Geometria zderzenia. 100 (RHIC 200GeV), 1500 (LHC)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geometria zderzenia. 100 (RHIC 200GeV), 1500 (LHC)"

Transkrypt

1 Geometria zderzenia zderzenia skrajnie relatywistycznych energii - obrazek geometryczny trajektorie prostoliniowe skrócenie Lorentza w kierunku wi zki - czynnik γ = E NN /2 m p 1 (RHIC 2GeV), 15 (LHC) zderzaj ce sie j dra to dwa bardzo cienkie dyski TYLKO cz ± nukleonów uczestniczy w zderzeniu (partycypanci, participants) s to nukleony z obszaru przekrywania obu dysków

2 Centralno± zderzenia wielko± obszaru przekrywania zale»y od parametru zderzenia b (impact parameter) b - odlegªo± mi dzy trajektoriami ±rdodków obu j der zderzenia j drowe zachodz gdy b R A + R B, caªy taki zbiór zderze«to zderzenia minimum-bias (dla wi kszych parametrów zderzenia - zderzenia ultraperyferyczne, oddz. elektromagnetyczne) dla du»ych b - zderzenia peryferyczne peripheral collisions dla maªych b zderzenia centralne central collisions dla b zderzenia czoªowe head on collisions

3 Pªaszczyzna zderzenia zwyczajowo przyjmujemy kierunek osi z dla kierunku wi zek pªaszczyzna wyznaczona przez parametr zderzenia i o± wi zki to pªaszczyzna zderzenia reaction plane (zwykle przyjmuje si pª. x-z) analogicznie jak w zwykªej reakcji rozpraszania pªaszczyzna poprzeczna x-y, prostopadªa do wi zki transverse plane 1 y (fm) 5 5 w pªaszczy¹nie poprzecznej dziej si najciekawsze rzeczy, dynamika w pª x-y najlepiej zbadana x (fm)

4 Zranione nukleony, partycypanci W zale»no±ci od parametru zderzenia, ilo± nukleonów uczestnicz cych w zderzeniu zmienia si nukleony, które nie uczestnicz w zderzeniu nazywamy spektatorami, nukleonami spektatorami spectators, spectator nucleons mo»na rozró»ni spektatory pocisku i tarczy nukleony, które zderzyªy sie conajmniej raz nazywamy partycypantami participants, participant nucleons cz ± osób rozró»nia partycypanci Npart - cojajmniej jedno oddziaªywanie zranione nukleony Nw - conajmniej jedno oddziaªywanie nieelastyczne obecnie te nazwy stosuje si zamiennie dla nukleonów oddziaªyj cych nieelastycznie, czyli uczestnicz cych w produkcji cz stek (wi kszo± u»ywa participant nucelon, polscy autorzy czasami wounded nucleon, ze wzgl du na wkªad - A. Biaªas, M. Bleszy«ski, W. Czyz, Nucl Phys. B111 (1976) 461, wounded nucleon model)

5 Denicje centralno±ci zderzenia parametr zderzenia nie jest mierzalny, w praktyce centralno± zderzenia denujemy przez inn mierzalna wielko± mo»na wybra dowoln obserwabl, która zmienia si montonicznie z parametrem zderzenia np. - krotno± produkowanych cz stek (najwi ksza gdy obszar przekrywania jest du»y) (w przybli»eniu N ch Npart (model zranionych nukleonów)) - energia mierzona w kalorymetrze (wystarczy nawet odpowied¹ detektora) - energia spektatorów w ZDC (najcz ±ciej tylko neutrony), najmniejsza dla zderze«centralnych

6 Klasy centralno±ci I ró»ne miary centralno±ci daja w przyblizeniu to samo - silna korelacja, ale nie dokªadnie to samo!! I w zderzeniach A-A prawie nigdy nie bierzemy zderze«min. bias zderzenia centralne i peryferyczne bardzo si ró»ni I wszystkie przypadki dzielimy na klasy centralno±ci (wzgl dem danej zmiennej, np. energia poprzeczna) 16 Pb+Pb ATLAS snn=2.76 TeV Σ ET ( η <3.2) [TeV] 13 (-1)% (4-1)% 14 (1-2)% 15 (2-4)% dn/det [ TeV-1 ] centrality bins 1 ATLAS Pb+Pb snn=2.76 TeV FCal Σ ET (3.2< η <4.9) [TeV] FCal Σ ET (3.2< η <4.9) [TeV] I Wybór ró»nych skorelowanych zmiennych dla def. centralno±ci zwykle nie ma znaczenia. Uwaga, ostre ganice klas centralno±ci w jednej zmiennej s rozmyte w drugiej. Trzeba wiedzie co porównywa mi dzy eksperymentami i mi dzy eksp. a modelami. I Wybór de nicji klas centralno±ci ma znaczenie dla w skich przedziaªów, dla zderze«bardzo centralnych, bardzo peryferycznych, dla oddziaªywa«p-a

7 Optyczny, rozkªad nukleonów w j drze rozkªad materii j drowej w du»ym j drze opisujemy rozkªadem Woodsa-Saxona ρ ρ A (r) = 1 + exp((r R A )/a) gdzie promie«r A 1.12fmA 1/3, a.5-.6fm parametr grubo±ci, ρ.16fm 3 g sto± w ±rodku w modelu geometrycznym zderze«j drowych, zderzaj si indywidualne nukeony, pochodz ce z obu j der poªo»enia nukleonów zgodne z rozkªadem WS rozkªad materii (ªadunku) znamy z eksp. rozpraszania elektronów na j drach, rozkªad poªoze«nukleonów jest troszk w»szy (bo same nukleony maj sko«czony promie«) dla maªych j der u»ywa sie inne parametryzacje, np. f. Gaussa lub parametryzacja z modeli (harmonic oscillator shell modell), dla deuteronu lub j dra 3 He kwadrat funkcji falowej w zaawansowanym modelowaniu uwzgl dnia sie deformacje j drowe

8 Optyczny, p-a proton uderza w j dro w punkcie s = (x, y), porusza si po linii prostej wzdªu» z prawd.,»e oddziaªa z konkretnym nukleonem tarczy to p = σ ρ(x, y, z) σ to nieel. przekrój czynny T A (x, y) = ρ(x, y, z)dz Uwaga: czasami u»ywa si T A (x, y) = ρ(x,y,z) dz A prawdopodobie«stwo,»e proton oddziaªa to d 2 σ pa db2 Prawdopodobie«stwo,»e oddziaªaªo k nukleonów tarczy to A dz = σ T A (x, y) A ( = 1 (1 p) A = 1 1 σ T ) A (x, y) A A ( A ) P(k) = p k (1 p) A k k ±rednia liczba zranionych nukleonów z A przy uderzeniu w punkcie b = (x, y) to pa = σ ρ(x, y, z)dz ±rednia liczba zranionych nukleonów z A, u±redniona po parametrach zderzenia to po prostu σ A σpa

9 Optyczny, A-A I B (~s ~b/2, z ) i ρa (~s + ~b/2, z ), ρ to zwykle nukleony w j drach A i B s rozªo»one zgodnie z rozkªadem ρ b rozkªad Woodsa-Saxona, a ~ to parametr zderzenia. I s rozkªad nukleonów z B uderzaj cych w punkcie ~ to TB (~s ~b/2) B R = ρ B (~s ~b/2, z )/B zgodnie z analiz dla p-a, ±rednia g sto± zranionych nukleonów z B to (liczba prawd.) T (~s + ~b/2) A nb (~s ) = TB (~s ~b/2) 1 1 σ A A I s x y ) pªaszczyzny zderzenia to caªkowita g sto± nukleonów w punkcie ~ = (, T (~s + ~b/2) A T (~s ~b/2) B npart (~s ) = TB (~s ~b/2) 1 1 σ A s + ~b/2) 1 1 σ B + TA (~ A B Pb -Pb b =2 fm N part H x, y L Pb -Pb b =1 fm 4 N part H x, y L y -5 x -5 x y

10 Zranione nukleony dla okre±lonego parametru zderzenia b liczba zranionych nukleonów N part = n part(x, y) dxdy dla zderze«czoªowych (b ) prawie wszystkie nukleony s zranione N part A + B = 416 liczba zranionych nukleonów (partycypantów) jest dobr miar centralno±ci zderzenia

11 Liczba zderze«dla okre±lonego parametru zderzenia b, prawdopodobie«stwo,»e konkretny nukleon z A zderzy si z konkretnym nukleonem z B wynosi p coll = σ TA ( s b/2) T B ( s + b/2) A B = σ T AB( b) AB T AB ( s) nazywamy funkcj przekrywania nuclear thickness function dla zderzenia j der A i B przy parametrze zderzenia b. prawdopodobie«stwo k zderze«to a ich ±rednia liczba to N coll = σt AB ( b) P AB (k, ( AB ) b) = p k coll k (1 p coll )AB k liczba zderze«jest zwykle du»o wi ksza ni» liczba zranionych nukleonów (ka»dy nukleon zderza si wiele razy), ozn. N coll, N bin, number of binary collisions

12 Przekrój czynny na zderzenie dla okre±lonego parametru zderzenia b, prawdopodobie«stwo,»e zajdzie conajmniej jedno zderzenie wynosi d 2 σ AB db 2 = P inel ( b) = ( AB P AB (k, b) = 1 k=1 1 σ T AB( b) AB ) AB ta wielko± jest ró»niczkowym nieelastycznym przekrojem czynnym j dro-j dro caªkowity przekrój czynny to σ inel AB = ( 1 1 ( 1 σ T AB( b) AB ) AB ) d 2 b 7.7b jest to wi cej ni» naiwny geometryczny przekrój czynny π(r A + R B ) 2 5.5b do b 14fm mo»na przyj 1% prawd. reakcji, klasy centralno±ci s rozmieszczone równomiernie w b 2

13 Liczba zranionych nukleonów - produkcja cz stek w orginalnym modelu zranionych nukleonów liczba produkowanych cz stek jest proporcjonalna do N part zwykle dn dη ro±nie szybciej z centralno±ci ( Npart ) stosuje sie parametryzacj modelem mieszanym (N part N coll ) [ ] [ ] dn AB 1 α κ N part + αn coll dnpp 1 α N part + αn coll dη 2 dη 2 domieszka zderze«binarnych α = zale»y (troch ) od energii argument zyczny za skalowaniem z liczba zranionych nukleonów - cz stki o maªym p dzie poprzecznym nie zd» si oddzieli od nukleonu, caªo± uczestniczy w oddziaªywaniu i dopiero pó¹niej emituje mi kkie cz stki dla emisji wa»ne czy zaszªo jakiekolwiek oddziaªywanie czy nie skalowanie z Npart - dla cz stek o du»ych p dach i maªych przekrojach czynnych na produkcje skalowanie z liczb zderze«uwaga: zyczne argumenty za skalowaniem zakªadaj niezale»ne zderzenia nukleon-nukleon, w zderzeniach j drowych dochodzi modykacja procesów w stanie pocz tkowym i zmiana krotno±ci w dynamice po pierwszych zderzeniach nukleon-nukleon (wtórne rozpraszanie, hydrodynamika, pochªanianie cz stek itp.)

14 Skalowanie z liczb zderze«binarnych - R AA liczba twardych procesów w zderzeniu A-B (d»ety, wysokie p, bozony elektrosªabe) skaluje si jak liczba zderze«binarnych N hard ( b) = σhard pp T AB ( b) P inel AB ( b) rozkªad produkowanych cz stek na jedno zderzenie j drowe ma posta dn AB d 2 pdη ( b) = (1 σ ppt AB ( b) dσhard pp d 2 pdη ( ) 1 σ T AB ( AB)σpp = N coll b) P inel( AB b) AB dn pp d 2 pdη dla zderze«min. bias, u±rednienie po parametrze zderzenia (z wag P inel AB ( b)) daje dn AB d2 pd η = Ncoll d 2 b P inel ( b)d 2 b dnpp = AB σpp d2 pd η σ AB dnpp d2 pd η czyli dla min. bias d σ AB hard d σpp hard = AB d2 pd η d2 pd η argument parametryczny - Je»eli przekrój czynny jest bardzo maªy to liczba zranionych nukleonów jest równa (z dokªadno±cia do czynnika 2) liczbie zderzen binarnych - procesy twarde maj zawsze maªy przekrój czynny

15 Nuclear modication factor - R AA Efektów j drowe na produkcj cz stek twardych okre±la wspóªczynnik modykacji j drowej nuclear modication factor R AA = σ dn hard AA d 2 pdη N coll dσhard pp d 2 pdη gdzie N coll jest liczb zderzen binarnych u±rednion po badanym przedziale centralno±ci R AA < 1 tlumienie, suppression, quenching 1 brak efektow osrodka > 1 wzmocnienie, enhancement RAA 1 dla fotonów, bozonów elektrosªabych (sªabe oddziaªywanie z o±rodkiem) R AA < 1 dla hadronów, d»etów, tªumienie d»etów w pla¹mie kwarkowo-glonowej

16 Monte Carlo Monte Carlo, polega na przypadkowym generowaniu zderze«j drowych jako niezale»nych zderze«nukleon-nukleon nukleony w ka»dym j drze rozªo»one s przypadkowo zgodnie z rozkªadem ρ(x, y, z) nukleony z obu j der przelatuj po liniach prostych zderzenie N-N nast puje gdy odlegªo± w pªaszczy¹nie poprzecznej jest mniejsza ni» σ pp/π (black disc scattering) y x -2 y x w ka»dym zderzeniu przypadkowa liczba nukleonów jest zraniona, ±rednia liczba podobna jak w modelu optycznym Glaubera oddziaªywanie nast puje gdy n part 2 - min. bias

17 Monte Carlo II w losowaniu rozkªadu nukleonów w j drze uwzgl dnia si korelacje dwucz stkowe (excluded volume eect) np.» damy aby nukleony w j drze byªy dalej od siebie ni» d =.4fm dla maªych j der - losowanie z kwadratu funkcji falowej zamiast black disc prole u»ywa si realistycznego prolu dla prawdopodobie«stwa oddziaªywania N-N przy parametrze zderzenia b np. Gaussian wounding prole P inel NN (b) = Ae Ab2 /σ pp mo»na dobra parametry do elastycznego i caªkowitego przekroju czynnego t el (b) = 1 1 P inel(b) σ NN el = t el (b) 2 d 2 b w modelu black disc mamy σ el = σ inel (¹le!)

18 Mean RMS - rozkªady krotno±ci przy zaªo»eniu niezale»nej produkcji w ka»dym ¹ródle (zraniony nukleon) mo»na otrzyma caªkowity rozkªad krotno±ci jako zªo»enie rozkªadów (np. negative binomial P NN (n) = Γ(n+κ)λn κ κ ) cz stek z ka»dego ¹ródªa Γ(κ)n!(λ+κ) n+κ P(k) = i P part(i)(p NN... i razy P NN )(k) -1 [GeV ] Pb dn/dσe T 1/N evt -3 1 ATLAS Preliminary -1 p+pb, L int = 1 µb s NN = 5.2 TeV Glauber Glauber-Gribov, Ω =.55 Glauber-Gribov, Ω = 1.1 frameetratios2 Entries 2 Mean RMS Glauber 1 fit / data frameetratios3 Entries 2 Mean RMS Glauber-Gribov, Ω = frameetratios4 Entries Glauber-Gribov, Ω = Pb ΣE T [GeV] podobnie mo»na opisywa inne wielko±ci np. energia poprzeczna w kalorymetrze

19 - podsumowanie liczba zranionych nukleonów jest miar centralno±ci zderzenia - tak przedstawiane s dane eksperymentalne i wyniki modeli liczba zranionych nukleonów i liczba zderze«binarnych rosn dla zderze«centralnych model Glaubera Monte Carlo generuje przypadkowo zdarzenia o peªnym rozkªadzie N part wspóªczynnik modykacji j drowej R AA u»ywamy dla cz stek produkowanych w procesach twardych - opisuje stosunek rozkªadów zmierzonych w AA do przeskalowanego rozkªadu z pp (R AA = 1 oznacza brak efektów j drowych)

20 ¹ródªa Phys. Rev. C 88 (213) 4499 New J. Phys. 13 (211) 558 arxiv: Phys.Today 56N1 (23) 48 Phys.Rev. C79 (29) 6494 arxiv: ATLAS-CONF arxiv: [nucl-th] nucl-ex/7125v1 Phys.Rev.Lett. 15 (21)

Najgorętsze krople materii wytworzone na LHC

Najgorętsze krople materii wytworzone na LHC Najgorętsze krople materii wytworzone na LHC Adam Bzdak AGH, KZFJ Plan Wprowadzenie do A+A Przepływ eliptyczny, trójkątny, hydrodynamika Odkrycie na LHC w p+p i p+a Korelacje 2- i wielu-cząstkowe Podsumowanie

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Metody probablistyczne i statystyka stosowana

Metody probablistyczne i statystyka stosowana Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801

Bardziej szczegółowo

Biostatystyka, # 4 /Weterynaria I/

Biostatystyka, # 4 /Weterynaria I/ Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

In»ynierskie zastosowania statystyki wiczenia

In»ynierskie zastosowania statystyki wiczenia Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Krotności hadronów a + b c 1 + c +...+ c i +...+ c N Reakcje ekskluzywne: wszystkie

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów

Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów Fizyka zderzeń ciężkich jonów semestr letni 2014/2015 Wykład 6 1. Zderzenia jądro+jądro

Bardziej szczegółowo

Fizyka do przodu w zderzeniach proton-proton

Fizyka do przodu w zderzeniach proton-proton Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Fizyka zderzeń relatywistycznych jonów

Fizyka zderzeń relatywistycznych jonów Fizyka zderzeń relatywistycznych jonów kilka pytań i możliwe odpowiedzi Stanisław Mrówczyński Uniwersytet Jana Kochanowskiego, Kielce & Instytut Problemów Jądrowych, Warszawa 1 Programy eksperymentalne

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów

Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów Katarzyna Grebieszkow Wydział Fizyki Politechniki Warszawskiej Zakład Fizyki Jądrowej Pracownia Reakcji Ciężkich Jonów Fizyka zderzeń ciężkich jonów semestr letni 2018/2019 Wykład 6 1. Zderzenia jądro+jądro

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

Reakcje jądrowe. kanał wyjściowy

Reakcje jądrowe. kanał wyjściowy Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Kwantowa teoria wzgl dno±ci

Kwantowa teoria wzgl dno±ci Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego Festiwal Nauki, 16 wrze±nia 2006 Plan wykªadu Grawitacja i geometria 1 Grawitacja i geometria 2 3 Grawitacja Grawitacja i geometria wedªug Newtona:

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

Termodynamika - kilka relacji

Termodynamika - kilka relacji Termodynamika - kilka relacji ukªad termodynamiczny charakteryzuj wielko±ci ekstensywne E energia, V obj to±, S entropia, N liczba cz stek b d¹ wielko±ci intensywne ɛ g sto± energii, P ci±nienie, T temperatura,

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Elementarna statystyka

Elementarna statystyka Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek;

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek; EGZAMIN MAGISTERSKI, 26.06.2019r Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dwa niezale»ne portfele S 1, S 2 maj zªo»one rozkªady Poissona. S 1 CP oisson(2, F ), S 2 CP oisson(2, G), gdzie

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Analizy populacyjne, ªadunki atomowe

Analizy populacyjne, ªadunki atomowe Dodatek do w. # 3 i # 4 Šadunki atomowe, analizy populacyjne Q A = Z A N A Q A efektywny ªadunek atomu A, Z A N A liczba porz dkowa dla atomu A (czyli ªadunek j dra) efektywna liczba elektronów przypisana

Bardziej szczegółowo

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

MODELE LINIOWE i MIESZANE

MODELE LINIOWE i MIESZANE MODELE LINIOWE i MIESZANE WYKŠAD 5 13 kwiecie«2018 1 / 48 Plan wykªadu 1. Metody Monte Carlo we wnioskowaniu statystycznym 2. Pakiet R 2 / 48 Metody Monte Carlo we wnioskowaniu statystycznym 3 / 48 Zaªó»my,»e

Bardziej szczegółowo

1 Elektrostatyka. 1.1 Wst p teoretyczny

1 Elektrostatyka. 1.1 Wst p teoretyczny Elektrostatyka. Wst p teoretyczny Dwa ªadunki elektryczne q i q 2 wytwarzaj pole elektryczne i za po±rednictwem tego pola odziaªuj na siebie wzajemnie z pewn siª. Je»eli pole elektryczne wytworzone jest

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy XXXV OLIMPIADA WIEDZY TECHNICZNEJ Zawody III stopnia Rozwi zania zada«dla grupy mechaniczno-budowlanej Rozwi zanie zadania Tzw. maªy zwis, a wi c cos. W zwi zku z tym mo»na przyj,»e Rys. N H (N cos N)

Bardziej szczegółowo

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Eksperyment ALICE i plazma kwarkowo-gluonowa

Eksperyment ALICE i plazma kwarkowo-gluonowa Eksperyment ALICE i plazma kwarkowo-gluonowa CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin Gdzie to jest? ok. 100m Tu!!! LHC w schematycznym

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Badanie właściwości przypadków produkcji dżet-przerwa w rapidity-dżet na Wielkim Zderzaczu Hadronów

Badanie właściwości przypadków produkcji dżet-przerwa w rapidity-dżet na Wielkim Zderzaczu Hadronów Badanie właściwości przypadków produkcji dżet-przerwa w rapidity-dżet na Wielkim Zderzaczu Hadronów Paula Świerska Promotor: dr Maciej Trzebiński Politechnika Krakowska im. Tadeusza Kościuszki / 24 Plan

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność

Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność (pseudorapidity). Rozpraszanie leptonów na hadronach. Zmienna x Bjorkena.

Bardziej szczegółowo

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Struktura porotonu cd.

Struktura porotonu cd. Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???

Bardziej szczegółowo

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Lech Jakóbczyk Instytut Fizyki Teoretycznej Uniwersytet Wrocªawski 1 / 17 Spl tanie stanów czystych Formalna denicja spl tania Ukªad zªo»ony: Hilberta

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Co i czym mo»na skonstruowa

Co i czym mo»na skonstruowa Co i czym mo»na skonstruowa Jarosªaw Kosiorek 5 maja 016 Co mo»na skonstruowa? Maj c dany odcinek dªugo±ci 1 mo»na skonstruowa : 1. odcinek dªugo±ci równej dowolnej liczbie wymiernej dodatniej;. odcinek

Bardziej szczegółowo

Statystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski.

Statystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski. Statystyka opisowa. Wykªad II. e-mail:e.kozlovski@pollub.pl Spis tre±ci Mediana i moda 1 Mediana i moda 2 3 4 Mediana i moda Median m e (warto±ci ±rodkow ) próbki x 1,..., x n nazywamy ±rodkow liczb w

Bardziej szczegółowo

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska Temat wiczenia: Wyznaczanie stosunku przekrojów czynnych na aktywacj neutronami termicznymi

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2 Elektrostatyka Prawo Coulomba F = k qq r r 2 r, wspóªczynnik k = 1 N m2 4πε = 9 109 C 2 gdzie: F - siªa z jak ªadunek Q dziaªa na q, r wektor poªo»enia od ªadunku Q do q, r = r, Przenikalno± elektryczna

Bardziej szczegółowo