Termodynamika - kilka relacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Termodynamika - kilka relacji"

Transkrypt

1 Termodynamika - kilka relacji ukªad termodynamiczny charakteryzuj wielko±ci ekstensywne E energia, V obj to±, S entropia, N liczba cz stek b d¹ wielko±ci intensywne ɛ g sto± energii, P ci±nienie, T temperatura, n g sto± cz stek, s g sto± entropii, µ potencjaª chemiczny I zasada termodynamiki de = TdS pdv + µdn uwaga: dla ukªadu relatywistyczne denujemy µ uwzgl dniaj c energi spoczynkow cz stki - masa wchodzi do bilansu energii procesy prowadz ce do równowagi mog tworzy i anihilowa cz stki je»eli zachodz przemiany np. A + B C to w równowadze µ A + µ B = µ C dlatego w równowadze chemicznej (wzgl dem takich procesów) wprowadzamy potencjaªy chemiczne tylko dla zachowanych liczb kwantowych: liczba barionowa, dziwno±,... np. dla p, p, π +, π, π 0 liczba pionów i barionów nie jest zachowana w procesach anihilacji - wystarczy wprowadzi potencjaª chemiczny dla liczby barionowej µ B i trzeciej skªadowej izospinu µ I (µ P = µ B + µ I /2, µ n = µ B µ I /2, µ π + = µ π = µ I, µ π 0 = 0,... ) Uwaga: gdy nie ma rów. chemicznej, ka»da cz stka ma niezale»ny potencjaª chemiczny

2 Termodynamika 2 rozkªady równowagowe (gaz nieoddziaªuj cy, np. gaz hadronowy, ale nie QGP) f i (p) = 1 e (E i µ i )/kt ± 1, E i = p 2 + m 2, µ i potencjaª chemiczny cz stek i (- bozony, + fermiony) Niezerowy potencjaª chemiczny umo»liwia wprowadzenie innej g sto±ci cz stek i antycz stek µ A = µ Ā 0 ρ A ρ Ā (ρ A ρ Ā je»eli T µ A, LHC central rapidity ) g sto± cz stek ( g i liczba wewn trznych stopni swobody) n i = g i f i (p) d 3 p (2π) 3 ci±nienie P = i g i p 2 3E i f i (p) g sto± energii ɛ = i g i E i f i (p) d 3 p (2π) 3

3 Termodynamika 3 Dla wysokiej temperatury T m, T µ, ɛ i = g i n i = g i E i f i (p) d 3 p (2π) π 2 3 g i 30 T 4 ( 7 π 2 8 g i 30 T 4 ) bozony (fermiony) f i (p) d 3 p (2π) ζ(3) 3 g i π 2 T g i π 2 T 3 ( 3 4 g i P i = g i p 2 3E i f i (p) 1 3 ɛ i dla gazu ultrarelatywistycznego (du»e temperatury wzg. masy) ɛ = 1 3 P g e π 2 30 T 4 T 4 (Stefan-Boltzmann limit) gdzie g e = g bozon g fermion to efektywna liczba stopni swobody s 4 ɛ 3 T T 3, n i T 3 ζ(3) π 2 T 3 ) bozony(fermiony)

4 Równanie stanu równanie stanu (zwi zek mi dzy wielko±ciami termodynamicznymi) np. ɛ = ɛ(p, µ) zale»y od wªasno±ci ukªadu (rodzaje stopni swobody, oddziaªywania) mo»na ªatwo wyliczy dla nieoddziaªuj cego gazu (z caªek) ɛ i = g i Ei f i (p) d3 p (2π) 3 itd. dla QCD znamy z oblicze«na sieciach dla zerowej g sto±ci barionowej µ = 0

5 Pr dko± d¹wi ku dla materii bez barionów (obszar centralnych rapidity) funkcje term. zale» tylko od temperatury ɛ(t ) P(T ) s(t ) dɛ = s, dp dt ds pr dko± d¹wi ku c 2 s = dp dɛ dla gazu ultrarelatywistycznego c 2 s 1 3 dla T = T c zmi kczenie równania stanu (softest point)

6 Tensor energii p du tensor energii-p du dla gazu w spoczynku T µν id = 2 p g i f i (p)p µ p ν E i i ɛ T µν = 0 P P P gdy gaz (ukªad w równowadze) porusza sie z pr dko±cia u µ T µν = (ɛ + P)u µ u ν Pg µν ogólniej (nie tylko dla gazu) zakªadaj c lokan równowag T µν = [ɛ(x α ) + P(x α )] u µ (x α )u ν (x α ) P(x α )g µν tensor energii-p du wyra»ony przez - lokaln g sto± energii ɛ(x α ) - lokalne ci±nienie P(x α ) - pr dko± kolektywn u(x α ) collective ow

7 Etapy zderzenia j drowego

8 - tensor energii p du - prawa zachowania energy momentum tensor tensor energii-p du T µν id = (ɛ + p)u µ u ν Pg µν relatywistyczna hydrodynamika pªynu idealnego (5 funkcji w wym), g sto± energii, ci±nienie, pr dko± pªynu (pr dko± kolektywna) ɛ(x µ), P(x µ), v(x µ) 4 równania hydrodynamiki ( µ = x µ ) µt µν = 0 równanie stanu (pªyn o zerowej g sto±ci barionowej) gaz relatywistyczny ɛ = 3p ɛ = ɛ(p)

9 Równania hydrodynamiki pªynu idealnego równania µ T µν = 0 rzutujemy na u ν dostajemy równanie zachowania entropii uµ ν T µν = 0 µ(s u µ ) = 0 entropia dla pªynu idealnego jest zachowana pozostaªe rów. rzutujemy prost. do u µ να µ Tµα = (g να u ν u α ) µ Tµα = 0 co daje lub inaczej (ɛ + P)uµ µ u ν = ν P u ν uµ µ P uµ µ u ν = ν T T uµ µ T u ν T równanie rzutowane na u ν mo»na zapisa jako uµ µ T = cs 2 µuµ T ekspansja jest szybsza je»eli cs 2 jest du»e ( 1/3), a wolna dla mi kszego równania stanu (maªe c2 s ), np. dla przej±cia I rodzaju

10 etap nierównowagowy - tworzenie g stej materii - termalizacja plazma kwarkowo gluonowa - ekspansja hydrodynamiczna przej±cie do materii hadronowej - ekspansja hydrodynamiczna równowaga chemiczna - dalsza ekspansja tylko w równowadze kinetycznej wymro»enie freeze-out - emisja pojedynczych hadronów rozpraszanie hadronów i rozpad rezonansów

11 Przepªyw Bjorkena w zderzeniu najszybsza ekspansja nast puje w kierunku z trzeba u»ywac zmiennych τ = t 2 + z 2 i η = 1 ( ) 2 log t+z (proper time, space-time rapidity) t z materia szybko si poruszj ca w kierunku z, w zmiennych η i rapidity y ma przepªyw skaluj cy (przepªyw Bjorkena) η y czyli vz τ z, vz τ sinh(η) przyjmuj c dla pocz tkowej fazy zderzenia vz = z τ, vx = vy = 0 oraz zalezno± rozkªadów tylko od τ (ɛ(τ)) wtedy równania hydrodynamiki to dla ustalonej pr dko±ci d¹wi ku c 2 s = dp d ɛ mamy d ɛ = ɛ + P d τ τ ( τ ) ɛ(τ) = ɛ 0 1+c 2 s 0 τ

12 ekspansja 2+1-wymiarowa Realistyczny model ekspansji 1 t ɛ(τ, x, y), u µ = ( 1 v 2 τ, vx, vy, 1 z 1 v 2 τ ) mamy 3 równania hydrodynamiki + rów. stanu, dla 4 wielko±ci ɛ, P, v x, v z, które s funkcjami τ, x, y ekspansja 3+1-wymiarowa 1 ɛ(τ, x, y, η), u µ = (, vx, 1 v 2 vy, 1 sinh(y )) 1 v 2 mamy 4 równania hydrodynamiki + rów. stanu, dla 5 wielko±ci ɛ, P, v x, v z, Y, które s funkcjami τ, x, y, η, (Y to rapidity pªynu) Ekspansja podªu»na i poprzeczna

13 Ekspansja 3+1-wymiarowa kolektywna ekspansja poprzeczna u µ µu x = 1 + u2 x st u µ µu y = 1 + u2 y st ux uy x P st y P +... ux uy y P st x P +... szybsza ekspansja w kierunku wi kszego gradientu g sto±ci (kierunek x in plane) co powoduje niesymetryczny rozkªad p dowy - przepªyw eliptyczny elliptic ow M. Chojnacki

14 Wymro»enie cz stki s emitowne statystycznie z elementów pªynu formuªa Cooper-Frye E d 3 N = dσ µp µ dp 3 f [p µu µ (x)] g sto± maleje - zatrzymanie ekspansji hydrodynamicznej zwykle przyjmuje sie wymoro»enie (freeze out ) gdy temperatura spadnie do pewnej warto±ci, ten warunek daje powierzchni wymro»enia cz stka nabywa pr dko± kolektywn i pr dko± ruchu termicznego nast pnie rozpad rezonansów i rozpraszanie w gazie hadronów

15 Widma w p dzie poprzecznym spªaszczone widmo - przepªyw kolektywny silniejszy efekt dla ci»szych cz stek silniejszy efekt na LHC model hydrodynamiczny opisuje mi kkie p dy p < 2GeV porzuszaj cy si pªyn daje widmo o efektywnie wy»szej temperaturze (1/nachylenie w widmach m ) 1 + β r T e T 1 β r

16 asymetryczny ksztaªt ¹ródªa dla niezerowego parametru zderzenia model Glaubera, model KLN, IP-Glasma dxdy(x 2 y 2 )ρ(x,y) dxdy(x 2 +y 2 )ρ(x,y) eccentricity - ɛ 2 = wi kszy gradient i silniejszy przepªyw in plane - v 2 > 0 - elliptic ow coecient dn dφ 1 + 2v2cos(2φ) ɛ 2 + HYDRO RESPONSE v 2 Plaszczyzna zdarzenia (pªaszczyzna reakcji) musza by wyznaczone w ka»dym zderzeniu (event plane, reaction plane)

17 Korelacje dwucz stkowe w k cie C( φ) dn dφ 1dφ 2δ(φ 1 + φ φ 2) dφ 1dφ v 2 1 cos( φ) + 2v 2 2 cos(2 φ) + 2v 2 3 cos(3 φ) +... v 2 2 mo»na wyznaczy z korelacji dwucz stkowych v 2 2 = 1 N pair ij cos(2(φ i φ j )) (cummulant method) (v 1 - przepªyw ukierunkowanydirected ow, v 3 - przepªyw trójk tny triangular ow) w symetrycznych zderzeniach - nieparzyste harmoniki pochodz z uktuacji ksztaªtu

18 Przepªyw eliptyczny pocz tkowa asymetria ksztaªtu jest przeksztaªcona w asymetri azymutaln p dów emitowanych cz stek silny argument za istnieniem przepªywu kolektywnego

19 uktuacje warunków poczatkowych ukuujacy rozkªad g sto±ci wi ksze eccentricity ukuujace eccentricity deformacja trójk tna ɛ 3 dipolowa deformacja - przepªyw ukierunkowany v 1 uktuacje < p > ukuacje kierunku pªaszczyzny zderzenia )) 3 = cos(3(φ-ψ 3 v <N part <120 AMPT 160<N part <200 Au+Au 200GeV 240<N part <280 η < <N part < p (GeV) T dn dφ 1+2v 1 cos(φ Ψ 1 )+2v 2 cos(2(φ Ψ 2 ))+2v 3 cos(3(φ Ψ 3 ))+... (b)

20 zdarzenie po zdarzeniu - dla ka»dej realizacji warunków poczatkowych - ewolucja hydrodynamiczna - wyniki u±redniamy po wielu symulacjach - podobnie jak w eksperymencie 3+1D event by event viscous hydrodynamics

21 Przepªyw trójk tny PHENIX przepªyw trójk tny dobrze opisany przez symulacje hydrodynamiki zdarzenie po zdarzeniu

22 Flukuacje wspóªczynników przepªywu < v n >, < v 2 n > a nawet caªy rozkªad vn mo»na odtworzy

23 Dobry opis rozkªadu wspóªczynników v n w hydrodynamice

24 Deformacja ksztaªtu - wpsóªczynniki przepªywu deformacja ksztaªtu»ródªa mo»na zapisac za pomoca wspólczynników eccentricity ellipticity, triangularity n dxdy r cos(nφ)ρ(x, y) ɛ n = dxdy r n ρ(x, y) ko«cowa asymetria emitowanych cz stek jest proporcjonalna do ɛ n v n κɛ n wspóªczynnik odpowiedzi hydrodynamicznej κ zale»y od wªasno±ci pªynu - lepko±!

25 Dobry opis rozkªadu wspóªczynników v n w hydrodynamice

26 sqgp czy wqgp? Przepªyw kolektywny w hydrodynamice mo»na u»y do zbadania wªasno±ci materii Haque, Andersen, Mustafa, Strickland, Su, 2013 Csernai, Kapusta, McLerran, 2006

27 Pªyn o maªej lepko±ci teoria silnie oddziaªuj ca (AdSCFT) η s = 1 4π 0.08 krótka droga swobodna, du»y przkrój czynny η = 1 3 npl mfp dla η/s = 0.08 L mfp = 3s fm 4πnp ±rednia droga swobodna dªugo± fali cz stki L mfp 0.9λ ±rednia droga swobodna odlegªo± mi zdy cz stkami L mfp 0.5n 1/3 czyli : nie mo»na uzywa opisu kwazicz stek, sqgp

28 tensor energii p du T µν = hydrodynamika z lepko±ci ɛ p + Π p + Π p + Π + πµν lepko± shear µα νβ u γ γ π αβ = 2ησµν π µν τ π 1 ηt πµν α 2 τ π ( τπ u α ηt ) lepko± bulk u γ γ Π = ζ γu γ Π τ Π 1 2 ΠζT τ Π α ( τπ u α poprawki od lepko±ci zachodz przy istnieniu gradientów pr dko±ci ζt )

29 Maªa lepko± - pªyn prawie doskonaªy Maªa lepko± : η/s = sqgp (strongly interacting QGP)

30 IP-glasma η/s 0.2 oszacowanie η/s zale»y od modelu, η/s

31 korelacje inteferometryczne Hanburry Brown-Twiss (1956) - pomiar ±rednicy gwiazd korelacja nat»enia w dwóch detektorach < I A I B >=< I A >< I B > (1+C(r AB ))

32 Korelacje Hanbury Brown-Twiss (HBT) korelacje kwantowe (anty-)symetryzacja amplitudy produkcji pary cz stek obserwujemy korelacje pary identycznych cz stek, np. π + π + C(p 1, p 2) = d 4 x1d 4 x 2S(x 1, p 1)S(x 2, p 2) e i (x 1 p 1 +x 2 p 2 ) + e i (x 2 p 1 +x 1 p 2 ) 2 d 4 x 1S(x 1, p 1) d 4 x 2S(x 1, p 2) eksperymentalnie rekonstruujemy N(p1, p2) C(k, q) = N(p 1)N(p 2) u»ywaj c w mianowniku par z mieszanych zdarze«mixed event pairs mierzymy korelacje we wzgl dnym p dzie pionów, dla ró»nych p dów pary k = p 1 +p 2 2 w ogólno±ci funkcja 6-zmiennych w funkcji falowej pary uwzgl dnia si te» oddziaªywania w stanie ko«cowym, np. oddz. kulombowskie

33 Parametryzacja Bertscha-Pratta korelacje mierzymy dla ustalonego ±redniego p du pary k = (p 1 + p 2)/2 przechodzimy do ukªadu local comoving system LCMS gdzie k z = 0 (skªadowa wzdªu» osi zderzenia), wtedy k = (k, 0) wektor wzgl dnego p du rozdzielamy na trzy skªadowe q long = q z, q out (równolegle do k ) i q side prostopadle do long i out

34 promienie HBT funkcja korelacji (bez uwzg dnienienia oddziaªywa«w stanie ko«cowym) C(q) = 1+ λe R2 out q2 out R2 side q2 side R2 long q2 long Parametry tu R daj rozmiar obszaru emisji interferometry, femtoscopy, HBT

35 zalezno± od p du pary pary o du»ym p dzie s emitowane z tego samego obaszaru ¹ródªa im wi kszy p d tym bardziej skolimowana emisja pary, musz by emitowane z elementu pªynu o tej samej pr dko±ci kolektywnej ten obszar nazywa sie homgeneity region a jego rozmiar homgeneity length dla niezerowego p du pary mierzmy rozmiar obszar emisji a nie caªe ¹ródªo promienie zmniejszaj si ze wzrostem p du pary

36 zalezno± od rozmiaru im wi ksza krotno± tym wi kszy rozmiar emisja z wi kszego obszaru o podobnej gesto±ci + pewna zale»no±c od siªy przepªywu

37 ¹ródªa arxiv: Phys.Rev.Lett.87:272302,2001 Phys. Rev. 106, (2011) Phys. Rev. 103, (2009) arxiv: Phys. Rev. C78, (2009) Phys.Rev. C81 (2010) Phys. Rev. C 88 (2013) New J. Phys. 13 (2011) arxiv: Phys.Today 56N10 (2003) 48 Phys.Rev. C79 (2009) arxiv: ATLAS-CONF

Kinetyczna teoria gazów

Kinetyczna teoria gazów Kinetyczna teoria gazów Gaz doskonaªy 1. Cz steczki gazu wzajemnie na siebie nie dziaªaj, a» do momentu zderzenia 2. Rozmiary cz steczek mo»na pomin, traktuj c je jako punkty Ka»da cz steczka gazu porusza

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Fizyka zderzeń relatywistycznych jonów

Fizyka zderzeń relatywistycznych jonów Fizyka zderzeń relatywistycznych jonów kilka pytań i możliwe odpowiedzi Stanisław Mrówczyński Uniwersytet Jana Kochanowskiego, Kielce & Instytut Problemów Jądrowych, Warszawa 1 Programy eksperymentalne

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Najgorętsze krople materii wytworzone na LHC

Najgorętsze krople materii wytworzone na LHC Najgorętsze krople materii wytworzone na LHC Adam Bzdak AGH, KZFJ Plan Wprowadzenie do A+A Przepływ eliptyczny, trójkątny, hydrodynamika Odkrycie na LHC w p+p i p+a Korelacje 2- i wielu-cząstkowe Podsumowanie

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

1 Elektrostatyka. 1.1 Wst p teoretyczny

1 Elektrostatyka. 1.1 Wst p teoretyczny Elektrostatyka. Wst p teoretyczny Dwa ªadunki elektryczne q i q 2 wytwarzaj pole elektryczne i za po±rednictwem tego pola odziaªuj na siebie wzajemnie z pewn siª. Je»eli pole elektryczne wytworzone jest

Bardziej szczegółowo

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3 Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

Kinematyka 2/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka

Kinematyka 2/15. Andrzej Kapanowski   ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka Kinematyka 2/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Podstawowe poj cia Kinematyka jest cz ±ci mechaniki, która zajmuje si opisem

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Zadania z zyki statystycznej

Zadania z zyki statystycznej Zadania z zyki statystycznej 14 stycznia Zadanie 7.1 (Rozdziaª 5.4 w [4], zadanie 6.11 w [1] ) Wykorzystuj c przybli»enie ±redniego pola wyznacz równania uwikªane opisuj ce ±redni warto± spinu < s > przy

Bardziej szczegółowo

Biostatystyka, # 4 /Weterynaria I/

Biostatystyka, # 4 /Weterynaria I/ Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Dynamika Bryªy Sztywnej

Dynamika Bryªy Sztywnej Dynamika Bryªy Sztywnej Adam Szmagli«ski Instytut Fizyki PK Kraków, 27.10.2016 Podstawy dynamiki bryªy sztywnej Bryªa sztywna to ukªad cz stek o niezmiennych wzajemnych odlegªo±ciach. Adam Szmagli«ski

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)

Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Plazma Kwarkowo-Gluonowa Nowy Stan Materii Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Diagram fazowy

Bardziej szczegółowo

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola

Bardziej szczegółowo

Geometria zderzenia. 100 (RHIC 200GeV), 1500 (LHC)

Geometria zderzenia. 100 (RHIC 200GeV), 1500 (LHC) Geometria zderzenia zderzenia skrajnie relatywistycznych energii - obrazek geometryczny trajektorie prostoliniowe skrócenie Lorentza w kierunku wi zki - czynnik γ = E NN /2 m p 1 (RHIC 2GeV), 15 (LHC)

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Arkusz 4. Elementy geometrii analitycznej w przestrzeni Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Wstęp do chromodynamiki kwantowej

Wstęp do chromodynamiki kwantowej Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica

Bardziej szczegółowo

O kondensacie BosegoEinsteina powstaj cym w ZOA

O kondensacie BosegoEinsteina powstaj cym w ZOA O kondensacie BosegoEinsteina powstaj cym w ZOA Dobrosªawa BartoszekBober Zakªad Optyki Atomowej IF UJ 9 maja 2011 Dobrosªawa BartoszekBober 9 maja 2011 1 / 15 Plan seminarium BEC na chipie Budowa ukªadu

Bardziej szczegółowo

Metody probablistyczne i statystyka stosowana

Metody probablistyczne i statystyka stosowana Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2 Elektrostatyka Prawo Coulomba F = k qq r r 2 r, wspóªczynnik k = 1 N m2 4πε = 9 109 C 2 gdzie: F - siªa z jak ªadunek Q dziaªa na q, r wektor poªo»enia od ªadunku Q do q, r = r, Przenikalno± elektryczna

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Reakcje jądrowe. kanał wyjściowy

Reakcje jądrowe. kanał wyjściowy Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Pªyny 6/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A.

Pªyny 6/15. Andrzej Kapanowski   ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Pªyny 6/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Pªyny Pªyn to substancja zdolna do przepªywu, czyli ciecz lub gaz. Pªyn nie jest w

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

1 Ró»niczka drugiego rz du i ekstrema

1 Ró»niczka drugiego rz du i ekstrema Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

Fizyka do przodu w zderzeniach proton-proton

Fizyka do przodu w zderzeniach proton-proton Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

2 Statyka. F sin α + R B = 1 1 n ( 1. Rys. 1. mg 2

2 Statyka. F sin α + R B = 1 1 n ( 1. Rys. 1. mg 2 1 Moment p du Zad. 1.1 Cz stka o masie m = 5 kg znajduj c si w poªo»eniu r = 3i + j + k [m] ma pr dko± v = i [m/s]. Obliczy wektor momentu p du L cz stki wzgl dem pocz tku ukªadu wspóªprzednych, wzgl dm

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Struktura porotonu cd.

Struktura porotonu cd. Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i

Bardziej szczegółowo

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM ODPOWIEDZI, EDUKARIS - kwiecie«2014, opracowaª Mariusz Mroczek 1 Zadanie 1.1 (2 pkt) Zmiana kierunku wektora pr dko±ci odbywa si, zgodnie z II ZD, w kierunku dziaªania siªy. Innymi sªowami: przyrosty pr

Bardziej szczegółowo

a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;

a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ; Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Analizy populacyjne, ªadunki atomowe

Analizy populacyjne, ªadunki atomowe Dodatek do w. # 3 i # 4 Šadunki atomowe, analizy populacyjne Q A = Z A N A Q A efektywny ªadunek atomu A, Z A N A liczba porz dkowa dla atomu A (czyli ªadunek j dra) efektywna liczba elektronów przypisana

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO

II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO 1 1 Promieniowanie powierzchni materialnych Powierzchnia badanego ciaªa o dowolnej temperaturze wysyªa promieniowanie o wszystkich dªugo±ciach fali. Je»eli zmierzymy

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach

2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8

Bardziej szczegółowo

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0, XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia

Bardziej szczegółowo

Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik

Bardziej szczegółowo

1 Fale. 1.1 Fale mechaniczne. 1.2 Fale elektromagnetyczne. 1.3 Fale grawitacyjne. 1.4 Równanie falowe. 1.5 Wªa±ciwo±ci fali

1 Fale. 1.1 Fale mechaniczne. 1.2 Fale elektromagnetyczne. 1.3 Fale grawitacyjne. 1.4 Równanie falowe. 1.5 Wªa±ciwo±ci fali Spis tre±ci 1 Fale 2 1.1 Fale mechaniczne......................................... 2 1.2 Fale elektromagnetyczne...................................... 2 1.3 Fale grawitacyjne.........................................

Bardziej szczegółowo

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs

Bardziej szczegółowo

Ukªady równa«liniowych - rozkªady typu LU i LL'

Ukªady równa«liniowych - rozkªady typu LU i LL' Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy

Bardziej szczegółowo

Plazma Kwarkowo-Gluonowa

Plazma Kwarkowo-Gluonowa Fizyka zderzeń relatywistycznych ciężkich jonów Wykład 0: LHC okno na Mikroświat Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty Wykład 2: Plazma kwarkowo-gluonowa Wykład 3: Geometria

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Programowanie dla Wielkiego Zderzacza Hadronów

Programowanie dla Wielkiego Zderzacza Hadronów Programowanie dla Wielkiego Zderzacza Hadronów Wojciech Broniowski Instytut Fizyki Jądrowej PAN Uniwersytet Jana Kochanowskiego w Kielcach Universytet Pedagogiczny, 30.11.01 WB (IFJ PAN & UJK) Programowanie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

Dynamika. Adam Szmagli«ski. Kraków, Instytut Fizyki PK

Dynamika. Adam Szmagli«ski. Kraków, Instytut Fizyki PK Dynamika Adam Szmagli«ski Instytut Fizyki PK Kraków, 22.10.2016 Pierwsza Zasada Dynamiki Newtona Ka»de ciaªo pozostaje w spoczynku lub porusza si ruchem jednostajnym prostoliniowym, je±li nie dziaªaj na

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

Wstęp do oddziaływań hadronów

Wstęp do oddziaływań hadronów Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Unifikacja elektro-s!aba

Unifikacja elektro-s!aba Unifikacja elektro-s!aba! Potrzeba unifikacji! Warunki unifikacji elektro-s!abej! Model Weinberga-Salama! Rezonans Z 0! Liczenie zapachów neutrin (oraz generacji) D. Kie!czewska, wyk!ad 7 1 Rozwa"my proces:

Bardziej szczegółowo

Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi

Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji

Bardziej szczegółowo

Teoria kinetyczno cząsteczkowa

Teoria kinetyczno cząsteczkowa Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

WICZENIE 2 Badanie podstawowych elementów pasywnych

WICZENIE 2 Badanie podstawowych elementów pasywnych Laboratorium Elektroniki i Elektrotechniki Katedra Sterowania i In»ynierii Systemów www.control.put.poznan.pl 1 Politechnika Pozna«ska WICZENIE 2 Badanie podstawowych elementów pasywnych Celem wiczenia

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo