Systemy akwizycji i przesyłania informacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy akwizycji i przesyłania informacji"

Transkrypt

1 Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL Marcin Kostera Piotr Sitek Rzeszów 2002

2 Rozdział ten wyjaśnia jak użycie okien zapobiega wyciekowi widma i poprawia analizę uzyskanych sygnałów. Patrz examples\analysis\windxmpl.llb dla przykładu sposobu użycia okna analizy VI, dostępnego w palecie Functions>>Analyze>>Signal Processing>>Windows. Wprowadzenie do okien wygładzania W praktycznych aplikacjach próbkowania sygnałów możesz uzyskać tylko skończony zapis sygnału, nawet jeśli dokładnie przestrzegasz zasad i warunków próbkowania. Niestety dla systemu dyskretno czasowego zapis próbkowania skończonego daje w wyniku ścięty przebieg falowy, który ma inną charakterystykę spektralną niż pierwotny sygnał ciągły. Te nieciągłości powodują wyciek (rozmycie) widma informacji spektralnej, dając w wyniku widmo dyskretno czasowe, które jest rozmazaną wersją oryginalnego ciągłego widma czasowego. Prostym sposobem poprawy charakterystyki spektralnej próbkowanego sygnału jest zastosowanie okien wygładzania. Podczas przeprowadzania analizy Fouriera lub analizy spektralnej na danych o skończonej długości, możesz użyć okien do zminimalizowania krawędzi przejścia twego okrojonego przebiegu falowego, zmniejszając w ten sposób rozmycie widma. Użyte w ten sposób okna wygładzania działają jak predefiniowane wąskopasmowe filtry dolnoprzepustowe. O rozmyciu widma i oknach wygładzania Gdy używasz DTF/FFT do określenia częstotliwościowego składu sygnału, zazwyczaj przyjmuje się, że dane jakie posiadacie są pojedynczym okresem okresowo powtarzającego się przebiegu falowego, jak pokazano na Rys Pierwszy z pokazanych przebiegów jest przebiegiem próbkowanym. Przebieg falowy odpowiadający temu okresowi jest następnie powtarzany w czasie, by stworzyć przebieg okresowy. Rys Okresowy przebieg falowy stworzony z okresu próbkowanego. Z powodu założenia okresowości przebiegu falowego powstaną nieciągłości pomiędzy kolejnymi okresami. Dzieje się tak kiedy próbkowane są niecałkowite liczby cykli. Te sztuczne nieciągłości pojawiają się jako bardzo wielkie częstotliwości w widmie sygnału, częstotliwości, które nie były obecne w sygnale oryginalnym. Częstotliwości te mogłyby być znacznie większe niż częstotliwość Nyquista i jak widzieliście wcześniej, będą zobrazowane gdzieś między 0 i f s /2. Widmo jakie otrzymasz poprzez użycie DFT/FFT nie będzie więc rzeczywistym widmem oryginalnego sygnału, ale wersją zatartą. Wygląda ono tak jakby energia o jednej częstotliwości rozlała się wszystkich pozostałych częstotliwości. To zjawisko znane jest jako rozmycie widma. Rysunek 3-2 pokazuje falę sinusoidalną i odpowiadającą jej transformatę Fouriera. Przebieg falowy z próbkowaną dziedziną czasu pokazany jest na wykresie 1. Ponieważ transformata Fouriera zakłada okresowość, powtarzasz ten przebieg falowy w czasie, a okresowy przebieg falowy fali sinusoidalnej z Wykresu 1 pokazany jest na Wykresie 2. Odpowiadająca mu reprezentacja widmowa pokazana jest na Wykresie 3. Ponieważ zapis czasu na Wykresie 2 2

3 jest okresowy bez żadnych nieciągłości, jego widmem jest pojedyncza linia pokazująca częstotliwość fali sinusoidalnej. Powodem, że przebieg falowy na Wykresie 2 nie ma żadnych nieciągłości jest to, że próbkowaliście całkowitą liczbę cykli przebiegu falowego (w tym przypadku 1). Rys Przebieg sinusoidalny i odpowiadająca mu transformata Fouriera. Na Rysunku 3-3 widzisz widmową reprezentację próbkowania niecałkowitej liczby cykli falowego przebiegu czasowego (mianowicie 1,25). Wykres 1 składa się teraz z 1,25 cykli fali sinusoidalnej. Kiedy powtarzasz to okresowo, powstały przebieg falowy, jak pokazano na Wykresie 2, składa się z nieciągłości. Odpowiadające mu widmo pokazane jest na Wykresie 3. Zauważcie jak energia jest teraz rozłożona na szeroki zakres częstotliwości. To rozmycie energii jest rozmyciem widma. Energia wycieka z jednej linii FFT i rozkłada się na wszystkie pozostałe linie. 3

4 Rys Widmowa reprezentacja próbkowania niecałkowitej liczby próbek Rozmycie istnieje z powodu skończonego zapisu czasowego sygnału wejściowego. By przezwyciężyć wyciek, jednym z rozwiązań jest wybranie skończonego zapisu czasu od nieskończoności do + nieskończoności. Następnie FFT obliczyłby pojedynczą linię o właściwej częstotliwości. Czekanie na skończony czas jest jednak niemożliwe w praktyce. Tak więc ponieważ jesteś ograniczony do wybrania skończonego zapisu czasowego, do zmniejszenia wycieku używana jest inna technika znana jako okienkowanie. Wielkość wycieku widmowego zależy od amplitudy nieciągłości. Im większa nieciągłość tym większy wyciek i odwrotnie. Możesz użyć okienkowania do zmniejszenia amplitudy nieciągłości na granicach każdego okresu. Składa się ono z mnożenia zapisu czasowego przez skończonej długości okno, którego amplituda zmienia się gładko i stopniowo w kierunku zera na krawędziach. Pokazane jest to na Rysunku 3-4, gdzie oryginalny sygnał czasowy jest okienkowany przy użyciu okna Hamminga. Zauważ, że czasowy przebieg falowy okienkowanego sygnału stopniowo zwęża się do zera na końcach. Dlatego gdy przeprowadzamy analizę Fouriera i analizę spektralną na danych skończonej długości możecie użyć okienek do zminimalizowania krawędzi przejścia waszego próbkowanego przebiegu falowego. Funkcja okna wygładzania zastosowana do danych zanim zostaną przetransformowane w dziedzinę częstotliwości minimalizuje wyciek widma. Zauważcie, że jeśli zapis czasowy zawiera całkowitą liczbę cykli, jak pokazano na Rysunku 3-2, to założenie okresowości nie daje w wyniku żadnych nieciągłości i w ten sposób nie ma żadnego wycieku widma. Problem ten narasta tylko gdy macie niecałkowitą liczbę cykli. 4

5 Rys Sygnał czasowy okienkowany przy użyciu okna Hamminga Aplikacje okienkowania Jest kilka powodów używania okienkowania. Niektóre z nich to: Zdefiniowanie czasu trwania obserwacji. Zmniejszenie wycieku widmowego. Odseparowanie sygnału o małej amplitudzie od sygnału o większej amplitudzie o częstotliwościach bardzo zbliżonych do siebie. Właściwości różnych typów funkcji okienkowania Zastosowanie okna do okienkowania sygnału w dziedzinie czasu odpowiada mnożeniu sygnału przez funkcję okna. Ponieważ mnożenie w domenie czasu jest równoważne funkcji splotu w dziedzinie częstotliwości, widmo okienkowanego sygnału jest splotem widma sygnału oryginalnego z widmem okna. Tak więc, okienkowanie zmienia kształt sygnału w domenie czasu, jak również wpływa na widmo, które widzicie. Wiele różnych typów okien jest dostępnych w palecie Functions>>Analyze>>Signal Processing>>Windows. W zależności od twej aplikacji jedno może być bardziej użyteczne niż inne. Niektóre z tych okien to: Prostokątne (Żadne) Okno prostokątne ma wartość jeden w swym przedziale czasowym. Matematycznie może być zapisane jako: 5

6 dla gdzie N jest długością okna. Zastosowanie prostokątnego okna odpowiada nie używaniu żadnego okna. Jest tak ponieważ funkcja prostokątna po prostu obcina sygnał do skończonego odcinka czasu. Okno prostokątne ma największą ilość wycieku widma. Okno prostokątne dla N = 32 pokazane jest na Rysunku 3-5. Rys Okno prostokątne. Okno prostokątne jest użyteczne do analizowania przebiegów nieustalonych, które mają czas trwania krótszy niż czas okna. Jest ono używane także w śledzeniu kolejności (?), gdzie efektywna wielkość próbkowania jest proporcjonalna do prędkości wału w maszynach wirujących. W tej aplikacji wykrywa ono podstawowy rodzaj wibracji maszyny i jego harmoniczne. Hanninga Okno to ma kształt podobny do kształtu połowy cyklu fali kosinusoidalnej. Definiujące je równanie ma postać: dla Okno Hanninga z N=32 pokazane jest na Rysunku 3-6. Rys Okno Hanninga Okno Hanninga jest użyteczne do analizy przebiegów nieustalonych dłuższych niż czas trwania okna, a także do aplikacji ogólnego zastosowania. 6

7 Hamminga Okno to jest zmodyfikowaną wersją okna Hanninga. Jego kształt jest również podobny do fali kosinusoidalnej. Może być on zdefiniowany jako dla Okno Hamminga z N=32 pokazane jest na Rysunku 3-7. Rys Okno Hamminga Widzicie, że okna Hanninga i Hamminga są w pewien sposób podobne. Jednakże zauważcie, że w domenie czasu, okno Hamminga nie sięga tak blisko zera przy krawędziach jak okno Hanninga. Kaiser-Bessela Okno to jest elastycznym oknem, którego kształt użytkownik może zmodyfikować poprzez nastawienie parametru beta. Tak więc w zależności od swej aplikacji możesz zmienić kształt okna by kontrolować wielkość wycieku widma. Okno Kaiser-Bessela dla różnych wartości beta pokazane jest na Rysunku

8 Rys Okno Kaiser-Bessela Zauważ, że dla małych wartości beta, kształt jest bliski do kształtu okna prostokątnego. W rzeczywistości dla beta=0,0 otrzymacie okno prostokątne. Gdy zwiększacie beta okno pochyla się ku bokom. Okno to jest dobre do wykrywania dwóch sygnałów o prawie takiej samej częstotliwości, ale znacząco różnych amplitudach. Trójkątne Okno to ma kształt trójkąta. Dany jest on przez dla Okno trójkątne dla N=32 pokazane jest na Rysunku

9 Rys Okno trójkątne Flat Top Okno to ma najlepszą dokładność amplitudową ze wszystkich funkcji okienkowych. Zwiększona dokładność amplitudowa (± 0,02 db dla sygnałów dokładnie pomiędzy cyklami całkowitymi) jest kosztem selektywności częstotliwości. Okno Flat Top jest najbardziej użyteczne w dokładnym mierzeniu amplitudy pojedynczych składowych częstotliwości przy niewielkiej pobliskiej energii widmowej w sygnale. Okno Flat Top może być zdefiniowane jako gdzie Okno Flat Top pokazane jest na Rysunku Rys Okno Flat Top Wykładnicze Okno to ma kształt funkcji wykładniczej gasnącej. Matematycznie może być ono wyrażone jako: dla 9

10 gdzie f jest wartością końcową. Wartością początkową okna jest jeden i stopniowo wygasa ono w kierunku zera. Wartość końcowa funkcji wykładniczej może być nastawiana pomiędzy 0 i 1. Okno wykładnicze dla N=32 z wartością końcową określoną jako 0,1 pokazane jest na Rysunku Rys Okno wykładnicze Okno to jest użyteczne przy analizie przebiegów nieustalonych (sygnałów, które istnieją tylko przez krótki okres czasu) których czas trwania jest dłuższy niż długość okna. Okno to może być zastosowane do sygnałów zanikających wykładniczo, takich jak odpowiedź struktur o małym tłumieniu, które są pobudzone uderzeniem (na przykład młotkiem). Okna do analizy widmowej a okna do konstrukcji współczynników Okna VI w LabVIEW są zaprojektowane dla aplikacji do analizy widmowej. W tych aplikacjach, sygnał wejściowy jest okienkowany przez przepuszczenie go przez jedno z okien VI. Sygnał zokienkowany jest następnie podawany do opartego na DFT VI dla wyświetlenia i analizy domeny częstotliwości. Funkcje okna zaprojektowane do analizy widmowej muszą być DFT-parzyste, termin zdefiniowany przez Fryderyka J. Harrisa w jego referacie O użyciu okien do analizy harmonicznych za pomocą dyskretnej transformaty Fouriera (Protokół z IEEE, Tom 66, Nr 1, Styczeń 1978). Funkcja okna jest DFT-parzysta, jeśli jej iloczyn skalarny przy całkowitych cyklach ciągów sinusoidalnych jest równoważny zero. Innym sposobem myślenia o ciągu DFT-parzystym jest taki, że jego DFT nie ma składowych urojonych. Rysunek 3-12 i Rysunek 3-13 ilustruje okno Hanninga i jeden cykl modelu sinusoidalnego dla rozmiaru próbki 8. Możecie zobaczyć, że DFT-parzyste okno Hanninga nie jest symetryczne względem swego punktu środkowego, a jej ostatni punkt nie jest równy pierwszemu, w znacznym stopniu podobnie jak pełen cykl przebiegu sinusoidalnego. 10

11 Rys Okno Hanninga dla rozmiaru próbki 8. Rys Forma sinusoidalna dla rozmiaru próbki 8. Na koniec DFT zakłada, że ciągi wejściowe są okresowe tj., że analizowany sygnał jest w rzeczywistości powiązaniem sygnału wejściowego. Rysunek 3-14 pokazuje trzy takie cykle poprzednich ciągów, demonstrując gładkie okresowe rozwinięcie okna DFT-parzystego i pojedynczego cyklu formy sinusoidalnej. 11

12 Rys Rozwinięcie okresowe Innym typem aplikacji okienkowej jest ta z projektu filtra FIR. Aplikacja ta wymaga by okna były symetryczne względem swego punktu środkowego. Dalsze informacje o filtrowaniu znajdziesz w Części III, Analiza Pomiarowa w LabVIEW, podręcznika Pomiary LabVIEW. Poniższe równania funkcji okna Hanninga ilustrują różnicę pomiędzy funkcją okna DFTparzystego (analiza spektralna) i funkcją okna symetrycznego (projekt współczynnika). Funkcja okna Hanninga dla analizy spektralnej: dla Funkcja okna Hanninga dla symetrycznego projektu współczynnika: dla Te dwa równania pokazują, że możesz zastosować funkcje okna symetrycznego poprzez niewielką modyfikację użycia funkcji okna DFT-parzystego. Jakiego typu okna mam użyć? Teraz kiedy widzieliście kilka z wielu różnych typów dostępnych okien, możecie zapytać, Jaki typ okna powinienem użyć? Odpowiedź zależy od typu sygnału jaki macie i od tego czego szukacie. Wybranie właściwego okna wymaga pewnej wiedzy o sygnale, który analizujecie. W podsumowaniu, Tabela 3-1 pokazuje różne typy sygnałów i odpowiednie okna, których możesz z nimi użyć. 12

13 Tabela 3-1. Sygnały i okna Typ sygnału Przebiegi nieustalone, których czas trwania jest krótszy niż długość okna Przebiegi nieustalone, których czas trwania jest dłuższy niż długość okna Aplikacje ogólnego zastosowania Śledzenie rozkazów Analiza systemu (pomiary odpowiedzi częstotliwościowych) Separacja dwóch tonów o częstotliwościach bardzo bliskich siebie, ale bardzo różnych amplitudach Separacja dwóch tonów o częstotliwościach bardzo bliskich siebie, ale prawie równych amplitudach Dokładne pomiary amplitudy pojedynczego tonu Okno Prostokątne Wykładnicze, Hanninga Hanninga Prostokątne Haninga (dla losowego pobudzenia) Prostokątne (dla pseudolosowego pobudzenia) Kaiser-Bessel Prostokątne Flat Top W wielu przypadkach możesz nie mieć wystarczającej wiedzy o sygnale, więc musisz eksperymentować z różnymi typami okien by wybrać najlepsze. 13

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Zastosowanie Informatyki w Medycynie

Zastosowanie Informatyki w Medycynie Zastosowanie Informatyki w Medycynie Dokumentacja projektu wykrywanie bicia serca z sygnału EKG. (wykrywanie załamka R) Prowadzący: prof. dr hab. inż. Marek Kurzyoski Grupa: Jakub Snelewski 163802, Jacek

Bardziej szczegółowo

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity Systemy multimedialne Instrukcja 5 Edytor audio Audacity Do sprawozdania w formacie pdf należy dołączyc pliki dźwiękowe tylko z podpunktu 17. Sprawdzić poprawność podłączenia słuchawek oraz mikrofonu (Start->Programy->Akcesoria->Rozrywka->Rejestrator

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy

Bardziej szczegółowo

Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1

Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1 Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1 Temat: Modulacja FM Imię i nazwisko ucznia: Adam Szulc Klasa: III Ti a Numer z dziennika: 25 Suwałki, grudzień 2012 1 Spis treści 1.Modulacja częstotliwości

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444. (96) Data i numer zgłoszenia patentu europejskiego: 17.04.2009 09158145.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444. (96) Data i numer zgłoszenia patentu europejskiego: 17.04.2009 09158145. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2113444 (96) Data i numer zgłoszenia patentu europejskiego: 17.04.09 09814.4 (13) (1) T3 Int.Cl. B62D /04 (06.01) Urząd Patentowy

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Zastosowanie algorytmu FFT do filtrowania sygnału z relukltancyjnego czujnika prędkości obrotowej

Zastosowanie algorytmu FFT do filtrowania sygnału z relukltancyjnego czujnika prędkości obrotowej PAPRZYCKI Igor 1 Zastosowanie algorytmu FFT do filtrowania sygnału z relukltancyjnego czujnika prędkości obrotowej WSTĘP Sygnał w dziedzinie czasu reprezentowany jest jako wykres amplitudy w funkcji czasu,

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK

AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK I. Zagadnienia 1. Wielkości Fizyczne opisują ce falę dź wię kową. 2. Powstawanie dź wię ków mowy. 3. Odbieranie dź wię ków przez narzą d słuchu.

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Mobilne przyrządy pomiarowe. Skopometry firmy Hantek

Mobilne przyrządy pomiarowe. Skopometry firmy Hantek 1 Mobilne przyrządy pomiarowe. Skopometry firmy Hantek, Marcin Zając Mobilne przyrządy pomiarowe. Skopometry firmy Hantek Złożoność nowoczesnych urządzeń elektronicznych stawia przyrządom pomiarowym nowe

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

MIKROFALOWEJ I OPTOFALOWEJ

MIKROFALOWEJ I OPTOFALOWEJ E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki

Bardziej szczegółowo

Uniwersalny system pomiarowy do obsługi wieloparametrowego eksperymentu

Uniwersalny system pomiarowy do obsługi wieloparametrowego eksperymentu Ćwiczenie nr 5 Uniwersalny system pomiarowy do obsługi wieloparametrowego eksperymentu Cel ćwiczenia: zapoznanie ze sposobem zestawienia systemu pomiarowego składającego się ze standardowej aparatury pomiarowej

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM)

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Zespół Szkół Technicznych w Suwałkach Pracownia Sieci Teleinformatycznych Ćwiczenie Nr 1 BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Opracował Sławomir Zieliński Suwałki 2010 Cel ćwiczenia Pomiar

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 5 KARTA POMIAROWA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 5 KARTA POMIAROWA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 5 KARTA POMIAROWA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych

Bardziej szczegółowo

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Cel: Zapoznanie ze składnią języka SPICE, wykorzystanie elementów RCLEFD oraz instrukcji analiz:.dc,.ac,.tran,.tf, korzystanie z bibliotek

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063 Cyfrowy Analizator Widma GA4063 3GHz (opcja 6GHz) Wysoka kla sa pomiarowa Duże możliwości pomiarowo -funkcjonalne Wysoka s tabi lność Łatwy w użyc iu GUI Małe wymiary, lekki, przenośny Opis produktu GA4063

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew

Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew Analiza i modelowanie przepływów w sieci Internet Andrzej Andrijew Plan referatu Samopodobieostwo w sieci Internet Samopodobne procesy stochastyczne Metody sprawdzania samopodobieostwa Modelowanie przepływów

Bardziej szczegółowo

Instrukcja do ćwiczenia nr 23. Pomiary charakterystyk przejściowych i zniekształceń nieliniowych wzmacniaczy mikrofalowych.

Instrukcja do ćwiczenia nr 23. Pomiary charakterystyk przejściowych i zniekształceń nieliniowych wzmacniaczy mikrofalowych. Instrukcja do ćwiczenia nr 23. Pomiary charakterystyk przejściowych i zniekształceń nieliniowych wzmacniaczy mikrofalowych. I. Wstęp teoretyczny. Analizator widma jest przyrządem powszechnie stosowanym

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C)

Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C) 5. 0. W p r ow adzen ie 1 2 1 Rozdział 5 Przetwarzanie analogowo-cyfrowe (A C) sygnał przetwarzanie A/C sygnał analogowy cyfrowy ciągły dyskretny próbkowanie: zamiana sygnału ciągłego na dyskretny konwersja

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI

ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI Cel ćwiczenia Zapoznanie się z budową i parametrami urządzeń do terapii prądem małej i średniej częstotliwości. Poznanie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości

Bardziej szczegółowo

Otwórz nowy skoroszyt. Zapisz go na dysku pod nazwą Nazwisko Imię Excel ćwiczenie 4.

Otwórz nowy skoroszyt. Zapisz go na dysku pod nazwą Nazwisko Imię Excel ćwiczenie 4. Ćwiczenie 1. Otwórz nowy skoroszyt. Zapisz go na dysku pod nazwą Nazwisko Imię Excel ćwiczenie 1. Wprowadź do komórek B1:B6 wartość 0,1924578. Sformatuj odpowiednie komórki tak, aby wyświetlanie danych

Bardziej szczegółowo

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych)

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Wykład 10 2/38 Cyfrowy pomiar czasu i częstotliwości 3/38 Generatory, rezonatory, kwarce f w temperatura pracy np.-10

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

System monitoringu i diagnostyki drgań EH-Wibro

System monitoringu i diagnostyki drgań EH-Wibro System monitoringu i diagnostyki drgań EH-Wibro Opis działania Przetworniki drgań, wibracji i prędkości obrotowej są montowane i dobrane według wymogów producenta przekładni. Urządzenia typu EH-O/06/07.xx,

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Struktura układu pomiarowego drgań mechanicznych

Struktura układu pomiarowego drgań mechanicznych Wstęp Diagnostyka eksploatacyjna maszyn opiera się na obserwacji oraz analizie sygnału uzyskiwanego za pomocą systemu pomiarowego. Pomiar sygnału jest więc ważnym, integralnym jej elementem. Struktura

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

VÉRITÉ rzeczywistość ma znaczenie Vérité jest najnowszym, zaawansowanym technologicznie aparatem słuchowym Bernafon przeznaczonym dla najbardziej wymagających Użytkowników. Nieprzypadkowa jest nazwa tego

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych

Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych XII Konferencja PLOUG Zakopane Październik 006 Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych Krzysztof Tyburek, Waldemar Cudny Uniwersytet Kazimierza Wielkiego, Instytut

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Instrukcja obsługi programu PowRek

Instrukcja obsługi programu PowRek Instrukcja obsługi programu PowRek środa, 21 grudnia 2011 Spis treści Przeznaczenie programu... 4 Prezentacja programu... 5 Okno główne programu... 5 Opis poszczególnych elementów ekranu... 5 Nowy projekt...

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo