Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa."

Transkrypt

1 Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna równoważność formuł Model formuły Formuła spełnialna i prawdziwa Logiczna równoważność formuł Dziedzina interpretacji Stałe, zmienne, funkcje Czy formuła rachunku zdań A = p jest spełnialna? Czy formuła rachunku predykatów B = x, y p(x, y) jest spełnialna? Należy podać intepretację (znaczenie) predykatu p oraz dziedzinę interpretacji zmiennych, czyli określić jakie wartości mogą przyjmować zmienne x, y. Niech x X oraz y Y, gdzie X jest zbiorem kotów dachowców, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Niech x X oraz y Y, gdzie X jest zbiorem osób posiadających prawo jazdy, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Dalej, niech x =Kowalski oraz y =Fiat-PO247Z. Dziedzina interpretacji jest to zbiór, do którego należą: zmienne, stałe, wartości funkcji występujące w formule rachunku predykatów.

2 Predykaty Intepretacja w rachunku predykatów Predykaty reprezentują relacje określone na dziedzinie interpretacji. Predykat n-argumentowy oznacza relację R D n. Interpretacją predykatu p(x, y, z) może być relacja R określona na zbiorze kątów ostrych, taka, że kąty x, y, z są w relacji R, gdy są kątami tego samego trójkąta. (x, y, z) R wtw. x + y + z = 180. Aby określić wartość (logiczną) formuły rachunku predykatów należy podać: dziedzinę interpretacji (zbiór wartości jakie mogą przyjmować stałe, zmienne i funkcje), funkcje odpowiadające symbolom funkcyjnym, relacje odpowiadające symbolom predykatywnym. Funkcja interpretacji Niech U będzie zbiorem formuł, dla którego: {p 1,..., p k } - zbiór wszystkich symboli predykatywnych w U, {f 1,..., f l } - zbiór wszystkich symboli funkcyjnych w U, {a 1,..., a m } - zbiór wszystkich stałych w U. p(a, f (x)) Interpretacja Interpretacją I nazywamy czwórkę: {D, {R 1,...R k }, {F 1,..., F l }, {d 1,..., d m }}, gdzie: D - niepusta dziedzina, R i - relacja przyporządkowana symbolowi predykatywnemu p i, F i - funkcja przyporządkowana symbolowi funkcyjnemu f i, d i - element dziedziny D, przyporządkowany stałej a i. Interpretacja I 1 = {N, { }, {x 2 }, {5}} D N f x 2 a 5 5 x 2 Interpretacja I 2 = {N, { }, {2x}, {0}} D N f 2x a 0 0 2x Interpretacja I 3 = {Z, { }, {x 2 }, {5}} D Z f x 2 a 5 5 x 2

3 Jeszcze raz Kowalski Wartościowanie Czy p(x, y) jest spełnialne? Niech x X oraz y Y, gdzie X jest zbiorem osób posiadających prawo jazdy, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Musimy jeszcze podać wartości x i y, dla których p(x, y) jest spełnione. Niech x =Kowalski oraz y =Fiat-PO247Z. Niech I będzie interpretacją. Wartościowaniem σ I : V D nazywamy funkcję przyporządkowującą każdej zmiennej element dziedziny interpretacji I. Zapis σ I[xi d i ] będzie oznaczał, że w wartościowaniu σ I zmiennej x i została przyporzadkowana wartość d i. Zakres wartości termu Formuła p(a, f (x)) Interpretacja I 1 = {N, { }, {x 2 }, {5}} UWAGA! Wartość termu należy do dziedziny interpretacji D i nie musi być wartością logiczną. Wartościowanie σ I[x 3] 5 x Wartość termu zależy zarówno od interpretacji, jak i wartościowania.

4 Wartość termu t w interpretacji I i wartościowaniu σ I oznaczamy przez v σi (t) i definiujemy przez indukcję: v σi (x i ) = σ I (x i ) v σi (a i ) = d i v σi (f i (t 1,..., t n )) = F i (v σi (t 1 ),..., v σi (t n )) gdzie: d i - element dziedziny przyporządkowany stałej a i w interpretacji I, F i - funkcja przyporządkowana w interpretacji I symbolowi funkcyjnemu f i Wartość termu: t = f (x) + g(f (a)) Interpretacja: I = {N, {}, {2x, y 2 }, {0}} Wartościowanie: σ I (x) = 1 Wartość termu: v σi (t) = v σi (f (x) + g(f (a))) = 2σ I (x) + (2σ I (a)) 2 = (2 0) 2 = 2 Wartość atomu Wartość formuły złożonej Atom ma wartość logiczną (0 lub 1). A = p k (t 1,..., t n ) v σi (A) = 1 wtw (v σi (t 1 ),..., v σi (t n )) R k R k - relacja przyporządkowana w interpretacji I predykatowi p k A = p(a, x) Niech I = {N, { }, {}, {0}} i σ I (x) = 1 (x, y) R wtw x y (v σi (a), v σi (x)) = (0, 1) (0, 1) R (v σi (A)) = 0 Wartość logiczną formuły A przy wartościowaniu σ I oznaczamy przez v σi (A) i definiujemy przez indukcję ze względu na budowę formuły: A - dowolna formuła v σi ( A) = 1 wtw v σi (A) = 0 v σi (A 1 A 2 ) = 1 wtw v σi (A 1 ) = 1 lub v σi (A 2 ) = 1 podobnie dla pozostałych operatorów logicznych v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla każdego d D v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla pewnego d D

5 Wartość formuły zamkniętej A = p(x, a), B = A I = {N, { }, {}, {2}} Formuła A w interpretacji I oznacza: x N i x 2 Wartość formuły A zależy od wartościowania σ I. σ I (x) = 3 v σi (A) = 0, a zatem v σi (B) = 1 Niech A będzie formułą zamknietą. Wówczas v σi (A) nie zależy od wartościowania σ I. A = y x p(x, y) I = {Z +, { }, {}, {0}} y Z + x Z + x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d Z + v σi ( y x p(x, y)) = 1 Wartość domknięcia uniwersalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla wszystkich wartościowań σ I wtw, gdy v I ( x 1,..., x n A ) = 1. A = p(x, y) Domknięcie uniwersalne A: A = x y p(x, y) I = {N, { }, {}, {}} x N y N x y v σi [x 0,y 1](p(x, y)) = 0 v σi ( x y p(x, y)) = 0 Wartość domknięcia egzystencjalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla pewnego wartościowania σ I wtw, gdy v I ( x 1,..., x n A ) = 1, A = p(x, y) Domknięcie egzystencjalne A: A = x y p(x, y) I = {N, { }, {}, {}} x N y N x y v σi [x 1,y 0](p(x, y)) = 1 v σi ( x y p(x, y)) = 1

6 Formuła spełniona A = x p(a, x) I 1 = A Formuła zamknięta A jest spełniona w interpretacji I, czyli interpretacja I jest modelem A, jeśli v I (A) = 1, co oznaczamy I = A. I 2 = A I 3 = A Interpretacja I 1 = {N, { }, {x 2 }, {5}} Interpretacja I 2 = {N, { }, {2x}, {0}} Interpretacja I 3 = {Z, { }, {2x}, {0}} D N f x 2 a 5 D N f 2x a 0 D Z f 2x a 0 5 x 2 0 2x 0 2x Formuła spełnialna Formuła prawdziwa Formuła zamknięta A jest spełnialna, jeśli dla pewnej interpretacji I mamy I = A. A = y x p(x, y) I = {N, { }, {}, {0}} y N x N x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d N v σi ( y x p(x, y)) = 1 I = A Formuła zamknięta A jest prawdziwa, jeśli dla wszystkich interpretacji I mamy I = A, co będziemy oznaczać = A. A = x (p(x) p(x)) = A

7 Formuła niespełnialna i nieprawdziwa Logiczna równoważność formuł Formuła A jest niespełnialna, jeśli nie jest spełnialna, a jest nieprawdziwa, gdy nie jest prawdziwa. A = x (p(x) p(x)) Dla każdej interpretacji I v σi (A) = 0 zatem A jest niespełnialna. Niech A 1 i A 2 będą formułami zamkniętymi. Jeśli v I (A 1 ) = v I (A 2 ) dla wszystkich interpretacji I, to A 1 jest logicznie równoważna A 2, co oznaczamy A 1 A 2. A = x p(x, a) Istnieje interpretacja I = {N, { }, {}, {2}} w której v σi (A) = 0 zatem A jest nieprawdziwa. Warunek konieczny i dostateczny Twierdzenie A B wtw gdy = A B. Niech U = {A 1,... A n } U = A wtw gdy = (A 1... A n ) A. Wykażemy, że x (p(x) q(x)) jest równoważne ( x p(x) x q(x)) x (p(x) q(x)) x ( p(x) q(x)) x p(x) x q(x) x p(x) x q(x) x p(x) x q(x)

8 Pytania 1 Podać interpretację (wraz z wartościowaniem) podanej formuły rachunku predykatów. 2 Czy w podanej interpretacji formuła rachunku predykatów jest spełnialna (prawdziwa)?

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska Problem Instytut Informatyki jedzenie(x 1 ) lubi(adam, x 1 ) jedzenie(jabłko) jedzenie(kurczak) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Twierdzenie Łosia o ultraprodukcie

Twierdzenie Łosia o ultraprodukcie Twierdzenie Łosia o ultraprodukcie Stanisław Dercz 2010.03.22 Streszczenie Prezentujemy ciekawe twierdzenie teorii modeli, umożliwiające budowanie modeli teorii pierwszego rzędu. Wprowadzamy jedynie konieczny

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia InŜynierskie Rachunek predykatów syntaktyka Do symboli (nazw) rachunku predykatów zaliczamy: 1. Predefiniowane symbole true i false. 2.

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. 1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Rachunek zdań. 2.1 Podstawowe pojęcia

Rachunek zdań. 2.1 Podstawowe pojęcia Rachunek zdań 2.1 Podstawowe pojęcia 2.1.1. Rachunek zdań to teoria zajmująca się formami wnioskowania zbudowanymi wyłącznie ze zmiennych zdaniowych oraz funktorów prawdziwościowych, będących pewnego rodzaju

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku

Bardziej szczegółowo

Logika Radosna 4. Jerzy Pogonowski. Semantyka KRP. Zakład Logiki Stosowanej UAM

Logika Radosna 4. Jerzy Pogonowski. Semantyka KRP. Zakład Logiki Stosowanej UAM Logika Radosna 4 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP Jerzy Pogonowski (MEG) Logika Radosna 4 Semantyka KRP 1 / 204 Wprowadzenie Uszy i Ogon

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist

Bardziej szczegółowo

Dedukcyjne bazy danych

Dedukcyjne bazy danych Dedukcyjne bazy danych mgr inż. Olga Siedlecka olga@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Dedukcyjne bazy danych p.1/37 Plan seminarium Wprowadzenie Podstawy matematyczne Podstawowe

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Teoria mnogości, o której mówimy i teoria mnogości, w której mówimy

Teoria mnogości, o której mówimy i teoria mnogości, w której mówimy Teoria mnogości, o której mówimy i teoria mnogości, w której mówimy 2010.04.05-13 Streszczenie W 1922 roku norweski logik Thoralf Skolem zwrócił uwagę na fakt, iż teoria mnogości Zermelo-Fraenkla jako

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Klasyczna definicja prawdy Alfreda Tarskiego i prawda w modelach skończonych

Klasyczna definicja prawdy Alfreda Tarskiego i prawda w modelach skończonych Klasyczna definicja prawdy Alfreda Tarskiego i prawda w modelach skończonych Marek Czarnecki 15 stycznia 29 1 Twierdzenie Tarskiego o niedefiniowalności prawdy arytmetycznej 1.1 Pojęcie spełniania Słownikiem

Bardziej szczegółowo

II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka

II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki Janusz Czelakowski Wykład 8. Arytmetyka Jak dobrze wiadomo, jednym z kluczowych praw zachodzących w dziedzinie liczb naturalnych jest Zasada Indukcji.

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

Automatyczne planowanie oparte na sprawdzaniu spełnialności

Automatyczne planowanie oparte na sprawdzaniu spełnialności Automatyczne planowanie oparte na sprawdzaniu spełnialności Linh Anh Nguyen Instytut Informatyki Uniwersytet Warszawski Linh Anh Nguyen Algorytm planowania SatPlan 1 Problem planowania sufit nie malowany?

Bardziej szczegółowo

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Logika matematyczna wersja 0.94 (1 września 2005)

Logika matematyczna wersja 0.94 (1 września 2005) Witold Bołt Taduesz Andrzej Kadłubowski Logika matematyczna wersja 0.94 (1 września 2005) Spis treści Wstęp 2 1 Systemy relacyjne 2 2 Język, termy i formuły 3 2.1 Język........................................

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Logika. Logika. Z czego się składa: model dziedzina, o której własnościach wnioskujemy,

Logika. Logika. Z czego się składa: model dziedzina, o której własnościach wnioskujemy, Z czego się składa: model dziedzina, o której własnościach wnioskujemy, język w którym zapisujemy te własności, interpretacja przypisująca napisom języka elementy z modelu Składowe części języka: termy

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Logiki wielowartościowe

Logiki wielowartościowe Logiki wielowartościowe Bartosz Piotrowski IV 05 Logika wielowartościowa logika nieklasyczna więcej niż dwie wartości logiczne podobna do klasycznego rachunku zdań Rys historyczny już Arystoteles nie akceptował

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Jak Arabowie rozwiązywali równania?

Jak Arabowie rozwiązywali równania? Jak Arabowie rozwiązywali równania? Agnieszka Niemczynowicz Katedra Fizyki Relatywistycznej Uniwersytet Warmińsko-Mazurski w Olsztynie Niezwykła Matematyka 2016 Co to jest równanie? Kilka dygresji z logiki.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Logika matematyczna Mathematical Logic Poziom przedmiotu: II

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań 1 Wprowadzenie Na tym wykładzie przyjmuję terminologię i

Bardziej szczegółowo

Logika dla socjologów Część 2: Przedmiot logiki

Logika dla socjologów Część 2: Przedmiot logiki Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Wprowadzenie i pojęcia wstępne.

Wprowadzenie i pojęcia wstępne. Wprowadzenie i pojęcia wstępne. X\A a b c x 1 a 1 b 1 c 1 x 2 a 1 b 1 c 2 x 3 a 1 b 2 c 3 x 4 a 2 b 1 c 4 x 5 a 1 b 2 c 1 x 6 a 1 b 2 c 2 x 7 a 1 b 1 c 1 S = X = {x 1,,x 8 } A = {a, b, c}

Bardziej szczegółowo

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40 Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs.

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Jerzy Topp. Wstęp do matematyka

Jerzy Topp. Wstęp do matematyka Jerzy Topp Wstęp do matematyka Wydawnictwo Politechniki Gdańskiej, Gdańsk 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz RECENZENT Andrzej Szepietowski

Bardziej szczegółowo

Funkcje addytywne gorszego sortu

Funkcje addytywne gorszego sortu Rafał Filipów Wydział Matematyki, Fizyki i Informatyki Definicja funkcji addytywnych Definicja Funkcja f jest funkcją addytywną, gdy spełnia równanie funkcyjne Cauchy ego tzn. gdy dla wszystkich x, y R.

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGANCJA

Adam Meissner SZTUCZNA INTELIGANCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu

Bardziej szczegółowo

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań 1 Wprowadzenie Podobnie jak w przypadku

Bardziej szczegółowo

Wykład 2: Rachunek lambda

Wykład 2: Rachunek lambda Wykład 2: Rachunek lambda Systemy typów, II UWr, 2010 20 października 2010 λ-termy zmienne (Var) {x, y, z,...} nieskończony, przeliczalny zbiór zmiennych termy (Term) t ::= x λx.t t t skróty notacyjne

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania. Przemysław Kobylański

Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania. Przemysław Kobylański Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania Przemysław Kobylański Część I Wprowadzenie 1 Stałe i zmienne Jedynym dostępnym w języku Prolog rodzajem

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo