam algorytm, ten sam program, zmienia się tylko wielkość zadania) dzieje się tak dla zadań, dla których przy stałym p i rosnącym rozmiarze ilość obliczeń rośnie szybciej niż narzut obliczeń równoległych miara wielkości zadania praca W = liczba operacji wykonywanych przy realizacji zadania można próbować wyrazić przyspieszenie jako funkcję dwóch parametrów liczby procesorów i wielkości zadania, S(p,W) (podobnie efektywność E(p,W)) otrzymuje się funkcję dwóch zmiennych, którą można dalej analizować rozpatrując różne jej przekroje Krzysztof Banaś Obliczenia Wysokiej Wydajności 4

5 Przyspieszenie skalowane Miary wydajności obliczeń równoległych przyspieszenie skalowane to przyspieszenie jakie uzyskuje się rozważając dla danej liczby procesorów p zadanie o rozmiarze p krotnie większym od zadania rozwiązywanego na pojedynczym procesorze jako funkcja liczby procesorów przyspieszenie skalowane jest równe: S S (p) = T (1, pw 0 ) / T (p, pw 0 ) = p*t (1, W 0 ) / T (p, pw 0 ) liniowe przyspieszenie skalowane uzyskuje się przy powyższych założeniach wtedy, kiedy czas rozwiązania nie zmienia się przy rozwiązaniu zadania o rozmiarze p krotnie większym na p razy więcej procesorach efektywność zrównoleglenia jest wtedy stała Krzysztof Banaś Obliczenia Wysokiej Wydajności 5

6 Skalowalność programów Miary wydajności obliczeń równoległych analiza przyspieszenia skalowanego i skalowanej efektywności jest czasem w literaturze nazywana badaniem tzw. słabej skalowalności (weak scalability) czyli związanej z wydajnością przy stałym rozmiarze zadania na pojedynczym procesorze słabą skalowalność odróżnia się w takim kontekście od silnej skalowalności (przy stałym całkowitym rozmiarze zadania analiza klasyczna, Amdahla, itp.) program będzie wykazywał taką słabą skalowalność (inaczej skalowalność w sensie słabszym) jeżeli czas rozwiązania zadania p krotnie większego (analizując ściśle należałoby powiedzieć o pracy p krotnie większej ) na p razy większej liczbie procesorów będzie pozostawał niezmieniony (lub rósł tylko nieznacznie) (tak jak w przypadku liniowego przyspieszenia skalowanego) Krzysztof Banaś Obliczenia Wysokiej Wydajności 6

7 Skalowalność programów Miary wydajności obliczeń równoległych innym z pojęć określających zachowanie programu równoległego dla rosnącego rozmiaru zadania i rosnącej liczby procesorów jest skalowalność równoległa (parallel scalability) program nazywamy skalowalnym równolegle jeżeli istnieje taka funkcja W(p), że efektywność obliczeń równoległych jako funkcja E(W(p), p) jest ograniczona od dołu przez liczbę większą od zera jeśli W(p) jest funkcją liniową mówimy o liniowej skalowalności często jesteśmy zainteresowani tylko takimi funkcjami W(p), dla których wymagany rozmiar pamięci nie przekracza dostępnych zasobów (najczęściej pamięć rośnie liniowo wraz ze wzrostem liczby procesorów) Krzysztof Banaś Obliczenia Wysokiej Wydajności 7

8 Skalowalność programów Miary wydajności obliczeń równoległych analiza równoległej skalowalności programu jest zbliżona do poszukiwania tzw. funkcji izoefektywności funkcja izoefektywności to taka funkcja W izo (p), dla której efektywność jako funkcja W i p jest stała: E( W izo (p), p ) = const ( > 0 ) geometrycznie chodzi o uzyskanie takiego przekroju wykresu E(W,P) dla którego E=const obliczenia, dla których istnieje funkcja izoefektywności są skalowalne obliczenia liniowo skalowalne mają liniową funkcję izoefektywności Krzysztof Banaś Obliczenia Wysokiej Wydajności 8

9 Skalowalność programów Miary wydajności obliczeń równoległych istnienie funkcji izoefektywności jest związane z narzutem obliczeń równoległych: narz narz E = S / p = T s /(p T ) = T s /(T s + pt ) = 1/(1+pT /T s ) stała efektywność oznacza, że stosunek całkowitego narzutu wykonania równoległego do czasu obliczeń sekwencyjnych jest stały przy stałym rozmiarze zadania stałą efektywność uzyskuje się gdy narzut całkowity jest stały, czyli narzut na jeden procesor maleje narz odwrotnie proporcjonalnie do liczby procesorów p (pt (p) = const) co praktycznie nigdy nie zachodzi jeśli rozmiar zadania (i czas obliczeń sekwencyjnych) rośnie liniowo wraz z liczbą procesorów wystarcza, aby narzut całkowity także rósł liniowo, czyli aby narzut na jeden procesor pozostawał stały Krzysztof Banaś Obliczenia Wysokiej Wydajności 9

10 Skalowalność programów Miary wydajności obliczeń równoległych do wykazania, że obliczenia są liniowo skalowalne wystarcza spełnienie jednego z warunków: stałego czasu rozwiązania zadania p krotnie większego na p razy większej liczbie procesorów stałego narzutu wykonania równoległego na jeden procesor dla zadań o rozmiarze rosnącym liniowo wraz z liczbą procesorów liniowej funkcji izo efektywności liniowego przyspieszenia skalowanego obliczeń niewielkie odstępstwa od powyższych warunków charakteryzują programy dobrze skalowalne duże odstępstwa charakteryzują programy nieskalowalne (niespełniające kryterium skalowalności) i źle skalowalne (formalnie spełniające kryterium skalowalności, ale dla silnie rosnących funkcji rozmiaru zadania w zależności od liczby procesorów) Krzysztof Banaś Obliczenia Wysokiej Wydajności 10

11 Skalowalność obliczeń Skalowalność jest kluczowym pojęciem dla równoległych obliczeń wysokiej wydajności W praktyce nie istnieją programy dające się idealnie zrównoleglić (o liniowym przyspieszeniu), natomiast istnieją programy dobrze skalowalne (o liniowym przyspieszeniu skalowanym) Wydajność przetwarzania (różnie definiowana w różnych dziedzinach zastosowań) daje się często ustalić na podstawie analizy skalowalności W dziedzinie obliczeń wysokiej wydajności (HPC): wydajność = liczba_operacji / czas, co często daje się przybliżyć jako: przyspieszenie*czas_wykonania_1_operacji Krzysztof Banaś Obliczenia Wysokiej Wydajności 11

12 Przykład Analizując algorytmy równoległe będziemy często posługiwali się prostym modelem wydajności, w którym zakłada się, że: Pewne operacje w algorytmach są dominujące i całkowity czas realizacji tych operacji dobrze przybliża całkowity czas obliczeń na pojedynczym procesorze Wszystkie operacje dominujące zajmują tyle samo czasu Czas ten oznaczamy przez t c Jednostką, w której wyrażamy t c może być jednostka czasu lub np. liczba taktów zegara (to ostatnie ułatwia dostosowanie analizy do konkretnego sprzętu) Poza t c uwzględnia się tylko dwa inne parametry sprzętu charakteryzujące czas komunikacji t s i t w Dające się zrównoleglić obliczenia są idealnie zrównoważone Krzysztof Banaś Obliczenia Wysokiej Wydajności 12

13 Przykład Obliczenie normy wektora o rozmiarze N N operacji mnożenia i dodawania idealne zrównoleglenie Konieczność uzyskania globalnej sumy pomijalny czas obliczeń, istotny czas komunikacji Algorytm naiwny wszystkie procesory przesyłają swoje sumy częściowe do wybranego procesora Czas realizacji zadania: 2*N*t c /p + p*(t s +8*t w ) Analiza uwzględniająca: przyspieszenie, efektywność, przyspieszenie skalowane, efektywność skalowaną, funkcję izoefektywności, ograniczenia pamięciowe Krzysztof Banaś Obliczenia Wysokiej Wydajności 13

14 Przykład Krzysztof Banaś Obliczenia Wysokiej Wydajności 14

15 Przykład Krzysztof Banaś Obliczenia Wysokiej Wydajności 15

16 Optymalizacja programów równoległych Minimalizacja czasu wykonania programów równoległych (czyli redukcja narzutu równoległego) może zostać osiągnięta przez realizację m.in. następujących kroków: zmniejszenie liczby przesyłanych danych zmniejszenie liczby wymienianych komunikatów (zwiększenie ziarnistości obliczeń) unikanie przepełnienia sieci zmniejszenie liczby dodatkowych operacji (często w sprzeczności ze zmniejszeniem rozmiaru przesyłanych danych) równoważenie obciążenia nakładanie obliczeń i komunikacji optymalne wykorzystanie hierarchii pamięci optymalną realizację obliczeń sekwencyjnych Krzysztof Banaś Obliczenia Wysokiej Wydajności 16

Wydajność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń równoległych Podobnie jak w obliczeniach sekwencyjnych, gdzie celem optymalizacji wydajności było maksymalne

Bardziej szczegółowo

Analiza efektywności przetwarzania współbieżnego

Analiza efektywności przetwarzania współbieżnego Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak 1/4/2013 Analiza efektywności 1 Źródła kosztów przetwarzania współbieżnego interakcje

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona

Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona Spis treści: 1. Równoległe systemy komputerowe a rozproszone systemy komputerowe,

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Konsekwencje prawa Moore'a 4 Procesory wielordzeniowe 5 Intel Nehalem 6 Architektura Intel Nehalem

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Task Parallel Library

Task Parallel Library Task Parallel Library Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt prezentacja Michał Albrycht Agenda O potrzebie zrównoleglania Przykłady użycia TPL Tasks and Replicable Tasks Rozdzielanie zadań

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Analityczne modelowanie systemów równoległych

Analityczne modelowanie systemów równoległych Analityczne modelowanie systemów równoległych 1 Modelowanie wydajności Program szeregowy jest modelowany przez czas wykonania. Na ogół jest to czas asymptotyczny w notacji O. Czas wykonania programu szeregowego

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Programowanie współbieżne Wstęp do obliczeń równoległych. Rafał Skinderowicz

Programowanie współbieżne Wstęp do obliczeń równoległych. Rafał Skinderowicz Programowanie współbieżne Wstęp do obliczeń równoległych Rafał Skinderowicz Plan wykładu Modele obliczeń równoległych Miary oceny wydajności algorytmów równoległych Prawo Amdahla Prawo Gustavsona Modele

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Równoległe algorytmy sortowania. Krzysztof Banaś Obliczenia równoległe 1

Równoległe algorytmy sortowania. Krzysztof Banaś Obliczenia równoległe 1 Równoległe algorytmy sortowania Krzysztof Banaś Obliczenia równoległe 1 Algorytmy sortowania Algorytmy sortowania dzielą się na wewnętrzne (bez użycia pamięci dyskowej) zewnętrzne (dla danych nie mieszczących

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory; Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze

Bardziej szczegółowo

Wydajność komunikacji grupowej w obliczeniach równoległych. Krzysztof Banaś Obliczenia wysokiej wydajności 1

Wydajność komunikacji grupowej w obliczeniach równoległych. Krzysztof Banaś Obliczenia wysokiej wydajności 1 Wydajność komunikacji grupowej w obliczeniach równoległych Krzysztof Banaś Obliczenia wysokiej wydajności 1 Sieci połączeń Topologie sieci statycznych: Sieć w pełni połączona Gwiazda Kraty: 1D, 2D, 3D

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Operacje grupowego przesyłania komunikatów. Krzysztof Banaś Obliczenia równoległe 1

Operacje grupowego przesyłania komunikatów. Krzysztof Banaś Obliczenia równoległe 1 Operacje grupowego przesyłania komunikatów Krzysztof Banaś Obliczenia równoległe 1 Operacje grupowego przesyłania komunikatów Operacje, w ramach których ten sam komunikat lub zbiór komunikatów przesyłany

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

INFORMATYKA SORTOWANIE DANYCH.

INFORMATYKA SORTOWANIE DANYCH. INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania

Bardziej szczegółowo

Pamięci masowe. ATA (Advanced Technology Attachments)

Pamięci masowe. ATA (Advanced Technology Attachments) Pamięci masowe ATA (Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

O superkomputerach. Marek Grabowski

O superkomputerach. Marek Grabowski O superkomputerach Marek Grabowski Superkomputery dziś Klastry obliczeniowe Szafy (od zawsze) Bo komputery są duże Półki i blade'y (od pewnego czasu) Większe upakowanie mocy obliczeniowej na m^2 Łatwiejsze

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Zarządzanie pamięcią w systemie operacyjnym

Zarządzanie pamięcią w systemie operacyjnym Zarządzanie pamięcią w systemie operacyjnym Cele: przydział zasobów pamięciowych wykonywanym programom, zapewnienie bezpieczeństwa wykonywanych procesów (ochrona pamięci), efektywne wykorzystanie dostępnej

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Projekty infrastrukturalne w obszarze obiektów przetwarzania danych. Piotr Trzciński

Projekty infrastrukturalne w obszarze obiektów przetwarzania danych. Piotr Trzciński Projekty infrastrukturalne w obszarze obiektów przetwarzania danych Piotr Trzciński O zespole Zespół 6 osób Odpowiedzialność za: Utrzymanie infrastruktury data centre w Polsce, w tym: Service Management

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14

Logika i teoria mnogości Wykład 14 Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 10a: O złożoności obliczeniowej raz jeszcze. Złożoność zamortyzowana Model danych zewnętrznych i algorytmy obróbki danych 1 Złożoność zamortyzowana W wielu sytuacjach

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np.

wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np. wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np. opuszczanie, dodawanie, zamiana cyfr w liczbach), trudności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji

Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego 1 Historia i pojęcia wstępne Przetwarzanie współbieżne realizacja wielu programów (procesów) w taki sposób, że ich

Bardziej szczegółowo

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak,

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, 30.01.2016 Zagadnienia sprzętowe w przetwarzaniu równoległym 1.1 Procesory systemu równoległego

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 8 (29.01.2009) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo