MODYFIKACJA RÓWNANIA DO OPISU KRZYWYCH WÖHLERA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODYFIKACJA RÓWNANIA DO OPISU KRZYWYCH WÖHLERA"

Transkrypt

1 Sylwester KŁYSZ Janusz LISIECKI Instytut Techniczny Wojsk Lotniczych Tomasz BĄKOWSKI Jet Air Sp. z o.o. PRACE NAUKOWE ITWL Zeszyt 27, s , 2010 r. DOI /v MODYFIKACJA RÓWNANIA DO OPISU KRZYWYCH WÖHLERA W pracy przedstawiono wyniki modyfikacji równania = f(2n f ) poprawiającej dopasowanie opisu wyników badań wysokocyklicznego zmęczenia. W szczególności praca dotyczy wprowadzenia 5-parametrowego równania ekspotencjalnego zapewniającego lepsze dopasowanie pełnego wykresu Wöhlera do danych doświadczalnych w zakresie naprężeń na poziomie granicy zmęczeniowej oraz aproksymację do zakresu quasi-statycznego i niskocyklowego dla naprężeń największych. Zobrazowano wpływ poszczególnych parametrów na przebieg i możliwości dopasowania ww. równania do danych doświadczalnych. Słowa kluczowe: krzywa Wöhlera, opis teoretyczny, MNK, równanie Morrowa 1. Wstęp Klasyczne równanie Morrowa stosowane do opisu trwałości wysokocyklowej, o ogólnej postaci [1 4]: ' a f 2N f b (1) nie zapewnia dobrego opisu krzywej zmęczeniowej, jaką jest pełny wykres Wöhlera. Poszczególne parametry tego równania to: a amplituda naprężenia; f współczynnik wytrzymałości zmęczeniowej, wyznaczany z ekstrapolacji krzywej do pierwszego półcyklu (2N f = 1), praktycznie równy naprężeniu przy statycznym rozciąganiu; b wykładnik wytrzymałości zmęczeniowej, dla metali mieści się w przedziale (-0,05; -0,15), malejąc zazwyczaj ze spadkiem wytrzymałości materiału;

2 94 Sylwester KŁYSZ, Janusz LISIECKI, Tomasz BĄKOWSKI 2N f liczba nawrotów obciążenia (półcykli). Pełny wykres Wöhlera zawiera obszary wytrzymałości quasi-statycznej (do ok cykli), niskocyklowej (do 10 5 cykli) i wysokocyklowej ( cykli) rys. 1. Rys. 1. Pełny wykres Wöhlera Granice między tymi obszarami nie są ściśle określone. Pierwsze dwa obszary łączy się zazwyczaj w jeden (niskocyklowej wytrzymałości zmęczeniowej) i jest on głównie opisywany różnymi zależnościami amplitudy odkształcenia i liczby cykli. Obszar trzeci jest utożsamiany z ograniczoną wytrzymałością zmęczeniową. Opis danych doświadczalnych z badań trwałości wysokocyklowej w oparciu o wzór (1) obejmuje przede wszystkim zakres ograniczonej wytrzymałości zmęczeniowej (rys. 2). Dopasowanie w zakresie największych i najmniejszych (na poziomie granicy zmęczeniowej) naprężeń jest praktycznie żadne, co ogranicza możliwości wykorzystania tego opisu w szerszych analizach teoretycznych, w tym np. do zastosowań w szacowaniu trwałości elementów konstrukcji z wykorzystaniem baz danych MES i innych. Rys. 2. Opis danych doświadczalnych w oparciu o równanie (1)

3 Modyfikacja równania do opisu krzywych Wöhlera Modyfikacja opisu krzywej Wöhlera W celu poprawienia elastyczności i zakresu opisu teoretycznego wyników badań wysokocyklicznego zmęczenia proponuje się wykorzystanie wzoru o postaci: 1 A D 2Nf C E a Be (2) Współczynniki A, B, C, D, E tego równania wyznaczane są w oparciu o metodę najmniejszych kwadratów, wykorzystując fakt, że ogólna postać równania to: Ax a Be (3) i po logarytmowaniu przekształca się do równania linii prostej: ln( B) Ax ln a (4) co znakomicie ułatwia wyznaczanie współczynników tego równania. Opis danych doświadczalnych w oparciu o równanie (2) przedstawia rys. 3. Wpływ poszczególnych współczynników na przebieg krzywych opisujących wyniki danych doświadczalnych przedstawia rys. 4. Rys. 3. Opis danych doświadczalnych w oparciu o równanie (2)

4 96 Sylwester KŁYSZ, Janusz LISIECKI, Tomasz BĄKOWSKI Rys. 4. Wpływ parametrów A, B, C, D, E równania (2) na przebieg opisu strzałka wskazuje kolejność krzywych dla rosnących wartości danego parametru Współczynnik B odpowiada za wartość granicy zmęczeniowej materiału ( B dla x 0, tj. dla 2N f ), czyli kształtuje prawą część wykresu. Współczynnik A jako współczynnik kierunkowy w równaniu (4) odpowiada za tempo dążenia do tej granicy. Współczynniki C, D, E odpowiadają za dopasowanie lewej i środkowej części wykresu (punkt przecięcia z osią y, kąt nachylenia krzywej, przesunięcie wykresu wzdłuż osi x). Równanie (2) zapewnia dobry opis danych

5 Modyfikacja równania do opisu krzywych Wöhlera 97 doświadczalnych nisko- i wysokocyklicznego zmęczenia ( i, 2N f,i ) w pełnym zakresie zmienności. 3. Podsumowanie Opis krzywej Wöhlera przy pomocy równania Morrowa (1) jest skuteczny jedynie w środkowej części tej krzywej. W pracy zaproponowano inne równanie dla poprawy wyników aproksymacji w szerszym zakresie. Dla opisu pełnej krzywej Wöhlera zaproponowano równanie (2), co poprawiło elastyczność tego opisu. Współczynniki równania (2) wyznaczane są przy pomocy metody najmniejszych kwadratów, co zapewnia dobre dopasowanie do danych eksperymentalnych. Literatura 1. Collins J.A.: Failure of materiale In mechanical design. The Ohio State University, Fuchs H.O., Stephens R.I.: Metal fatigue in engineering. A Willey-Interscience Publication, New York Kocańda S.: Zmęczeniowe pękanie metali. WNT, Warszawa Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych. PWN, Warszawa 1985.

6 98 Sylwester KŁYSZ, Janusz LISIECKI, Tomasz BĄKOWSKI

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

METODOLOGIA ANALIZY DANYCH DOŚWIADCZALNYCH PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH W WARUNKACH OBCIĄŻEŃ Z PRZECIĄŻENIAMI

METODOLOGIA ANALIZY DANYCH DOŚWIADCZALNYCH PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH W WARUNKACH OBCIĄŻEŃ Z PRZECIĄŻENIAMI Sylwester KŁYSZ Instytut Techniczny Wojsk Lotniczych Paweł SZABRACKI Uniwersytet Warmińsko-Mazurski w Olsztynie PRACE NAUKOWE ITWL Zeszyt 25, s. 157 169, 2009 r. DOI 10.2478/v10041-009-0014-x METODOLOGIA

Bardziej szczegółowo

Optymalizacja kształtu wykresu Wöhlera z wykorzystaniem algorytmów ewolucyjnych w ujęciu diagnostycznym

Optymalizacja kształtu wykresu Wöhlera z wykorzystaniem algorytmów ewolucyjnych w ujęciu diagnostycznym Biuletyn WAT Vol. LXII, Nr 4, 2013 Optymalizacja kształtu wykresu Wöhlera z wykorzystaniem algorytmów ewolucyjnych w ujęciu diagnostycznym MARTA WOCH 1, SYLWESTER KŁYSZ 1, 2 1 Instytut Techniczny Wojsk

Bardziej szczegółowo

13. ZMĘCZENIE METALI *

13. ZMĘCZENIE METALI * 13. ZMĘCZENIE METALI * 13.1. WSTĘP Jedną z najczęściej obserwowanych form zniszczenia konstrukcji jest zniszczenie zmęczeniowe, niezwykle groźne w skutkach, gdyż zazwyczaj niespodziewane. Zniszczenie to

Bardziej szczegółowo

Problemy trwałości zmęczeniowej połączeń spawanych wykonanych ze stali S890QL

Problemy trwałości zmęczeniowej połączeń spawanych wykonanych ze stali S890QL Bi u l e t y n WAT Vo l. LXI, Nr 2, 2012 Problemy trwałości zmęczeniowej połączeń spawanych wykonanych ze stali S890QL Czesław Goss, Paweł Marecki Wojskowa Akademia Techniczna, Wydział Mechaniczny, Katedra

Bardziej szczegółowo

Eksperymentalne określenie krzywej podatności. dla płaskiej próbki z karbem krawędziowym (SEC)

Eksperymentalne określenie krzywej podatności. dla płaskiej próbki z karbem krawędziowym (SEC) W Lucjan BUKOWSKI, Sylwester KŁYSZ Instytut Techniczny Wojsk Lotniczych Eksperymentalne określenie krzywej podatności dla płaskiej próbki z karbem krawędziowym (SEC) W pracy przedstawiono wyniki pomiarów

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integralność konstrukcji Wykład Nr 4 Metoda naprężenia nominalnego Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl/dydaktyka/dla_studentow/imir/imir.html

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Zagadnienia niskocyklowego zmęczenia metali

Zagadnienia niskocyklowego zmęczenia metali Sylwester KŁYSZ Instytut Techniczny Wojsk Lotniczych Czesław GOSS Wojskowa Akademia Techniczna Zagadnienia niskocyklowego zmęczenia metali W pracy dokonano przeglądu podstawowych zagadnień niskocyklowego

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu. Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

ZAGADNIENIE CYKLICZNEGO UMOCNIENIA LUB OSŁABIENIA METALI W WARUNKACH OBCIĄŻENIA PROGRAMOWANEGO

ZAGADNIENIE CYKLICZNEGO UMOCNIENIA LUB OSŁABIENIA METALI W WARUNKACH OBCIĄŻENIA PROGRAMOWANEGO acta mechanica et automatica, vol.5 no. () ZAGADNIENIE CYKLICZNEGO UMOCNIENIA LUB OSŁABIENIA METALI W WARUNKACH OBCIĄŻENIA PROGRAMOWANEGO Stanisław MROZIŃSKI *, Józef SZALA * * Instytut Mechaniki i Konstrukcji

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b) Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900

Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900 BIULETYN WAT VOL. LVII, NR 1, 2008 Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900 CZESŁAW GOSS, PAWEŁ MARECKI Wojskowa Akademia Techniczna, Wydział Mechaniczny, Katedra Budowy Maszyn,

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.

FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę. FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

SPIS TREŚCI. Przedmowa Rozdział 1. WSTĘP... 9

SPIS TREŚCI. Przedmowa Rozdział 1. WSTĘP... 9 SPIS TREŚCI Przedmowa................................................................... 7 Rozdział 1. WSTĘP............................................................ 9 Rozdział 2. OBCIĄŻENIA W MASZYNACH.......................................

Bardziej szczegółowo

prof. dr hab. inż. Tomaszek Henryk Instytut Techniczny Wojsk Lotniczych, ul. Księcia Bolesława 6, Warszawa, tel.

prof. dr hab. inż. Tomaszek Henryk Instytut Techniczny Wojsk Lotniczych, ul. Księcia Bolesława 6, Warszawa, tel. prof. dr hab. inż. Tomaszek Henryk Instytut Techniczny Wojsk Lotniczych, ul. Księcia Bolesława 6, 01-494 Warszawa, tel. +48 22 685 19 56 dr inż. Jasztal Michał Wojskowa Akademia Techniczna, ul. Kaliskiego

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

MODELE WYKRESÓW ZMĘCZENIOWYCH W OBLICZENIACH TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW MASZYN PRZYKŁADY BADAŃ

MODELE WYKRESÓW ZMĘCZENIOWYCH W OBLICZENIACH TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW MASZYN PRZYKŁADY BADAŃ ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Grzegorz SZALA, Bogdan LIGAJ MODELE WYKRESÓW ZMĘCZENIOWYCH W OBLICZENIACH TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW MASZYN PRZYKŁADY

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

OPIS PROPAGACJI PĘKNIĘĆ W STOPIE AL 2024-T4

OPIS PROPAGACJI PĘKNIĘĆ W STOPIE AL 2024-T4 ENERGIA W NAUCE I TECHNICE Suwałki 2014 Kłysz Sylwester 1,2, Lisiecki Janusz 1, Nowakowski Dominik 1, Kharchenko Yevhen 2 1 Instytut Techniczny Wojsk Lotniczych Księcia Bolesława 6, 00-494 Warszawa tel.:

Bardziej szczegółowo

PROBLEMY NISKOCYKLOWEJ TRWAŁOŚCI ZMĘCZENIOWEJ WYBRANYCH STALI I POŁĄCZEŃ SPAWANYCH

PROBLEMY NISKOCYKLOWEJ TRWAŁOŚCI ZMĘCZENIOWEJ WYBRANYCH STALI I POŁĄCZEŃ SPAWANYCH Praca zbiorowa pod redakcją Czesława GOSSA PROBLEMY NISKOCYKLOWEJ TRWAŁOŚCI ZMĘCZENIOWEJ WYBRANYCH STALI I POŁĄCZEŃ SPAWANYCH Instytut Techniczny Wojsk Lotniczych Warszawa 004 Autorzy poszczególnych rozdziałów

Bardziej szczegółowo

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

x+h=10 zatem h=10-x gdzie x>0 i h>0

x+h=10 zatem h=10-x gdzie x>0 i h>0 Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych. Piotr Tarasiuk

Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych. Piotr Tarasiuk Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych Piotr Tarasiuk Cel pracy Poprawa jakości wytwarzanych kół jezdnych - zwiększenie wytrzymałości zmęczeniowej

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

Ć W I C Z E N I E N R E-5

Ć W I C Z E N I E N R E-5 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOLOG MATERAŁÓW POLTECHNKA CZĘSTOCHOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-5 POMAR POJEMNOŚC KONDENSATORA METODĄ ROZŁADOWANA . Zagadnienia do

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Próby zmęczeniowe. 13.1. Wstęp

Próby zmęczeniowe. 13.1. Wstęp Próby zmęczeniowe 13.1. Wstęp Obciążenia działające w różnych układach mechanicznych najczęściej zmieniają się w czasie. Wywołują one w materiale złożone zjawiska i zmiany, zależne od wartości tych naprężeń

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8]. Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji

Bardziej szczegółowo

LINIOWA MECHANIKA PĘKANIA

LINIOWA MECHANIKA PĘKANIA Podstawowe informacje nt. LINIOWA MECHANIKA PĘKANIA Wytrzymałość materiałów II J. German 1 WZROST SZCZELIN ZMĘCZENIOWYCH Przedstawione w poprzednich rozdziałach różne kryteria inicjacji wzrostu szczeliny

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:

Bardziej szczegółowo

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

ROZPRAWA DOKTORSKA. mgr inż. Radosław Skocki BADANIA WPŁYWU TEMPERATURY PODWYŻSZONEJ NA WŁAŚCIWOŚCI CYKLICZNE STALI P91

ROZPRAWA DOKTORSKA. mgr inż. Radosław Skocki BADANIA WPŁYWU TEMPERATURY PODWYŻSZONEJ NA WŁAŚCIWOŚCI CYKLICZNE STALI P91 ROZPRAWA DOKTORSKA mgr inż. Radosław Skocki BADANIA WPŁYWU TEMPERATURY PODWYŻSZONEJ NA WŁAŚCIWOŚCI CYKLICZNE STALI P91 PROMOTOR DR HAB. INŻ. STANISŁAW MROZIŃSKI 2 Składam serdeczne podziękowanie Panu dr

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2 Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3 ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

NK315 EKSPOATACJA STATKÓW LATAJĄCYCH. Procesy degradacyjne i destrukcyjne (c.d.)

NK315 EKSPOATACJA STATKÓW LATAJĄCYCH. Procesy degradacyjne i destrukcyjne (c.d.) NK315 EKSPOATACJA STATKÓW LATAJĄCYCH Procesy degradacyjne i destrukcyjne (c.d.) 1 ZMĘCZENIE ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW obciążenia zmęczeniowe elementów konstrukcyjnych Obciążenia eksploatacyjne którym

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI

POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI i PODSTAW KONSTRUKCJI MASZYN ZAKŁAD MECHANIKI TECHNICZNEJ Laboratorium Wytrzymałości Materiałów BADANIE METALI NA ZAMĘCZENIE Opracował: Jędrzej

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO DO BLOKADY PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO DO BLOKADY PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, Anna BIEŃ **, Janusz LISIECKI *, Paweł SZABRACKI ** * Instytut Techniczny Wojsk Lotniczych, Warszawa ** Uniwersytet Warmińsko-Mazurski, Olsztyn ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo