Przetwarzanie sygnału cyfrowego (LabVIEW)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przetwarzanie sygnału cyfrowego (LabVIEW)"

Transkrypt

1 Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału cyfrowego (LabVIEW) Opracowanie: Grzegorz Hołub Mieczysław Kory Wiesław Kuszaj ZUMFL Rzeszów 2002

2 Przetwarzanie Sygnału Cyfrowego Ten rozdział opisuje podstawowe zasady Szybkiej Transformacji Fouriera i Przerywanej Transformacji Fouriera, oraz jak są one używane w widmowej analizie. Odnosi się do przykładów w examples\analysis\dspxmpl.lib, do przykładów użycia sygnału cyfrowego przetwarzającwego VIs, dostępnych w Functions>>Analyze>>Signal Processing>>Frequency Domain. Szybka Transformacja Fouriera (FFT) Próbki sygnału otrzymane od urządzenia DAQ tworzą reprezentacje sygnału w przedziale czasu. Ta reprezentacja daje amplitudę sygnału w czasie podczas którego próbki były brane. Jakkolwiek w wielu przypadkach chcemy znać raczej częstotliwość sygnału niż amplitudę poszczególnych próbek. Reprezentacja sygnału w warunkach jego indywidualnej częstotliwości jest znana jako reprezentacja przedziału częstotliwości sygnału. Ta reprezentacja może dawać więcej wiadomości o sygnale i systemie skąd została wygenerowana. Algorytm zwykł przekształcać próbki danych z przedziału czasu do przedziału częstotliwości jest znany jako Przerywana Transformacja Fouriera (DFT). DFT ustala stosunek pomiędzy próbkami sygnału w przedziale czasu i jego reprezentację w przedziale częstotliwości. DFT jest szeroko stosowany w polach analizy widmowej, mechanice stosowanej, akustyce, medycynie, analizie liczbowej i telekomunikacji. Rys. 2-1 Szybka Transformacja Fouriera (FFT) 2

3 Na przykład, mamy N próbek sygnału od urządzenia DAQ. Jeżeli stosuje się DFT do N próbek reprezentacji sygnału w przedziale czasu, wynik też jest długości N, ale informacja ta zawiera reprezentacje przedziału częstotliwości. Stosunek między N próbkami w przedziale czasu a N próbkami w przedziale częstotliwości jest przedstawiony poniżej. Jeżeli sygnał jest próbkowany w stosunku f s Hz, wtedy czas odstępu między próbkami jest t, gdzie 1 t = Próbka sygnału oznaczona jest przez x[i], 0<=i<=N-1 (jeżeli mamy N próbek). Kiedy DFT dany jako dla: X k = N 1 i= 0 x e i f s j2πik / N k = 0,1,2,..., N 1 jest stosowany do N próbek, wynik (x[k], 0<=k<=n-1) jest reprezentacją przedziału częstotliwości dla x[i]. Zauważmy, że oba przedziały czasu x i częstotliwości x mają w sumie N próbek. Analogicznie do odstępów czasy od t pomiędzy próbkami x w przdziale czasu, mamy częstotliwość odstępów f= N f s = pomiędzy składnikami x w przedziale częstotliwości. f znana jest jako rozkład częstotliwości. Powiększenie rozkładów częstotliwości (mniejsze f) musi powiększyć ilość próbek N (z f s stałym) lub zmniejszyć częstotliwość próbek (ze stałym N). W następującym przykładzie przejdziemy przez matematyczna równania obliczając DFT dla sygnały D.C. Przykład obliczeń DFT W tej sekcji zobaczymy ścisłe częstotliwości z którymi N próbki DFT się zgadzają. Na wstępie, przyjmijmy że x[0] odpowiada D.C., albo średniej wartości sygnału. Żeby zobaczyć wynik obliczeń kształtu fali DFT z użyciem Równania 2-1, rozważmy sygnał D.C. mający stałą amplitudę +1V. Cztery próbki tego sygnału są pobrane, jak na rys N t 3

4 Rys Próbki DFT Każda z próbek ma wartość +1, dając sekwencję czasu x[0]=x[1]=x[3]=x[4]=1 Używamy Równania 2-1 do obliczeń sekwencji DFT i robimy użytek z identyczności Euler`a mamy N [0] = X π X[1] = x[0] + x[1] cos 2 x[3](cos(3π ) 3π X[3] = x[0] + x[1] cos 2 9π x[3] cos 2 1 i= 0 x e i j2πi0 / N exp(-i0)=cos(0)-jsin(0) = x[0] + x[1] + x[2] + x[3] = 4 3π 3π x[3] cos j sin = (1 j 1 + j) = X[2] = x[0] + x[1](cos( π ) j sin( π )) + x[2](cos(2π ) j sin(3π )) = = 0 9π j sin = 1 2 π j sin + x[2](cos( π ) 2 3π j sin + x[2]( sos(3π ) 2 j 1 j = 0 j sin( π )) + j sin(2π )) + j sin(3π )) Dlatego poza składnikami DC, x[0], wszystkie inne wartości są zerowe jak tego oczekiwano. Jakkolwiek, obliczenie wartości x[0] zależy od wartości N (ilości próbek). Ponieważ mieliśmy N=4, x[0]=4. Gdyby N=10, wtedy obliczano by x[0]=10. Ta zależność x[ ] od N zdarza się również dla innych składników częstotliwości. Zwykle dzieli się wyjście DFT przez N, tak by otrzymać poprawną wielkość składnika częstotliwości. 4

5 Informacja o Wielkości i Fazie Zobaczyliśmy, że N próbek sygnału wejściowego kończy się N próbkami DFT. To jest, liczba próbek w obu przypadkach, czasie i częstotliwości reprezentowana jest tak samo. Z Równania 2-1 wynika że sygnał wejściowy x[i] jest prawdziwy lub złożony, x[k] zawsze złożony (chociaż urojona część może być zerowa). Ponieważ DFT jest złożone, to zawiera dwie części informacji - amplitudę i fazę. Wynika z tego, że dla sygnałów prawdziwych (x[i] real) tak jak i te otrzymane na wyjściu z jednego urządzenia DAQ, DFT jest symetryczne z następującymi własnościami: oraz X[k] = X[N-k] phase (X[k])=-phase (X[N-k}) Warunki które zwykle opisują tą symetrie są takie że wielkość bezwzględna X[k] jest symetryczna. Pojęcia te są symetryczne i faza (X[k]) jest nieparzysta wobec symetrycznych. Nawet jeden równy symetryczny sygnał, jest symetryczny względem osi y, podczas gdy nieparzysty symetryczny sygnał jest symetryczny względem początkowego. Są to następujące figury: Rys Symetria sygnału względem osi y Skutek tej symetrii jest taki, że tam jest powtarzanie informacji zawartej w N próbkach DFT. Z powodu tego powtarzania informacji, tylko co pół próbki z DFT co powoduje że wynik musi być obliczany i wyświetlony, oraz jaki jest wynik tego powtarzania od połowy poprzedniego. Jeżeli wejście sygnału jest złożone, DFT będzie niesymetryczne i wówczas nie należy tego używać. 5

6 Przerwy Częstotliwości pomiędzy Próbkami DFT/FFT Jeżeli weźmiemy przedział próbek t sekundy i pierwsze próbki (k = 0) dane są przy 0 th sekundy, wtedy k ( k > 0, k całkowite ) dana próbka jest przy k t sekundy. Podobnie jeżeli częstość rozkładu jest f Hz. f s th ( f = ) wtedy k k próbki DFT zdarzy się przy częstotliwości k f Hz. N (Rzeczywiście jest to ważne tylko dla pierwszej połówki częstotliwości składników, druga połówka przedstawia odwrotną częstotliwość składników). W zależności od tego czy liczba próbek N, są równe albo nieparzyste, można mieć różną interpretację częstotliwości odpowiadającej k próbek DFT. th N Na przykład, przypuszczając że N jest równa i pozwala aby p =. Tabela 2-1 pokazuje częstość do której każdy format elementu pierwiastek złożonego odpowiada następne 2 th X. Należy zwrócić uwagę, że p element pierwiastka, X[p], odpowiada Nyquist częstości. Przeczące wejścia w drugiej kolumnie poza Nyquist częstotliwość przedstawiają przeczące częstotliwość. Na przykład jeśli N=8, p=n/2= 4, wtedy f jest pokazana w Tabela 2-1 dla X[p] i dla N = 8. X[p] X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] f DC f 2 f 3 f 4 f (częstotliwość Nyquista) -3 f -2 f - f Tutaj, X[1] i X[7] będzie mieć tę sam wielkość i X[2] i X[6] będzie mieć też tą sam wielkość, oraz X[3] i X[5] też będzie mieć tę sam wielkość. Różnica jest taka że podczas gdy X[1], X[2], i X[3] odpowiada dodatnim częstotliwościom składowym, X [5], X[6], i X [7] będą odpowiednio odrzucać dodatnie częstotliwości składowe. Należy zauważyć że X[4] jest przy częstotliwości Nyquista. 6

7 Rys Złożone Następstwo dla N = 8 Taka reprezentacja, gdzie widać obydwie częstotliwości, są znane kiedy razem były po stronie przekształceń. Należy zauważyć kiedy N są nieparzyste, tam niema składnik przy częstotliwości Nyquista. Na przykład, jeżeli N = 7, p = ( N -1 )/2 = ( 7-1 )/2 = 3, wtedy f jest pokazywany w Tabeli 2-2 dla X [p] równego N = 7. X[p] X[0] X[1] X[2] X[3] X[4] X[5] X[6] f DC f 2 f 3 f -3 f -2 f - f Teraz X[1] i X[6] ma tę sam wielkość, X[2] i X[5] ma też tą sam wielkość tak jak X[3] i X[4]. Kiedy podczas gdy X[1], X[2], i X[3] odpowiadają dodatnim częstotliwościom, X[4], X[5], i X[6] należy odrzucić ich częstotliwość. Ponieważ N są nieparzyste, tam nie ma żadnych składników przy częstotliwości Nyquista. Rysunek 2-5 ilustruje Tabelę 2-2 dla N = 7. 7

8 Rys X [ p ] dla N = 7 Są to dwie strony przekształcenia, ponieważ są to dwa rodzaje częstotliwości. Szybkie przekształcenia Fouriera 2 Bezpośrednie wykonanie DFT na N próbkach wymaga w przybliżeniu N złożoności działania, co jest czasochłonnym procesem. Jeśli, kiedy rozmiar następstwa jest potęga z 2, m N = 2 dla m = 1, 2, 3,... wtedy można wykonywać obliczenie DFT dla działania w przybliżeniu N log 2 (N). To wykonuje obliczenie DFT dużo bardziej szybciej, i DSP w literaturze odnosi się do tych algorytmów jako szybkie przekształcenia Fourier ( FFTs ). FFT jest nic innego jak tylko szybki algorytm dla obliczania DFT kiedy liczba próbek (N) jest potęgą z 2. Przewagą FFT jest szybkość. I skuteczność pamięci, ponieważ VI może obliczać FFT na miejscu, co powoduje że, do obliczeń nie potrzeba żadnych dodatkowych buforów pamięć. Rozmiar wejściowych sekwencji, chociaż muszą wynosić potęga z 2. DFT może skutecznie przetwarzać różne rozmiaru sekwencji, chociaż DFT są wolniejsze niż FFT i potrzebują więcej pamięci, ponieważ muszą umieszczać dodatkowe bufory dla przechowywania pośrednich wyników podczas przetwarzania. Dopełnianie zerami Techniką, dzięki której rozmiar sekwencji wejściowej będzie równy potędze liczby 2, jest uzupełnianie sekwencji na końcu zerami, tak aby łączna liczba próbek była równa następnej potędze dwójki. Jeśli więc mamy 10 próbek sygnału, można dodać sześć zer, aby łączna liczba próbek była równa 16 (=2 4 potęga liczby 2), tak jak na rysunku

9 Rys Dopełnianie zerami Wprowadzanie zer na końcu kształtu fali w dziedzinie czasu nie zaburza widma sygnału. Dopełnianie zerami nie tylko polega na nadaniu łącznej liczbie próbek wartości będącej potęgą dwójki, co przyspiesza obliczenia przez zastosowanie szybkiego przekształcenia Fouriera. Pozwala także podnieść rozdzielczość częstotliwości (należy pamiętać, że [wzór]), zwiększając liczbę próbek N. Wirtualne przyrządy szybkiego przekształcenia Fouriera Paleta Functions»Analyze»Signal Processing»Frequency Domain zawiera dwa przyrządy wirtualne obliczające szybkie przekształcenie Fouriera danego sygnału. Są to Real FFT VI i Complex FFT VI. Różnica między oboma przyrządami polega na tym, że Real FFT VI oblicza szybkie przekształcenie Fouriera sygnału o wartościach rzeczywistych, natomiast przyrząd Complex FFT VI oblicza szybkie przekształcenie Fouriera sygnału o wartościach zespolonych. Należy jednak pamiętać, że wyniki generowane przez oba przyrządy są zespolone. Większość sygnałów w praktyce ma wartości rzeczywiste, a więc w większości wypadków można używać przyrządu Real FFT VI. Oczywiście, można też użyć przyrządu Complex FFT VI, nadając części urojonej sygnału wartość zerową. Przykładem zastosowania przyrządu Complex FFT VI jest analiza sygnału złożonego zarówno z części rzeczywistej, jak i urojonej. Taki typ sygnału występuje często w telekomunikacji, gdzie kształt fali moduluje się przy użyciu wykładnika zespolonego. Modulacja przy użyciu wykładnika zespolonego daje sygnał zespolony, co widać na rysunku

10 Rys Modulacja przy użyciu wykładnika zespolonego Spektrum mocy Wiemy, że dyskretne (oraz szybkie) przekształcenie Fouriera dla sygnału rzeczywistego jest liczbą zespoloną mającą część rzeczywistą i część urojoną. Moc w każdym elemencie częstotliwości reprezentowanym przez przekształcenie dyskretne/szybkie można uzyskać, podnosząc do kwadratu wartość bezwzględną danego elementu częstotliwości. Dlatego też moc k-tego elementu częstotliwości (k-ty element dyskretnego/szybkiego przekształcenia Fouriera) jest dana wzorem X[k] 2. Wykres przedstawiający moc w każdym elemencie częstotliwości jest znany jako spektrum mocy. Ponieważ dyskretne/szybkie przekształcenie Fouriera dla sygnału rzeczywistego jest symetryczne, moc przy dodatniej częstotliwości k f jest identyczna, jak moc przy odpowiedniej częstotliwości ujemnej k f (nie licząc elementów DV i Nyquista). Łączna moc elementów DC i Nyquista wynosi odpowiednio [wzór] i [wzór]. Utrata informacji o fazie Ponieważ moc uzyskuje się przez podniesienie do kwadratu wartości bezwzględnej dyskretnego/szybkiego przekształcenia Fouriera, spektrum mocy jest zawsze rzeczywiste. Wada tego rozwiązania polega na tym, że tracona jest informacja o fazie. Jeśli potrzebne są informacje o fazie, należy korzystać z dyskretnego/szybkiego przekształcenia Fouriera, dającego wartości zespolone. Spektrum mocy można wykorzystać w zastosowaniach, gdzie informacje o fazie nie są potrzebne (np. do oblizenia mocy harmonicznej w sygnale). Można zastosować wejście sinusoidalne do systemu liniowego, a na wyjściu systemu zaobserwować moc w części harmonicznej. Odstęp częstotliwości między próbkami Przyrząd Power Spectrum VI, znajdujący się w palecie Functions»Analyze»Signal Processing»Frequency Domain, służy do obliczania spektrum mocy próbek danych w dziedzinie czasu. Tak jak w wypadku dyskretnego/szybkiego przekształcenia Fouriera, liczba próbek z wyjścia przyrządu Power Spectrum VI jest identyczna jak liczba próbek danych wprowadzonych na wejściu. Tak więc odstęp częstotliwości między próbkami częstotliwości wynosi [wzór]. 10

11 Podsumowanie Reprezentacja w dziedzinie czasu (wartości próbek) sygnału może zostać przekształcona w reprezentację w dziedzinie częstotliwości za pomocą algorytmu określanego jako dyskretne przekształcenie Fouriera. Do szybkiego obliczania dyskretnego przekształcenia Fouriera służy algorytm znany jako szybkie przekształcenie Fouriera. Można go użyć, gdy liczba próbek sygnału jest równa potędze liczby dwa. Wyjście zwykłego dyskretnego/szybkiego przekształcenia Fouriera jest dwustronne, ponieważ zawiera informacje zarówno o dodatnich, jak i ujemnych częstotliwościach. Ten wynik można przekształcić na jednostronne dyskretne/szybkie przekształcenie Fouriera, używając tylko części punktów wyjściowych przekształcenia. Odstęp częstotliwości między próbkami dyskretnego/szybkiego przekształcenia Fouriera wynosi [wzór]. Spektrum mocy można uzyskać z przekształcenia Fouriera, podnosząc do kwadratu wartość bezwzględną poszczególnych elementów częstotliwości. Przyrząd Power Spectrum VI w bibliotece analiz zaawansowanych wykonuje to automatycznie. Jednostkami wyjściowymi przyrządu Power Spectrum VI są V rms 2. Jednak spektrum mocy nie zawiera żadnych informacji o fazie. Dyskretne i szybkie przekształcenie Fouriera oraz spektrum mocy służą do pomiaru częstotliwościowej zawartości sygnałów ustalonych lub nieustalonych. Szybkie przekształcenie Fouriera daje średnią zawartość częstotliwościową sygnału po całym czasie mierzenia sygnału. 11

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów 31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 3 Politechnika Gdaoska, 20 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Operacja na dwóch funkcjach dająca w wyniku modyfikację oryginalnych funkcji (wynikiem jest iloczyn splotowy). Jest

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż.

Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż. Adam Korzeniewski - adamkorz@sound.eti.pg.gda.pl, p. 732 dr inż. Grzegorz Szwoch - greg@sound.eti.pg.gda.pl, p. 732 dr inż. Piotr Odya - piotrod@sound.eti.pg.gda.pl, p. 730 Plan przedmiotu ZPS Cele nauczania

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Szybkie przekształcenie Fouriera

Szybkie przekształcenie Fouriera Szybkie przekształcenie Fouriera Wprawdzie DFT jest najbardziej bezpośrednią procedurą matematyczną do określania częstotliwościowej zawartości ciągu z dziedziny czasu, jest ona bardzo nieefektywna. Ponieważ

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Analizy Ilościowe EEG QEEG

Analizy Ilościowe EEG QEEG Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

WIELOMIANY SUPER TRUDNE

WIELOMIANY SUPER TRUDNE IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

Ćwiczenie 6. Transformacje skali szarości obrazów

Ćwiczenie 6. Transformacje skali szarości obrazów Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Szereg i transformata Fouriera

Szereg i transformata Fouriera Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym i rozszerzonym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo