Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1"

Transkrypt

1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1

2 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą też od możliwości sprzętu) globalna liczba wątków jest ograniczona (także indywidualnie dla każdego wymiaru przestrzeni wątków) liczba wątków w grupie jest ograniczona liczba grup jest ograniczona (także indywidualnie dla każdego wymiaru przestrzeni wątków) liczba grup aktywnych jest ograniczona:» przez ograniczoną liczbę rejestrów CU» przez ograniczony rozmiar pamięci wspólnej CU» przez możliwości sprzętu optymalny dobór podziału pracy na wątki może być bardzo złożony i różny dla każdego GPU można próbować rozwiązać problem analitycznie zdarza się, że konieczne są eksperymenty Krzysztof Banaś Obliczenia równoległe 2

3 Model pamięci OpenCl Krzysztof Banaś Obliczenia równoległe 3

4 Projektowanie kerneli Zasady optymalizacji: opóźnienie w dostępie do pamięci jest ukrywane przez współbieżne wykonywanie wielu wątków na pojedynczym PE wiele grup wątków na jednym CU bardzo duże grupy wątków (z rozmiarem będącym wielokrotnością warp/wavefront) obowiązują standardowe zasady: usuwanie zależności danych, zasobów redukcja złożoności wyrażeń (strength reduction) operacje / (dzielenie całkowite) i %(modulo) są zazwyczaj kosztowne minimalizacja liczby operacji optymalizacja dostępu do pamięci Krzysztof Banaś Obliczenia równoległe 4

5 OpenCL zależności zasobów Krzysztof Banaś Obliczenia równoległe 5

6 Przykład mnożenie macierz wektor Prosta strategia: jeden wątek jeden element wektora wyniku dla dużych wektorów oznacza rozmiar grupy 1 czy dostęp do tablicy M jest optymalny? kernel void mat_vec_1_kernel( const global float* M, uint width, uint height, const global float* V, global float* W) { uint j = get_global_id(0); const global float* row = M + j * width; float dotproduct = 0; for (uint i = 0; i < width; ++i) dotproduct += row[i] * V[i]; W[j] = dotproduct; } Krzysztof Banaś Obliczenia równoległe 6

7 Przykład mnożenie macierz wektor Modyfikacja: jeden wątek wiele elementów wektora wyniku zwiększenie rozmiaru grupy, liczba grup dobierana dowolnie dostęp do M nie zmieniony kernel void mat_vec_2_kernel( const global float* M, uint width, uint height, const global float* V, global float* W) { for (uint j = get_global_id(0); j < height; j += get_global_size(0)){ const global float* row = M + j * width; float dotproduct = 0; for (uint i = 0; i < width; ++i) dotproduct += row[i] * V[i]; W[j] = dotproduct; } Krzysztof Banaś Obliczenia równoległe 7

8 Przykład mnożenie macierz wektor Modyfikacja dostępu do M jeden wiersz dla grupy wątków, wiele wierszy na grupę kolejne wątki w grupie czytają kolejne wyrazy M konieczność redukcji kernel void mat_vec_3_kernel(... ) { for (uint j = get_group_id(0); j < height; j += get_num_groups(0)) { const global float* row = M + j * width; float sum = 0.0; for (uint x = get_local_id(0); x < width; x += get_local_size(0)) sum += row[x] * V[x]; // REDUKCJA... } Krzysztof Banaś Obliczenia równoległe 8

9 Redukcja GPU Redukcja naiwna redukcja wątki zapisują wynik do tablicy pojedynczy wątek sumuje wyrazy tablicy konieczność synchronizacji działania redukcja właściwa rozmaite warianty wykorzystania drzewa redukcji Krzysztof Banaś Obliczenia równoległe 9

10 Redukcja GPU Krzysztof Banaś Obliczenia równoległe 10

11 Redukcja GPU Wariant 1: standardowe drzewo redukcji partialdotproduct[get_local_id(0)] = sum; for (uint stride = 1; stride < get_local_size(0); stride *= 2) { barrier(clk_local_mem_fence); uint index = 2 * stride * get_local_id(0); if (index < get_local_size(0)) { partialdotproduct[index] += partialdotproduct[index + stride]; } } Krzysztof Banaś Obliczenia równoległe 11

12 GPU memory banks Krzysztof Banaś Obliczenia równoległe 12

13 Redukcja GPU Krzysztof Banaś Obliczenia równoległe 13

14 Redukcja GPU Wariant 2: optymalny dostęp do pamięci lokalnej (wspólnej) kolejne wątki uzyskują dostęp do kolejnych komórek pamięci partialdotproduct[get_local_id(0)] = sum; for (uint stride = get_local_size(0)/2; stride > 0; stride /= 2) { barrier(clk_local_mem_fence); if (get_local_id(0) < stride) { partialdotproduct[get_local_id(0)] += partialdotproduct[get_local_id(0)+stride]; } } ciąg dalszy kodu iloczynu macierz wektor if (get_local_id(0) == 0) W[y] = partialdotproduct[0]; barrier(clk_local_mem_fence); Krzysztof Banaś Obliczenia równoległe 14

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 OpenCL projektowanie kerneli Przypomnienie: kernel program realizowany przez urządzenie OpenCL wątek (work item) rdzeń

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Wstęp do obliczeń równoległych na GPU

Wstęp do obliczeń równoległych na GPU Spis treści 1 Wstęp do obliczeń równoległych na GPU 1.1 Zadanie 1.2 Profilowanie 1.2.1 Zadanie Wstęp do obliczeń równoległych na GPU W tej części ćwiczeń stworzymy pierwszy program wykorzystujący bibliotekę

Bardziej szczegółowo

Programowanie aplikacji równoległych i rozproszonych

Programowanie aplikacji równoległych i rozproszonych Programowanie aplikacji równoległych i rozproszonych Dr inż. Krzysztof Rojek krojek@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Strumienie operacji na GPU Domyślne

Bardziej szczegółowo

Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe. Rafał Skinderowicz

Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe. Rafał Skinderowicz Programowanie równoległe Optymalizacja dostępu do pamięci GPU Elementarne algortymy równoległe Rafał Skinderowicz Optymalizacja dostępu do pamięci Wątki wewnątrz osnów (ang. warps) wykonują jednocześnie

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek Implementacja sieci neuronowych na karcie graficznej Waldemar Pawlaszek Motywacja Czyli po co to wszystko? Motywacja Procesor graficzny GPU (Graphics Processing Unit) Wydajność Elastyczność i precyzja

Bardziej szczegółowo

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz

Programowanie równoległe Wprowadzenie do OpenCL. Rafał Skinderowicz Programowanie równoległe Wprowadzenie do OpenCL Rafał Skinderowicz OpenCL architektura OpenCL Open Computing Language otwarty standard do programowania heterogenicznych platform złożonych ze zbioru CPU,

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Przetwarzanie wielowątkowe przetwarzanie współbieżne. Krzysztof Banaś Obliczenia równoległe 1

Przetwarzanie wielowątkowe przetwarzanie współbieżne. Krzysztof Banaś Obliczenia równoległe 1 Przetwarzanie wielowątkowe przetwarzanie współbieżne Krzysztof Banaś Obliczenia równoległe 1 Problemy współbieżności wyścig (race condition) synchronizacja realizowana sprzętowo (np. komputery macierzowe)

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych

Wysokowydajna implementacja kodów nadmiarowych typu erasure codes z wykorzystaniem architektur wielordzeniowych Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych Ł. Kuczyński, M. Woźniak, R. Wyrzykowski Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH Krzysztof Skowron, Mariusz Rawski, Paweł Tomaszewicz 1/23 CEL wykorzystanie środowiska Altera OpenCL do celów akceleracji obliczeń

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 GPGPU Modele programowania GPGPU CUDA pierwszy naprawdę popularny model programowania GPGPU OpenCL wzorowany na CUDA,

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

CUDA ćwiczenia praktyczne

CUDA ćwiczenia praktyczne CUDA ćwiczenia praktyczne 7 kwietnia 2011, Poznań Marek Błażewicz, marqs@man.poznan.pl Michał Kierzynka, michal.kierzynka@man.poznan.pl Agenda Wprowadzenie do narzędzi umożliwiających tworzenie programów

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ;

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; Ogólna postać definicji tablicy: TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; np. int tablica [ 10 ]; // 10-cio elementowa tablica liczb całkowitych char tekst

Bardziej szczegółowo

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład, 21.01.2013. CUDA, przykłady praktyczne 1. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład, 21.01.2013 CUDA, przykłady praktyczne 1 Maciej Matyka Instytut Fizyki Teoretycznej Motywacja l CPU vs GPU (anims) Plan CUDA w praktyce Wykład 1: CUDA w praktyce l aplikacja

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/7 Język C Instrukcja laboratoryjna Temat: Wprowadzenie do języka C 2 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie do języka C. Język C jest językiem programowania ogólnego zastosowania

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Symulacja obliczeń kwantowych

Symulacja obliczeń kwantowych Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak,

Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, Zadania na zaliczenie przedmiotu Przetwarzanie równoległe Zebrał dla roku.ak. 2015/2016 Rafał Walkowiak, 30.01.2016 Zagadnienia sprzętowe w przetwarzaniu równoległym 1.1 Procesory systemu równoległego

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

DYNAMICZNE PRZYDZIELANIE PAMIECI

DYNAMICZNE PRZYDZIELANIE PAMIECI DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Język programowania PASCAL

Język programowania PASCAL Język programowania PASCAL (wersja podstawowa - standard) Literatura: dowolny podręcznik do języka PASCAL (na laboratoriach Borland) Iglewski, Madey, Matwin PASCAL STANDARD, PASCAL 360 Marciniak TURBO

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski

JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski JCuda Czy Java i CUDA mogą się polubić? Konrad Szałkowski Agenda GPU Dlaczego warto używać GPU Budowa GPU CUDA JCuda Przykładowa implementacja Co to jest? GPU GPU Graphical GPU Graphical Processing GPU

Bardziej szczegółowo

PARADYGMATY PROGRAMOWANIA Wykład 3

PARADYGMATY PROGRAMOWANIA Wykład 3 PARADYGMATY PROGRAMOWANIA Wykład 3 Definiowanie operatorów i ich przeciążanie Przykłady zastosowania operatorów: a) operator podstawienia ( = ) obiektów o złożonej strukturze, b) operatory działania na

Bardziej szczegółowo

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne Czym jest? PROGRAMOWANIE

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

Wstęp do Programowania Lista 1

Wstęp do Programowania Lista 1 Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

Optymalizacja kodu. Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych.

Optymalizacja kodu. Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych. Optymalizacja kodu Ze wszystkich metod optymalizacji kodu programowego zwrócimy uwagę na: Usunięcie (po możliwości) skoków danych Rozwijanie pętli Opcje kompilatora 1 Usunięcie skoków danych: for(i=1;

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.

CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie. W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia. CUDA obliczenia ogólnego przeznaczenia na mocno zrównoleglonym sprzęcie W prezentacji wykorzystano materiały firmy NVIDIA (http://www.nvidia.com) 1 Architektura karty graficznej W porównaniu z tradycyjnym

Bardziej szczegółowo

Funkcja (podprogram) void

Funkcja (podprogram) void Funkcje Co to jest funkcja? Budowa funkcji Deklaracja, definicja i wywołanie funkcji Przykłady funkcji definiowanych przez programistę Przekazywanie argumentów do funkcji Tablica jako argument funkcji

Bardziej szczegółowo

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

System obliczeniowy laboratorium oraz. mnożenia macierzy

System obliczeniowy laboratorium oraz. mnożenia macierzy System obliczeniowy laboratorium.7. oraz przykładowe wyniki efektywności mnożenia macierzy opracował: Rafał Walkowiak Materiały dla studentów informatyki studia niestacjonarne październik 1 SYSTEMY DLA

Bardziej szczegółowo

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej

Programowanie Równoległe wykład 12. OpenGL + algorytm n ciał. Maciej Matyka Instytut Fizyki Teoretycznej Programowanie Równoległe wykład 12 OpenGL + algorytm n ciał Maciej Matyka Instytut Fizyki Teoretycznej CUDA z OpenGL 1. Dane dla kerneli znajdują się na karcie GFX. 2. Chcemy liczyć i rysować używając

Bardziej szczegółowo

Języki i metodyka programowania. Typy, operatory, wyrażenia. Wejście i wyjście.

Języki i metodyka programowania. Typy, operatory, wyrażenia. Wejście i wyjście. Typy, operatory, wyrażenia. Wejście i wyjście. Typy, operatory, wyrażenia Zmienna: [] [ '[' ']' ] ['=' ]; Zmienna to fragment pamięci o określonym

Bardziej szczegółowo

Część 4 życie programu

Część 4 życie programu 1. Struktura programu c++ Ogólna struktura programu w C++ składa się z kilku części: część 1 część 2 część 3 część 4 #include int main(int argc, char *argv[]) /* instrukcje funkcji main */ Część

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij.

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij. Programowanie Sobera Jolanta 16.09.2006 Strona 1 z 26 1 Wprowadzenie do programowania 4 2 Pierwsza aplikacja 5 3 Typy danych 6 4 Operatory 9 Strona 2 z 26 5 Instrukcje sterujące 12 6 Podprogramy 15 7 Tablice

Bardziej szczegółowo

Podstawy programowania. 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń.

Podstawy programowania. 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń. Podstawy programowania Programowanie wyrażeń 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń. W językach programowania są wykorzystywane

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Kurs języka Python Wykład 6. Pliki tekstowe Pliki rekordów Pliki CSV Strumienie

Kurs języka Python Wykład 6. Pliki tekstowe Pliki rekordów Pliki CSV Strumienie Kurs języka Python Wykład 6. Pliki tekstowe Pliki rekordów Pliki CSV Strumienie Operacje na plikach Otwarcie i zamknięcie pliku: fh = open('plik', 'r') Atrybuty: 'r' odczyt 'w' zapis 'a' dopisanie 'r+'

Bardziej szczegółowo

ξ II.UWr Wprowadzenie do STM

ξ II.UWr Wprowadzenie do STM ξ KS @.UWr Wprowadzenie do STM Marek Materzok ZOSA 2007 ξ KS @.UWr Wprowadzenie Były sobie komputery. Wykonywały programy instrukcja po instrukcji i wszyscy byli szczęśliwi... ξ KS @.UWr Wprowadzenie Były

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Programowanie współbieżne... (10) Andrzej Baran 2010/11

Programowanie współbieżne... (10) Andrzej Baran 2010/11 Programowanie współbieżne... (10) Andrzej Baran 2010/11 LINK: http://kft.umcs.lublin.pl/baran/prir/index.html Biblioteki Biblioteki podstawowe BLACS (Basic Linear Algebra Communication Subprograms) BLAS

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Programowanie akceleratorów specyfikacja OpenCL. Krzysztof Banaś Obliczenia równoległe 1

Programowanie akceleratorów specyfikacja OpenCL. Krzysztof Banaś Obliczenia równoległe 1 Programowanie akceleratorów specyfikacja OpenCL Krzysztof Banaś Obliczenia równoległe 1 OpenCL OpenCL Open Computing Language język i środowisko programowania akceleratorów (procesorów wspierających standardowe

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom). Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154

Bardziej szczegółowo

Wprowadzenie do UML, przykład użycia kolizja

Wprowadzenie do UML, przykład użycia kolizja Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2012 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Programowanie dynamiczne (optymalizacja dynamiczna).

Programowanie dynamiczne (optymalizacja dynamiczna). Programowanie dynamiczne (optymalizacja dynamiczna). W wielu przypadkach zadania, których złożoność wynikająca z pełnego przeglądu jest duża (zwykle wyk ładnicza) można rozwiązać w czasie wielomianowym

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 11 1 / 52 Pętla for # i n c l u d e

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Obliczenia współbieżne czyli zmiana założenia o sekwencyjnym działaniu procesora rozwiązywanie problemu algorytmicznego za pomocą współpracujących ze sobą wielu procesorów wykorzystanie komputerów równoległych,

Bardziej szczegółowo

Język C zajęcia nr 7. Uwagi dotyczące stylu programowania

Język C zajęcia nr 7. Uwagi dotyczące stylu programowania Język C zajęcia nr 7 Uwagi dotyczące stylu programowania Program można pisać w sposób mniej lub bardziej porządny i systematyczny. Przejrzyste programy pozwalają na znacznie łatwiejszą ich analizę i ewentualne

Bardziej szczegółowo

EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ

EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A[i][*] lokalność przestrzenna danych rózne A,B,C są

Bardziej szczegółowo

ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ

ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A,B,C są tablicami nxn for (int j = 0 ; j

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z INFORMATYKI

WYMAGANIA EDUKACYJNE Z INFORMATYKI WYMAGANIA EDUKACYJNE Z INFORMATYKI dla klasy I gimnazjum rok szkolny 2012/2013 Na ocenę dopuszczającą 1 Na ocenę dostateczną Potrafisz tekst w kolumnach Potrafisz dane i komórki 2 Na ocenę dobrą Rozumiesz

Bardziej szczegółowo

Żurek INFOBroker. Szkolenia warsztaty konsultacje MS Excel. www.excel.jzurek.com. tel. 601 517 216

Żurek INFOBroker. Szkolenia warsztaty konsultacje MS Excel. www.excel.jzurek.com. tel. 601 517 216 Żurek INFOBroker Szkolenia warsztaty konsultacje MS Excel www.excel.jzurek.com tel. 601 517 216 MS Excel szkolenie dla początkujących i laików (program ramowy): o zastosowanie i budowa programu - do czego

Bardziej szczegółowo

16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II

16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II 80 Mirosław Dąbrowski 16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości

Bardziej szczegółowo

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu. Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 2 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 8. rzyczyna:

Bardziej szczegółowo

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

Wydajność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń równoległych Podobnie jak w obliczeniach sekwencyjnych, gdzie celem optymalizacji wydajności było maksymalne

Bardziej szczegółowo

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język PYTHON Podstawowe informacje Python to język skryptowy, interpretowany - co oznacza, że piszemy skrypt, a następnie wykonujemy go za

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo