4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:"

Transkrypt

1 /, Dirac,, Bismut[B]., [B], [B],, [K], [T], [W].,,,,, /.,.,,,..,.. M, g): n = l,. P SO : T M, M SOn) 3. P Spin : M Spinn), P SO 4. P : P SO P Spin, π : P M: 5. S = S + S : Spinn) l S +, S l ) 6. F = P Spin Spinn) S, F ± = P Spin Spinn) S ± 7. ω: Levi-Civita, R:, K: 8. D: Dirac, D + : ΓF + ) ΓF ) D : ΓF ) ΓF + ) 9. IndD) = dim KerD + ) dim KerD ): Dirac oguni@math.kyoto-u.ac.jp kaji@math.kyoto-u.ac.jp tanida@math.kyoto-u.ac.jp honda@math.kyoto-u.ac.jp A

2 /. H : ΓF ) ΓF ): ω. W, P ): n, W, P ): n 3. w W :, w W : 3. t > ) 4 θ θ 4. son) T θ l θ l ÂM) := ÂR) ÂT ) = l i= θ i sinh θ i, PfT ) = θ θ θ l, 5. p s x, y) : F y F x : D D s,, s >, x, y M, h ΓF ) e hx) = M p sx, y)hy)dy 6. J s x) := trp s x, x) F + trp s x, x) F ) = Strp s x, x)) 3,. 3. ). IndD) =< [M], ÂM) >, Chern-Weil, < [M], ÂM) >= ÂR x )., 3. Mckean-Singer ). IndD) = J s x)dvolx) for all s >.,,. 3.3 ). J s s J, Jx)dvolx) = n ÂR x )., = n n. M M B

3 , Levy 5, 3 [ i ÂR x ) = exp W 4π ] gr x uws, udws) dp w )., πu) = x u P., u : R n T x M. ), Bianchi 6, W exp. [ i 4π ] [ ] gr x uws, udws) dp w ) = n i) l R x Pf W 4π udw s, uws) dp w )dvolx),,. 3.4 Bismut ).. [ Jx) = i) l Pf W, Bismut. ] R x 4π udw s, uws) dp w ) 4, P,, P Lichnerowicz. θ u : T u P SO R n θ u v) = u π v)., V P = Kerπ, HP = Kerω, T P = HP V P = P R n son)), θ HP ω. R n e i, H i := θ HP e i)., P. du s u, ω) = n H i U s u, ω)) dω i i=, X s x, ω) := πu s u, ω)), M., H := n i= H i, C P Spin, S) Spinn) = ΓF ). D H. 4. Lichnerowicz). D hx) = H hx) + Kx) hx) 4, h ΓF ), Kx) M. 5, D. 5 D 6 grx, Y )Z, W ) = grz, W )X, Y )

4 4 /, H. k s x, y) : F y F x H,, s >, x, y M, h ΓF ) e s H hx) = M k sx, y)hy)dy.,, k s x, y) = E[δ y X s x))]. E. Lichnelwicz D = H + K/4 Feynman-Kac 7, 5.. p s x, y) = E[u exp 8 s U s u) KX s x))u s u)ds ) U s u) δ y X s x))] 6,, Bismut., ). D, p s x, y) = E[u exp 8 = E[exp 8, 8, p s x, x) = E[exp s s 8 p t sx, x) = E[exp 8 = E[exp t 8, s =,. s p t x, x) = E[exp t 8 U s u) KX s x))u s u)ds ) U s u) δ y X s x))] KX s x))ds ) uu s u) δ y X s x))]. s s KX s x))ds ) uu s u) δ x X s x))]. K t X t s x))ds ) uu t u) δ x X t sx))] KX t s x))ds ) uu t u) δ x X t sx))]., t, ). exp t 8 KXt s x))ds = + O t). t n δ x Xx)) t = δw ) + O t) ) 3. t l StruUu) t ) = i l duu t Pf u) dt ) + O t) KX t s x))ds ) uu t u) δ x X t x))]. 7 C 8 B

5 ., 3 A.. 3, t, [ Str exp t 8 5 ) ] duu KXs t x))ds uuu) t δ x Xx)) t = i l t δw )Pf u) ) ) + O t). dt, t, duu Jx) t := Strp t x, x)) = i l t E[δw )Pf u) ) ) ] + O t). dt = i l W duu t δw )Pf u) dt = i l π) l W Pf, τ t := uu t u) ).,,, Bismut. dτ t ) = dt dτ t dt ) ) ) dp w) + O t). ) dp w ) + O t). R x udw s, uw s)ds ) dτ π) l t [ ] Pf dt ) = ) l R x Pf 4π udw s, uw s)ds A E n = l, e,..., e l. ce T E <e e+e e>. ce c +E, ce c E ce = c + E c E. ce x x e j e j e jk ) k e jk e jk e j. c E ce, Pinn). Lie Spinn). x Pinn) x c E, xex E, xx = Spinn) = Pinn) c + E σ : Spinn) AutE) σx)e = xex, σ : Spinn) SOn). ce = ce R C l S. S. w = e e n, τ = i l w, w = ) l, τ =. τ S +, S, S = S + S. S, Spinn) S +, S,. x Spinn) S +, S ±, χ ± x). Spinn). Spinn) c + E,, multi : Spinn) Autc + E), multi C R = l + )

6 6 /,,.. χ + x) χ x) = ± w) = ±i m il trmultiwx)) A.) l A.. x t Spinn) x = e ) C. A = dx dt son) t=, Proof. C x : R l Spinn), θ,..., θ l, x = σxθ,..., θ l )) SOn), χ + x t ) χ x t ) lim t t l = i l PfA l cos θ j + sin θ ) j e j e j x e j = cos θ j e j + sin θ j e j x e j = sin θ j e j + cos θ j e j x t, θ,..., θ j t,. A.). trmultie j e j e jk )) =, k > ), wx t, ) l l sin θ j )., dimc +E) = l, i l., l trmultiwx t)) = il trmulti )l l l sin θ j ))) = i)l l sin θ j ) χ + x) χ x) = l l sin θ j ) = l l cosθ j )) = detσe ) σx)), χ + x t ) χ x t lim t t l = dete σx)) = PfA, cpfa, c = ). x t = xt,..., t). c = i l, B g g t := t g,.. : H i H t i = th i

7 7. : H t H = t H 3. : K K t = tk 4. : := D t = t 5. P : U Us t = U ts 6. M : X Xs t = X ts 7. : p p t s = p ts C Feynman-Kac, M R N C M, R N ) V + V.,. k s x, y) : R N R N,, s >, x, y M, h C M, R N ) e s hx) = M k sx, y)hy)dy.,,. k s x, y) = E[δ y X s )], + V. p s x, y) : R N R N + V,, s >, x, y M, h C M, R N +V s ) e hx) = M p sx, y)hy)dy., Feynman-Kac,. C.. p s x, y) = E[exp s V X s x))ds ) δ y X s x))] C.., C M, R N ) = i=n i= C M), N, H i., n i= H i C P Spin, R N ) Spinn), C P Spin, R N ) Spinn) = C M, R N )., Spinn) R N., 4, 5, Spinn) R N, Spinn) S, F Feynman-Kac, 5.. D Levy w ) w ) s = [ E expiβ w s ) dw s ) w s ) dw s ) ) ] ) w = x, w ) = y = β x sinh β exp + y ) β coth β) Levy [BS, p. 7] ), T, ÂT ) = exp[ i W 4π < T w s, dw s >]dp w )., P SOn), SOn) son).

8 8 / [B] J-M. Bismut, Large deviations and the Malliavin calculus, Progress in Math ). [B] J-M. Bismut, The Atiyah-Singer theorems: a probabilistic approach. I. The index theorem, J. Funct. Anal. 57, No. 984), [BS] A-N. Borodin and P. Salminen, Handbook of Brownian motion facts and formulae nd. ed. Probability and its Applications. Birkhäuser Verlag, Basel, [K], Malliavin calculus,. 4, No. 989), [T],, A note for the talks in the 9th Encounter with Mathematics on Dec. 9 and, 3, at Chuo Univ. [W],,. 4, No. 99), 97.

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

Stochastyczne równania różniczkowe, studia II stopnia

Stochastyczne równania różniczkowe, studia II stopnia Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0,

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0, Zadania z Procesów Stochastycznych II - 1 1. Niech π n = {t (n), t(n) 1,..., t(n) k n }, gdzie a = t (n) < t (n) 1

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE.

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Joachim Syga III Konferencja Zastosowań

Bardziej szczegółowo

Transformata Laplace a

Transformata Laplace a Transformata Laplace a wg. G. Arfkena Mathematical Methods for Physicists krótkie vademecum Definicja (1) f(s) L{F (t)} = albo, nieco bardziej formalnie (2) f(s) L{F (t)} = lim a a e st F (t) dt, e st

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ Andrzej Herdegen Instytut Fizyki UJ 3 grudnia 2015 Przypomnę matematyczne i fizyczne tło tytułowych zagadnień. Pokażę dlaczego spacer przez algebrę

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

Convolution semigroups with linear Jacobi parameters

Convolution semigroups with linear Jacobi parameters Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

Chapter 1: Review Exercises

Chapter 1: Review Exercises Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô

Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô Instytut Matematyk Unwersytetu Jagellońskego Instytut Nauk Ekonomcznych PAN Wynk wspólne z prof. Ł. Stettnerem (IM PAN) prof. Z. Palmowskm

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Skład komputerowy w systemie L A TEX Laboratorium

Skład komputerowy w systemie L A TEX Laboratorium Skład komputerowy w systemie L A TEX Laboratorium M. Skrzypiec 1 Podział dokumentu Podział dokumentu na akapity w systemie L A TEXwprowadzamy przez wstawienie pustego wiersza. Istnieje też polecenie \newline

Bardziej szczegółowo

3.1. Jakobian geometryczny

3.1. Jakobian geometryczny Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 3. Kinematyki różniczkowa i statyka 3.1. Jakobian geometryczny Pozycja i orientacja x manipulatora o n stopniach swobody zależy od

Bardziej szczegółowo

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n. Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Zera funkcji ζ(s) Riemanna. 1 1 p s ) 1. Dla rozszerzenia funkcji ζ(s) na pó lp laszczyznȩ Re s > 0 postȩpujemy nastȩpuj aco. x s+1. dx = s.

Zera funkcji ζ(s) Riemanna. 1 1 p s ) 1. Dla rozszerzenia funkcji ζ(s) na pó lp laszczyznȩ Re s > 0 postȩpujemy nastȩpuj aco. x s+1. dx = s. Jerzy Browkin Zera funkcji ζ(s) Riemanna. Podstawowe informacje... Funkcja ζ(s). ζ(s) = n s = p n= ( p s ) dla Re s >. [Wynika st ad, że ζ(s) oraz ζ(s) = ζ(s) dla Re s > ]. Dla rozszerzenia funkcji ζ(s)

Bardziej szczegółowo

Numeryczne aproksymacje prawdopodobieństwa ruiny

Numeryczne aproksymacje prawdopodobieństwa ruiny Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia 1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej

Bardziej szczegółowo

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7. Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi

Bardziej szczegółowo

ver magnetyzm cd.

ver magnetyzm cd. ver-10.01.12 magnetyzm cd. praca przemieszczenia obwodu w polu B B F F=ΙlB B j (siła Ampere a) dw =Fdx=Ι lbdx=ι BdS Φ B = B d S= BdS dφ B =BdS dw =ΙdΦ B =Ι B d S strumień dx dla obwodu: W =Ι dφ B =Ι Φ

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)

Bardziej szczegółowo

n [2, 11] 1.5 ( G. Pick 1899).

n [2, 11] 1.5 ( G. Pick 1899). 1. / / 2. R 4k 3. 4. 5. 6. / 7. /n 8. n 1 / / Z d ( R d ) d P Z d R d R d? n > 0 n 1.1. R 2 6 n 5 n [Scherrer 1946] d 3 R 3 6 1.2 (Schoenberg 1937). d 3 R d n n = 3, 4, 6 1.1. d 3 R d 1.3. θ θ/π 1.4. 0

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Interesujące fazy ewolucji masywnej gwiazdy:

Interesujące fazy ewolucji masywnej gwiazdy: 1/26 Asymetria ν ν w widmie pre-supernowej A. Odrzywołek Asymetria ν ν w (termicznym) widmie pre-supernowej IDEA: Przewidzieć wybuch supernowej opierając się na detekcji neutrin z pre-supernowej Interesujące

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4

Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek

Bardziej szczegółowo

Paul Erdős i Dowody z Księgi

Paul Erdős i Dowody z Księgi Paul Erdős i Dowody z Księgi Antoni Kijowski, Michał Król, Krzysztof Kwiatkowski Faculty of Mathematics and Information Science Warsaw University of Technology Warsaw, 9 January 013 (Krótki kurs historii

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji

Bardziej szczegółowo

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej

Bardziej szczegółowo

Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą

Bardziej szczegółowo

Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ

Bardziej szczegółowo

Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż

Bardziej szczegółowo

Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś

Bardziej szczegółowo

Wstęp do oddziaływań hadronów

Wstęp do oddziaływań hadronów Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 10 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo