Numeryczna algebra liniowa
|
|
- Mieczysław Mazurkiewicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Numeryczna algebra liniowa
2 Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów równań liniowych czy znajdowanie wartości własnych
3
4 Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional decomposition): standardowe złożone aplikacje (np. z obsługą plików, korektą poprawności w trakcie pracy itp.) złożony problem optymalizacji
5
6 Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional decomposition): standardowe złożone aplikacje (np. z obsługą plików, korektą poprawności w trakcie pracy itp.) złożony problem optymalizacji Podział struktury danych (data decomposition) sortowanie tablic rozwiązywanie układów równań liniowych
7
8 Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional decomposition): standardowe złożone aplikacje (np. z obsługą plików, korektą poprawności w trakcie pracy itp.) złożony problem optymalizacji Podział struktury danych (data decomposition) sortowanie tablic rozwiązywanie układów równań liniowych Podział w dziedzinie problemu (domain decomposition) symulacje zjawisk fizycznych w przestrzeni (wykorzystanie podziału geometrycznego geometric decomposition)
9
10 Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional decomposition): standardowe złożone aplikacje (np. z obsługą plików, korektą poprawności w trakcie pracy itp.) złożony problem optymalizacji Podział struktury danych (data decomposition) sortowanie tablic rozwiązywanie układów równań liniowych Podział w dziedzinie problemu (domain decomposition) symulacje zjawisk fizycznych w przestrzeni (wykorzystanie podziału geometrycznego geometric decomposition) Podział złożony, mający cechy i podziału funkcjonalnego i danych: przetwarzanie potokowe (np. sekwencji obrazów)
11 Problemy embarrassingly parallel brak zależności minimalizacja komunikacji Problemy z zależnościami potrzeba komunikacji
12 Komunikacja wewnątrz wątku zawsze powoduje opóźnienie W czasie komunikacji zasoby maszyny są używane na pakowanie i transmisje danych Synchronizacja zadań wymuszona komunikacją powoduje nierównomierne obciążenie wątków Duży ruch na kanałach przesyłu może przepełnić możliwości maszyny i spowodować dalsze spowolnienie
13 Opóźnienie (latency) czas potrzebny do przesłania minimalnej (zerowej) porcji danych z wątku A do B. Przepustowość (bandwidth) ilość danych możliwych do przesłania w jednostce czasu. Przesyłanie dużej ilości małych komunikatów powoduje wzrost roli opóźnienia w czasie komunikacji!
14 Równoważenie podziału pracy Równoważenie podziału danych Równoważenie podziału iteracji pętli Równoważenie obciążenia na systemach heterogenicznych Dynamiczny przydział pracy task pool
15 Stosunek obliczeń do komunikacji Obliczenia od komunikacji oddziela synchronizacja Równoległość drobnoziarnista Stosunkowo niewielkie ilości pracy obliczeniowej są wykonywane między zdarzeniami komunikacyjnymi Niski stosunek mocy obliczeniowej do komunikacji Ułatwia równoważenie obciążenia Sugeruje wysokie koszty komunikacji i mniejsze możliwości poprawy wydajności Jeśli ziarnistość jest zbyt drobna, możliwe, że narzut wymagany do komunikacji i synchronizacji między zadaniami zajmuje więcej czasu niż obliczenia.
16 Równoległość gruboziarnista Stosunkowo duże ilości pracy obliczeniowej są wykonywane między zdarzeniami komunikacji /synchronizacji Wysoki stosunek obliczeń do komunikacji Oznacza większe możliwości zwiększenia wydajności Trudniej jest efektywnie zrównoważyć obciążenie.
17 Istotnym elementem wszelkich równoległych algorytmów macierzowych jest określenie rozdzielenia (dystrybucji) macierzy i wektorów na poszczególne procesory pasmowe kolumnowe lub wierszowe: blokowe cykliczne blokowo cykliczne szachownicowe: blokowe cykliczne blokowo cykliczne
18 Mnożenie macierz wektor dla podziału pasmowego wierszowego algorytm analiza czasu działania i przyspieszenia obliczeń dla podziału szachownicowego algorytm analiza czasu działania i przyspieszenia obliczeń
19 Macierze zawierające większość zer nazywane są macierzami rzadkimi Macierze takie powstają np. jako efekt aproksymacji równań różniczkowych cząstkowych typowymi metodami MRS, MES, MOS Praktycznym kryterium rzadkości macierzy jest wykazanie, że klasyczne algorytmy dla macierzy gęstych są wolniejsze od specjalnych algorytmów dla macierzy rzadkich
20 Specjalne algorytmy dla macierzy rzadkich uwzględniają specjalne sposoby przechowywania macierzy, w których w pamięci komputera umieszcza się tylko wyrazy niezerowe Jest wiele schematów przechowywania macierzy rzadkich Wybór konkretnego schematu zależy od struktury macierzy (układ wyrazów niezerowych w macierzy) i algorytmu, w którym występuje macierz
21 Formaty: naturalny oparty na współrzędnych CRS skompresowany wierszowy CCS skompresowany kolumnowy CDS diagonalny ITPACK uproszczony postrzępiony diagonalny Dla każdego z formatów istnieją odpowiednie wersje algorytmów realizujących podstawowe operacje macierzowe
22 Dla części klasycznych algorytmów numerycznej algebry liniowej można w sposób naturalny wykorzystać rzadkość macierzy i dostosować implementację do formatu przechowywania macierzy Przykładem są mnożenie macierz wektor i wszelkie algorytmy oparte na takim mnożeniu Algorytmami, które jest znacznie trudniej efektywnie dostosować do rzadkości macierzy są wszelkie algorytmy oparte na eliminacji Gaussa
23 Podział macierzy rzadkiej między procesory jest powiązany ze strukturą macierzy (układem wyrazów niezerowych w macierzy), sposobem przechowywania niezerowych wyrazów macierzy w pamięciach lokalnych i algorytmem rozwiązującym zadany problem macierzowy
24 Metody bezpośrednie warianty eliminacji Gaussa równoległa wersja z podziałem wierszowym macierzy równoległa wersja z podziałem szachownicowym macierzy Metody iteracyjne metody iteracji prostej: Jacobiego, Gaussa Seidla, SOR, SSOR metody podprzestrzeni Kryłowa wersje równoległe oparte na zrównolegleniu podstawowych operacji wektorowych i macierzowych skalowalność zależna od struktury i własności macierzy poprawa uwarunkowania macierzy w metodach podprzestrzeni Kryłowa
25
26
27 Poprawa uwarunkowania macierzy jako przybliżone rozwiązanie układu równań dające się wyrazić w postaci operatora liniowego Działanie metod iteracji prostej (relaksacji) jako wygładzania błędu Wielopoziomowe wygładzanie błędu metody wielosiatkowe (multigrid) Algorytmy niekompletnego rozkładu jako metody poprawy uwarunkowania i metody wygładzania błędu
28
29 Dziękuję za uwagę
30 Krzysztof Banaś - OWW
Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional
Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie
Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie
Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności
Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6
Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu
Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,
Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze
Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie
Wydajność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Wydajność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń równoległych Podobnie jak w obliczeniach sekwencyjnych, gdzie celem optymalizacji wydajności było maksymalne
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012
Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Algorytmy numeryczne 1
Algorytmy numeryczne 1 Wprowadzenie Obliczenie numeryczne są najważniejszym zastosowaniem komputerów równoległych. Przykładem są symulacje zjawisk fizycznych, których przeprowadzenie sprowadza się do rozwiązania
Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Analiza ilościowa w przetwarzaniu równoległym
Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.
Metody Obliczeniowe w Nauce i Technice
12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec Radosław
Rozdział 21, który przedstawia zastosowanie obliczeń wysokiej wydajności w numerycznej algebrze liniowej
Rozdział 21, który rzedstawia zastosowanie obliczeń wysokiej wydajności w numerycznej algebrze liniowej 1.0.1 Oeracje macierzowe Istotnym elementem wszelkich równoległych algorytmów macierzowych jest określenie
course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN
Zaawansowane metody numeryczne 4,5 ECTS Nazwa w języku angielskim: Numerical methods. Advanced dzienne magisterskie course Kod przedmiotu Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow
Przykładowy program ćwiczeń
Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości
Dr inż. hab. Siergiej Fialko, IF-PK,
Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Analiza efektywności przetwarzania współbieżnego. Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015 Źródła kosztów przetwarzania współbieżnego interakcje między procesami
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Analiza efektywności przetwarzania współbieżnego
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak 1/4/2013 Analiza efektywności 1 Źródła kosztów przetwarzania współbieżnego interakcje
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,
Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią
Programowanie współbieżne Wykład 2. Iwona Kochańska
Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas
Macierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
Równoległe algorytmy sortowania. Krzysztof Banaś Obliczenia równoległe 1
Równoległe algorytmy sortowania Krzysztof Banaś Obliczenia równoległe 1 Algorytmy sortowania Algorytmy sortowania dzielą się na wewnętrzne (bez użycia pamięci dyskowej) zewnętrzne (dla danych nie mieszczących
Programowanie procesorów graficznych GPGPU
Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Karta (sylabus) przedmiotu
Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1
Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1
Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie
Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1
Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
5. Model komunikujących się procesów, komunikaty
Jędrzej Ułasiewicz str. 1 5. Model komunikujących się procesów, komunikaty Obecnie stosuje się następujące modele przetwarzania: Model procesów i komunikatów Model procesów komunikujących się poprzez pamięć
Wstęp. Przetwarzanie równoległe. Krzysztof Banaś Obliczenia równoległe 1
Wstęp. Przetwarzanie równoległe. Krzysztof Banaś Obliczenia równoległe 1 Historia i pojęcia wstępne Obliczenia równoległe: dwa lub więcej procesów (wątków) jednocześnie współpracuje (komunikując się wzajemnie)
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Obliczenia Wysokiej Wydajności
Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona
Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona Spis treści: 1. Równoległe systemy komputerowe a rozproszone systemy komputerowe,
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych
Sposoby tworzenia uwarunkowania wstępnego dla metody gradientów sprzężonych Ten fakt, że matematyka obliczeniowa nie daje żadnych przepisów dla tworzenia operatora uwarunkowania wstępnego B, doprowadzi
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Wykład III Układy równań liniowych i dekompozycje macierzy
Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Zadania jednorodne 5.A.Modele przetwarzania równoległego. Rafał Walkowiak Przetwarzanie równoległe Politechnika Poznańska 2010/2011
Zadania jednorodne 5.A.Modele przetwarzania równoległego Rafał Walkowiak Przetwarzanie równoległe Politechnika Poznańska 2010/2011 Zadanie podzielne Zadanie podzielne (ang. divisible task) może zostać
Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1
Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Zasady projektowania algorytmów równoległych
Zasady projektowania algorytmów równoległych Rafał Walkowiak Zima? 25 /8/25 Zasady projektowania Algorytm równoległy Algorytm sekwencyjny: sekwencja kroków rozwiązujących problem przy użyciu komputera
16. Taksonomia Flynn'a.
16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się
Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN
Internet kwantowy (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN 16. stycznia 2012 Plan wystąpienia 1 Skąd się biorą stany kwantowe? Jak
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Operacje grupowego przesyłania komunikatów. Krzysztof Banaś Obliczenia równoległe 1
Operacje grupowego przesyłania komunikatów Krzysztof Banaś Obliczenia równoległe 1 Operacje grupowego przesyłania komunikatów Operacje, w ramach których ten sam komunikat lub zbiór komunikatów przesyłany
Programowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.
Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Szczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,