Systemy akwizycji i przesyłania informacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy akwizycji i przesyłania informacji"

Transkrypt

1 Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL Marcin Kostera Piotr Sitek Rzeszów 2002

2 Rozdział ten wyjaśnia jak użycie okien zapobiega wyciekowi widma i poprawia analizę uzyskanych sygnałów. Patrz examples\analysis\windxmpl.llb dla przykładu sposobu użycia okna analizy VI, dostępnego w palecie Functions>>Analyze>>Signal Processing>>Windows. Wprowadzenie do okien wygładzania W praktycznych aplikacjach próbkowania sygnałów możesz uzyskać tylko skończony zapis sygnału, nawet jeśli dokładnie przestrzegasz zasad i warunków próbkowania. Niestety dla systemu dyskretno czasowego zapis próbkowania skończonego daje w wyniku ścięty przebieg falowy, który ma inną charakterystykę spektralną niż pierwotny sygnał ciągły. Te nieciągłości powodują wyciek (rozmycie) widma informacji spektralnej, dając w wyniku widmo dyskretno czasowe, które jest rozmazaną wersją oryginalnego ciągłego widma czasowego. Prostym sposobem poprawy charakterystyki spektralnej próbkowanego sygnału jest zastosowanie okien wygładzania. Podczas przeprowadzania analizy Fouriera lub analizy spektralnej na danych o skończonej długości, możesz użyć okien do zminimalizowania krawędzi przejścia twego okrojonego przebiegu falowego, zmniejszając w ten sposób rozmycie widma. Użyte w ten sposób okna wygładzania działają jak predefiniowane wąskopasmowe filtry dolnoprzepustowe. O rozmyciu widma i oknach wygładzania Gdy używasz DTF/FFT do określenia częstotliwościowego składu sygnału, zazwyczaj przyjmuje się, że dane jakie posiadacie są pojedynczym okresem okresowo powtarzającego się przebiegu falowego, jak pokazano na Rys Pierwszy z pokazanych przebiegów jest przebiegiem próbkowanym. Przebieg falowy odpowiadający temu okresowi jest następnie powtarzany w czasie, by stworzyć przebieg okresowy. Rys Okresowy przebieg falowy stworzony z okresu próbkowanego. Z powodu założenia okresowości przebiegu falowego powstaną nieciągłości pomiędzy kolejnymi okresami. Dzieje się tak kiedy próbkowane są niecałkowite liczby cykli. Te sztuczne nieciągłości pojawiają się jako bardzo wielkie częstotliwości w widmie sygnału, częstotliwości, które nie były obecne w sygnale oryginalnym. Częstotliwości te mogłyby być znacznie większe niż częstotliwość Nyquista i jak widzieliście wcześniej, będą zobrazowane gdzieś między 0 i f s /2. Widmo jakie otrzymasz poprzez użycie DFT/FFT nie będzie więc rzeczywistym widmem oryginalnego sygnału, ale wersją zatartą. Wygląda ono tak jakby energia o jednej częstotliwości rozlała się wszystkich pozostałych częstotliwości. To zjawisko znane jest jako rozmycie widma. Rysunek 3-2 pokazuje falę sinusoidalną i odpowiadającą jej transformatę Fouriera. Przebieg falowy z próbkowaną dziedziną czasu pokazany jest na wykresie 1. Ponieważ transformata Fouriera zakłada okresowość, powtarzasz ten przebieg falowy w czasie, a okresowy przebieg falowy fali sinusoidalnej z Wykresu 1 pokazany jest na Wykresie 2. Odpowiadająca mu reprezentacja widmowa pokazana jest na Wykresie 3. Ponieważ zapis czasu na Wykresie 2 2

3 jest okresowy bez żadnych nieciągłości, jego widmem jest pojedyncza linia pokazująca częstotliwość fali sinusoidalnej. Powodem, że przebieg falowy na Wykresie 2 nie ma żadnych nieciągłości jest to, że próbkowaliście całkowitą liczbę cykli przebiegu falowego (w tym przypadku 1). Rys Przebieg sinusoidalny i odpowiadająca mu transformata Fouriera. Na Rysunku 3-3 widzisz widmową reprezentację próbkowania niecałkowitej liczby cykli falowego przebiegu czasowego (mianowicie 1,25). Wykres 1 składa się teraz z 1,25 cykli fali sinusoidalnej. Kiedy powtarzasz to okresowo, powstały przebieg falowy, jak pokazano na Wykresie 2, składa się z nieciągłości. Odpowiadające mu widmo pokazane jest na Wykresie 3. Zauważcie jak energia jest teraz rozłożona na szeroki zakres częstotliwości. To rozmycie energii jest rozmyciem widma. Energia wycieka z jednej linii FFT i rozkłada się na wszystkie pozostałe linie. 3

4 Rys Widmowa reprezentacja próbkowania niecałkowitej liczby próbek Rozmycie istnieje z powodu skończonego zapisu czasowego sygnału wejściowego. By przezwyciężyć wyciek, jednym z rozwiązań jest wybranie skończonego zapisu czasu od nieskończoności do + nieskończoności. Następnie FFT obliczyłby pojedynczą linię o właściwej częstotliwości. Czekanie na skończony czas jest jednak niemożliwe w praktyce. Tak więc ponieważ jesteś ograniczony do wybrania skończonego zapisu czasowego, do zmniejszenia wycieku używana jest inna technika znana jako okienkowanie. Wielkość wycieku widmowego zależy od amplitudy nieciągłości. Im większa nieciągłość tym większy wyciek i odwrotnie. Możesz użyć okienkowania do zmniejszenia amplitudy nieciągłości na granicach każdego okresu. Składa się ono z mnożenia zapisu czasowego przez skończonej długości okno, którego amplituda zmienia się gładko i stopniowo w kierunku zera na krawędziach. Pokazane jest to na Rysunku 3-4, gdzie oryginalny sygnał czasowy jest okienkowany przy użyciu okna Hamminga. Zauważ, że czasowy przebieg falowy okienkowanego sygnału stopniowo zwęża się do zera na końcach. Dlatego gdy przeprowadzamy analizę Fouriera i analizę spektralną na danych skończonej długości możecie użyć okienek do zminimalizowania krawędzi przejścia waszego próbkowanego przebiegu falowego. Funkcja okna wygładzania zastosowana do danych zanim zostaną przetransformowane w dziedzinę częstotliwości minimalizuje wyciek widma. Zauważcie, że jeśli zapis czasowy zawiera całkowitą liczbę cykli, jak pokazano na Rysunku 3-2, to założenie okresowości nie daje w wyniku żadnych nieciągłości i w ten sposób nie ma żadnego wycieku widma. Problem ten narasta tylko gdy macie niecałkowitą liczbę cykli. 4

5 Rys Sygnał czasowy okienkowany przy użyciu okna Hamminga Aplikacje okienkowania Jest kilka powodów używania okienkowania. Niektóre z nich to: Zdefiniowanie czasu trwania obserwacji. Zmniejszenie wycieku widmowego. Odseparowanie sygnału o małej amplitudzie od sygnału o większej amplitudzie o częstotliwościach bardzo zbliżonych do siebie. Właściwości różnych typów funkcji okienkowania Zastosowanie okna do okienkowania sygnału w dziedzinie czasu odpowiada mnożeniu sygnału przez funkcję okna. Ponieważ mnożenie w domenie czasu jest równoważne funkcji splotu w dziedzinie częstotliwości, widmo okienkowanego sygnału jest splotem widma sygnału oryginalnego z widmem okna. Tak więc, okienkowanie zmienia kształt sygnału w domenie czasu, jak również wpływa na widmo, które widzicie. Wiele różnych typów okien jest dostępnych w palecie Functions>>Analyze>>Signal Processing>>Windows. W zależności od twej aplikacji jedno może być bardziej użyteczne niż inne. Niektóre z tych okien to: Prostokątne (Żadne) Okno prostokątne ma wartość jeden w swym przedziale czasowym. Matematycznie może być zapisane jako: 5

6 dla gdzie N jest długością okna. Zastosowanie prostokątnego okna odpowiada nie używaniu żadnego okna. Jest tak ponieważ funkcja prostokątna po prostu obcina sygnał do skończonego odcinka czasu. Okno prostokątne ma największą ilość wycieku widma. Okno prostokątne dla N = 32 pokazane jest na Rysunku 3-5. Rys Okno prostokątne. Okno prostokątne jest użyteczne do analizowania przebiegów nieustalonych, które mają czas trwania krótszy niż czas okna. Jest ono używane także w śledzeniu kolejności (?), gdzie efektywna wielkość próbkowania jest proporcjonalna do prędkości wału w maszynach wirujących. W tej aplikacji wykrywa ono podstawowy rodzaj wibracji maszyny i jego harmoniczne. Hanninga Okno to ma kształt podobny do kształtu połowy cyklu fali kosinusoidalnej. Definiujące je równanie ma postać: dla Okno Hanninga z N=32 pokazane jest na Rysunku 3-6. Rys Okno Hanninga Okno Hanninga jest użyteczne do analizy przebiegów nieustalonych dłuższych niż czas trwania okna, a także do aplikacji ogólnego zastosowania. 6

7 Hamminga Okno to jest zmodyfikowaną wersją okna Hanninga. Jego kształt jest również podobny do fali kosinusoidalnej. Może być on zdefiniowany jako dla Okno Hamminga z N=32 pokazane jest na Rysunku 3-7. Rys Okno Hamminga Widzicie, że okna Hanninga i Hamminga są w pewien sposób podobne. Jednakże zauważcie, że w domenie czasu, okno Hamminga nie sięga tak blisko zera przy krawędziach jak okno Hanninga. Kaiser-Bessela Okno to jest elastycznym oknem, którego kształt użytkownik może zmodyfikować poprzez nastawienie parametru beta. Tak więc w zależności od swej aplikacji możesz zmienić kształt okna by kontrolować wielkość wycieku widma. Okno Kaiser-Bessela dla różnych wartości beta pokazane jest na Rysunku

8 Rys Okno Kaiser-Bessela Zauważ, że dla małych wartości beta, kształt jest bliski do kształtu okna prostokątnego. W rzeczywistości dla beta=0,0 otrzymacie okno prostokątne. Gdy zwiększacie beta okno pochyla się ku bokom. Okno to jest dobre do wykrywania dwóch sygnałów o prawie takiej samej częstotliwości, ale znacząco różnych amplitudach. Trójkątne Okno to ma kształt trójkąta. Dany jest on przez dla Okno trójkątne dla N=32 pokazane jest na Rysunku

9 Rys Okno trójkątne Flat Top Okno to ma najlepszą dokładność amplitudową ze wszystkich funkcji okienkowych. Zwiększona dokładność amplitudowa (± 0,02 db dla sygnałów dokładnie pomiędzy cyklami całkowitymi) jest kosztem selektywności częstotliwości. Okno Flat Top jest najbardziej użyteczne w dokładnym mierzeniu amplitudy pojedynczych składowych częstotliwości przy niewielkiej pobliskiej energii widmowej w sygnale. Okno Flat Top może być zdefiniowane jako gdzie Okno Flat Top pokazane jest na Rysunku Rys Okno Flat Top Wykładnicze Okno to ma kształt funkcji wykładniczej gasnącej. Matematycznie może być ono wyrażone jako: dla 9

10 gdzie f jest wartością końcową. Wartością początkową okna jest jeden i stopniowo wygasa ono w kierunku zera. Wartość końcowa funkcji wykładniczej może być nastawiana pomiędzy 0 i 1. Okno wykładnicze dla N=32 z wartością końcową określoną jako 0,1 pokazane jest na Rysunku Rys Okno wykładnicze Okno to jest użyteczne przy analizie przebiegów nieustalonych (sygnałów, które istnieją tylko przez krótki okres czasu) których czas trwania jest dłuższy niż długość okna. Okno to może być zastosowane do sygnałów zanikających wykładniczo, takich jak odpowiedź struktur o małym tłumieniu, które są pobudzone uderzeniem (na przykład młotkiem). Okna do analizy widmowej a okna do konstrukcji współczynników Okna VI w LabVIEW są zaprojektowane dla aplikacji do analizy widmowej. W tych aplikacjach, sygnał wejściowy jest okienkowany przez przepuszczenie go przez jedno z okien VI. Sygnał zokienkowany jest następnie podawany do opartego na DFT VI dla wyświetlenia i analizy domeny częstotliwości. Funkcje okna zaprojektowane do analizy widmowej muszą być DFT-parzyste, termin zdefiniowany przez Fryderyka J. Harrisa w jego referacie O użyciu okien do analizy harmonicznych za pomocą dyskretnej transformaty Fouriera (Protokół z IEEE, Tom 66, Nr 1, Styczeń 1978). Funkcja okna jest DFT-parzysta, jeśli jej iloczyn skalarny przy całkowitych cyklach ciągów sinusoidalnych jest równoważny zero. Innym sposobem myślenia o ciągu DFT-parzystym jest taki, że jego DFT nie ma składowych urojonych. Rysunek 3-12 i Rysunek 3-13 ilustruje okno Hanninga i jeden cykl modelu sinusoidalnego dla rozmiaru próbki 8. Możecie zobaczyć, że DFT-parzyste okno Hanninga nie jest symetryczne względem swego punktu środkowego, a jej ostatni punkt nie jest równy pierwszemu, w znacznym stopniu podobnie jak pełen cykl przebiegu sinusoidalnego. 10

11 Rys Okno Hanninga dla rozmiaru próbki 8. Rys Forma sinusoidalna dla rozmiaru próbki 8. Na koniec DFT zakłada, że ciągi wejściowe są okresowe tj., że analizowany sygnał jest w rzeczywistości powiązaniem sygnału wejściowego. Rysunek 3-14 pokazuje trzy takie cykle poprzednich ciągów, demonstrując gładkie okresowe rozwinięcie okna DFT-parzystego i pojedynczego cyklu formy sinusoidalnej. 11

12 Rys Rozwinięcie okresowe Innym typem aplikacji okienkowej jest ta z projektu filtra FIR. Aplikacja ta wymaga by okna były symetryczne względem swego punktu środkowego. Dalsze informacje o filtrowaniu znajdziesz w Części III, Analiza Pomiarowa w LabVIEW, podręcznika Pomiary LabVIEW. Poniższe równania funkcji okna Hanninga ilustrują różnicę pomiędzy funkcją okna DFTparzystego (analiza spektralna) i funkcją okna symetrycznego (projekt współczynnika). Funkcja okna Hanninga dla analizy spektralnej: dla Funkcja okna Hanninga dla symetrycznego projektu współczynnika: dla Te dwa równania pokazują, że możesz zastosować funkcje okna symetrycznego poprzez niewielką modyfikację użycia funkcji okna DFT-parzystego. Jakiego typu okna mam użyć? Teraz kiedy widzieliście kilka z wielu różnych typów dostępnych okien, możecie zapytać, Jaki typ okna powinienem użyć? Odpowiedź zależy od typu sygnału jaki macie i od tego czego szukacie. Wybranie właściwego okna wymaga pewnej wiedzy o sygnale, który analizujecie. W podsumowaniu, Tabela 3-1 pokazuje różne typy sygnałów i odpowiednie okna, których możesz z nimi użyć. 12

13 Tabela 3-1. Sygnały i okna Typ sygnału Przebiegi nieustalone, których czas trwania jest krótszy niż długość okna Przebiegi nieustalone, których czas trwania jest dłuższy niż długość okna Aplikacje ogólnego zastosowania Śledzenie rozkazów Analiza systemu (pomiary odpowiedzi częstotliwościowych) Separacja dwóch tonów o częstotliwościach bardzo bliskich siebie, ale bardzo różnych amplitudach Separacja dwóch tonów o częstotliwościach bardzo bliskich siebie, ale prawie równych amplitudach Dokładne pomiary amplitudy pojedynczego tonu Okno Prostokątne Wykładnicze, Hanninga Hanninga Prostokątne Haninga (dla losowego pobudzenia) Prostokątne (dla pseudolosowego pobudzenia) Kaiser-Bessel Prostokątne Flat Top W wielu przypadkach możesz nie mieć wystarczającej wiedzy o sygnale, więc musisz eksperymentować z różnymi typami okien by wybrać najlepsze. 13

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

Przetwarzanie sygnału cyfrowego (LabVIEW)

Przetwarzanie sygnału cyfrowego (LabVIEW) Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia: Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Ćwiczenie 4: Próbkowanie sygnałów

Ćwiczenie 4: Próbkowanie sygnałów Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW MODULACJI I SYSTEMÓW Ćwiczenie 4: Próbkowanie sygnałów Opracował dr inż. Andrzej

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu 2D Próbkowanie - proces zamiany ciągłego sygnału f(x) na skończoną liczbę wartości opisujących ten sygnał. Kwantyzacja - proces zamiany

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI OKIEN CZASOWYCH W DIAGNOSTYCE WIRNIKÓW SILNIKÓW INDUKCYJNYCH

ZASTOSOWANIE FUNKCJI OKIEN CZASOWYCH W DIAGNOSTYCE WIRNIKÓW SILNIKÓW INDUKCYJNYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 62 Politechniki Wrocławskiej Nr 62 Studia i Materiały Nr 28 28 Marcin PAWLAK* silnik indukcyjny, diagnostyka, uszkodzenia wirnika analiza

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Zastosowanie Informatyki w Medycynie

Zastosowanie Informatyki w Medycynie Zastosowanie Informatyki w Medycynie Dokumentacja projektu wykrywanie bicia serca z sygnału EKG. (wykrywanie załamka R) Prowadzący: prof. dr hab. inż. Marek Kurzyoski Grupa: Jakub Snelewski 163802, Jacek

Bardziej szczegółowo

Analizy Ilościowe EEG QEEG

Analizy Ilościowe EEG QEEG Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity Systemy multimedialne Instrukcja 5 Edytor audio Audacity Do sprawozdania w formacie pdf należy dołączyc pliki dźwiękowe tylko z podpunktu 17. Sprawdzić poprawność podłączenia słuchawek oraz mikrofonu (Start->Programy->Akcesoria->Rozrywka->Rejestrator

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================

Bardziej szczegółowo

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA Autor: Daniel Słowik Promotor: Dr inż. Daniel Kopiec Wrocław 016 Plan prezentacji Założenia i cel

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.08 Zasady wytwarzania sygnałów zmodulowanych za pomocą modulacji AM 1. Zasady wytwarzania sygnałów zmodulowanych

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

Szybkie przekształcenie Fouriera

Szybkie przekształcenie Fouriera Szybkie przekształcenie Fouriera Wprawdzie DFT jest najbardziej bezpośrednią procedurą matematyczną do określania częstotliwościowej zawartości ciągu z dziedziny czasu, jest ona bardzo nieefektywna. Ponieważ

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.

Bardziej szczegółowo

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7],

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7], 3.5.4. Analiza widmowa i kinematyczna w diagnostyce WA Drugi poziom badań diagnostycznych, podejmowany wtedy, kiedy maszyna wchodzi w okres przyspieszonego zużywania, dotyczy lokalizacji i określenia stopnia

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444. (96) Data i numer zgłoszenia patentu europejskiego: 17.04.2009 09158145.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444. (96) Data i numer zgłoszenia patentu europejskiego: 17.04.2009 09158145. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444 (96) Data i numer zgłoszenia patentu europejskiego: 17.04.09 09814.4 (13) (1) T3 Int.Cl. B62D /04 (06.01) Urząd Patentowy

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania

b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania Instrukcja do ćwiczenia UKŁADY ANALOGOWE (NKF) 1. Zbadać za pomocą oscyloskopu cyfrowego sygnały z detektorów przedmiotów Det.1 oraz Det.2 (umieszczonych na spadkownicy). W menu MEASURE są dostępne komendy

Bardziej szczegółowo

4. Ultradźwięki Instrukcja

4. Ultradźwięki Instrukcja 4. Ultradźwięki Instrukcja 1. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości fal ultradźwiękowych i ich wykorzystania w badaniach defektoskopowych. 2. Układ pomiarowy Układ pomiarowy składa się

Bardziej szczegółowo

Metody analizy zapisu EEG. Piotr Walerjan

Metody analizy zapisu EEG. Piotr Walerjan Metody analizy zapisu EEG Piotr Walerjan Metody automatyczne i semiautomatyczne w EEG automatyczna detekcja (i zliczanie) zdarzeń wykrywanie wyładowań, napadów tworzenie hipnogramów analizy widmowe, wykresy

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Ćwiczenie EA8 Prądnice tachometryczne

Ćwiczenie EA8 Prądnice tachometryczne Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA8 Program ćwiczenia I - Prądnica tachometryczna komutatorowa prądu stałego 1. Pomiar statycznej charakterystyki

Bardziej szczegółowo