Wnioskowanie Boolowskie i teoria zbiorów przybli»onych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wnioskowanie Boolowskie i teoria zbiorów przybli»onych"

Transkrypt

1 Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów i reguª decyzyjnych Metody wnioskowa«boolowskich w szukaniu reduktów Systemy decyzyjne oparte o zbiory przybli»one 6 Metoda drzew decyzyjnych Wprowadzenie Konstrukcja drzew decyzyjnych 7 Problem dyskretyzacji Przypomnienia podstawowych poj Problem dyskretyzacji Dyskretyzacja metod wnioskowania Boolowskiego H.S. Nguyen (MIM UW) SYD 30 listopada / 297

2 Denition Algebra Boola Jest to struktura algebraiczna B = (B, +,, 0, 1) speªniaj ca nast puj ce aksjomaty - Przemienno± : (a + b) = (b + a) oraz (a b) = (b a) - Rozdzielno± : a (b + c) = (a b) + (a c), oraz a + (b c) = (a + b) (a + c) - Elementy neutralne: a + 0 = a oraz a 1 = a - Istnienie elementu komplementarnego: a + a = 1 and a a = 0 *) Czasem negacja jest dodana do sygnatury algebry Boola. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

3 Przykªady Algebry Boola 1 Algebra zbiorów: P(X ) = (2 X,,,,, X ); 2 Rachunek zda«({zdania logiczne},,,,, ) 3 Binarna algebra Boola B 2 = ({0, 1}, +,, 0, 1) to jest najmniejsza, ale najwa»niejsza algebra Boola w zastosowaniu. x y x + y x y x x Przykªady zastosowa«: projektowanie ukªadów scalonych; rachunek zda«. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

4 Wªa±ciwo±ci algebr Boola Š czno± (ang. Associative law): (x + y) + z = x + (y + z) oraz (x y) z = x (y z) Idempotence: x + x = x oraz x x = x(dual) Dziaªania z 0 i 1: x + 1 = 1 oraz x 0 = 0(dual) Pochªanienie (ang. Absorption laws): (y x) + x = x oraz (y + x) x = x(dual) Inwolocja (ang. Involution laws): (x) = x Prawa DeMorgana (ang. DeMorgan's laws): (x + y) = x y oraz (x y) = x + y(dual) Prawa konsensusu (ang. Consensus laws): (x + y) (x + z) (y + z) = (x + y) (x + z) oraz (x y) + (x z) + (y z) = (x b) + (x z) Zasada dualno±ci: Ka»da algebraiczna równo± pozostaje prawdziwa je±li zamieniamy operatory + na, na +, 0 na 1 oraz 1 na 0. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

5 Funkcje Boolowskie Ka»de odwzorowanie f : {0, 1} n {0, 1} nazywamy (zupeªn ) funkcj Boolowsk. Funkcje Boolowskie formuªy Boolowskie: Staªe, zmienne, operatory, + oraz. Literaªy, mintermy (jednomiany), maxtermy,... Kanoniczna posta dyzjunkcyjna (DNF), np. f = xyz + xyz + xyz + xyz; Kanoniczna posta koniunkcyjna (CNF), np. f = (x + y + z)(x + y) Term t = x i1...x im x j1...x jk nazywamy implikantem funkcji f je±li a {0,1} n t(a) = 1 f (a) = 1 Implikant pierwszy: jest to implikant, który przestaje nim by po usuni ciu dowolnego literaªu. Kanoniczna posta Blake'a: ka»d funkcj Boolowsk mo»na przedstawi jako sum wszystkich jej imlikantów pierwszych: f = t 1 + t t k H.S. Nguyen (MIM UW) SYD 30 listopada / 297

6 Przykªad Wiele formuª reprezentuje t sam funkcj ; φ 1 = xyz + xyz + xyz + xyz φ 2 = (x + y + z)(x + y + z)(x + y + z)(x + y + z) φ 3 = xy + xz + yz xy z jest implikantem xy jest implikantem pierwszym x y z f H.S. Nguyen (MIM UW) SYD 30 listopada / 297

7 Funkcje monotoniczne Niech oznacza relacj cz ±ciowego porz dku w {0, 1} n Funkcja f jest monotoniczna (niemalej ca) wtw, gdy dla ka»dych x, y {0, 1} n je±li x y to f (x) f (y) monotoniczne funkcje Boolowskie mo»na zapisa bez u»ycia negacji. term f = x i1 x i2... x ik monotonicznej f je±li nazywamy implikantem pierwszym funkcji f (x) f (x) dla ka»dego wektora x (jest implikantem) ka»da funkcja wi ksza od f nie jest implikantem Np. funkcja f (x 1, x 2, x 3 ) = (x 1 + x 2 )(x 2 + x3) posiada 2 implikanty pierwsze: f 1 = x 2 i f 2 = x 1 x 3 H.S. Nguyen (MIM UW) SYD 30 listopada / 297

8 Wnioskowanie Boolowskie 1 Modelowanie: Kodowanie problemu za pomoc ukªadu równa«boolowskich; 2 Redukcja: Sprowadzenie ukªadu równa«do pojedynczego równania postaci f = 0 lub f = 1 3 Konstrukcja: Znalezienie wszystkich implikantów pierwszych funkcji f (konstrukcja kanonicznej postaci Blake'a); 4 Dedukcja: Zastosowanie pewnej sekwencji wnioskowa«transformuj cych implikanty pierwsze do rozwi za«problemu. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

9 Boolean Reasoning Example Problem: A, B, C, D are considering going to a party. Social constrains: If A goes than B won't go and C will; If B and D go, then either A or C (but not both) will go If C goes and B does not, then D will go but A will not. Problem modeling: A B C A(B + C) = 0... BD(AC + AC) = 0... BC(A + D) = 0 After reduction: f = A(B + C) + BD(AC + AC) + BC(A + D) = 0 Blake Canonical form: f = BCD + BCD + A = 0 Facts: BD C C B D A 0 Reasoning: (theorem proving) e.g., show that nobody can go alone. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

10 Metoda BR w Sztucznej Inteligencji Problem SAT: czy równanie f (x 1,..., x n ) = 1 posiada rozwi zanie? C B A E D E C A D B SAT odgrywa wa»n rol w teorii zªo»ono±ci (twierdzenie Cooka, dowodzenie NP-zupeªno±ci...) Ka»dy SAT-solver mo»e by u»ywany do rozwi zywania problemu planowania. Blocks world problem: Po redukcji formuªa boolowska nadal zawiera O(tk 2 ) zmiennych i O(tk 3 ) klauzuli (k, t - liczby bloków i kroków). Np. Dla k = 15, t = 14, mamy 3016 zmiennych i klausuli H.S. Nguyen (MIM UW) SYD 30 listopada / 297

11 Szukanie reduktów: szkic metody 1 Konstrukcja funkcji odró»nialno±ci: Zmienne boolowskie: atrybuty a 1,..., a k ; Klauzula: φ u,v = {a A : a(u) a(v)} Funkcja rozró»nialno±ci: F S (a 1,..., a k ) = x,y U:dec(x) dec(y) φ x,y (a 1,..., a k ) 2 przeksztaªcenie funkcji rozró»nialno±ci do postaci DNF 3 ka»dy implikant pierwszy odpowiada jednemu reduktowi; H.S. Nguyen (MIM UW) SYD 30 listopada / 297

12 Przykªad tablicy decyzyjnej Hurt. Jako± obsªugi Jako± towaru Obok autostrady? Centrum? decyzja ID a 1 a 2 a 3 a 4 dec 1 dobra dobra nie nie strata 2 dobra dobra nie tak strata 3 bdb dobra nie nie zysk 4 slaba super nie nie zysk 5 slaba niska tak nie zysk 6 slaba niska tak tak strata 7 bdb niska tak tak zysk 8 dobra super nie nie strata 9 dobra niska tak nie zysk 10 slaba super tak nie zysk 11 dobra super tak tak zysk 12 bdb super nie tak zysk 13 bdb dobra tak nie? 14 slaba super nie tak? H.S. Nguyen (MIM UW) SYD 30 listopada / 297

13 Macierz i funkcja odró»nialno±ci M a 1 a 1, a 4 a 1, a 2, a 3, a 4 a 1, a 2 4 a 1, a 2 a 1, a 2, a 4 a 2, a 3, a 4 a 1 5 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 4 a 1, a 2, a 3 7 a 1, a 2, a 3, a 4 a 1, a 2, a 3 a 1 a 1, a 2, a 3, a 4 9 a 2, a 3 a 2, a 3, a 4 a 1, a 4 a 2, a 3 10 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 2, a 4 a 1, a 3 11 a 2, a 3, a 4 a 2, a 3 a 1, a 2 a 3, a 4 12 a 1, a 2, a 4 a 1, a 2 a 1, a 2, a 3 a 1, a 4 f = (α 1 )(α 1 α 4 )(α 1 α 2 )(α 1 α 2 α 3 α 4 )(α 1 α 2 α 4 ) (α 2 α 3 α 4 )(α 1 α 2 α 3 )(α 4 )(α 2 α 3 )(α 2 α 4 ) (α 1 α 3 )(α 3 α 4 )(α 1 α 2 α 4 ) H.S. Nguyen (MIM UW) SYD 30 listopada / 297

14 Szukanie reduktów f = (α 1 )(α 1 α 4 )(α 1 α 2 )(α 1 α 2 α 3 α 4 )(α 1 α 2 α 4 ) (α 2 α 3 α 4 )(α 1 α 2 α 3 )(α 4 )(α 2 α 3 )(α 2 α 4 ) (α 1 α 3 )(α 3 α 4 )(α 1 α 2 α 4 ) usuwanie alternatyw reguª pochªaniania (t.j. p (p q) p): f = (α 1 )(α 4 )(α 2 α 3 ) sprowadzanie funkcji f z postaci CNF (koniunkcja alternatyw) do postaci DNF (alternatywa koniunkcji) f = α 1 α 4 α 2 α 1 α 4 α 3 Ka»dy skªadnik jest reduktem! Zatem mamy 2 redukty: R 1 = {A 1, A 2, A 4 } i R 2 = {A 1, A 3, A 4 } H.S. Nguyen (MIM UW) SYD 30 listopada / 297

15 Heurystyka Johnsona: algorytm zachªanny Atrybut jest wa»niejszy je±li cz ±ciej wyst puje w klauzulach; Selekcja: W ka»dym kroku wybierzmy atrybut, który najcz ±ciej wyst puje w funkcji rozró»nialno±ci; Usuwanie: Usuwamy z tej funkcji te klauzule, które zawieraj wybrany atrybut; Powtarzamy Selekcja i Usuwanie dopóty, póki funkcja rozró»nialno±ci zawiera jeszcze jak ± klazul. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

16 Heurystyka zachªanna Heurystyka Johnsona 1 Znale¹ atrybut, który wyst puje najcz ±ciej w macierzy rozró»nialno±ci; 2 Usuwn wszystkie pola zawieraj ce wybrany atrybut; 3 Powtarzamy kroki 1 i 2 dopóki wszystkie pola macierzy s puste. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

17 Przykªad dziaªania M a 1 a 1, a 4 a 1, a 2, a 3, a 4 a 1, a 2 4 a 1, a 2 a 1, a 2, a 4 a 2, a 3, a 4 a 1 5 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 4 a 1, a 2, a 3 7 a 1, a 2, a 3, a 4 a 1, a 2, a 3 a 1 a 1, a 2, a 3, a 4 9 a 2, a 3 a 2, a 3, a 4 a 1, a 4 a 2, a 3 10 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 2, a 4 a 1, a 3 11 a 2, a 3, a 4 a 2, a 3 a 1, a 2 a 3, a 4 12 a 1, a 2, a 4 a 1, a 2 a 1, a 2, a 3 a 1, a 4 W macierzy nierozróznialno±ci z poprzedniego przykªadu a 1 - wyst puje 23 razy a 2 - wyst puje 23 razy a 3 - wyst puje 18 razy a 4 - wyst puje 16 razy Je±li wybieramy a 1, to po usuni ciu pól zawieraj cych a 1 zostaªo 9 niepustych pól macierzy nierozró»nialno±ci. W±ród nich: a 2 - wyst puje 7 razy a 3 - wyst puje 7 razy a 4 - wyst puje 6 razy Je±li wybieramy tym razem a 2 to zostaªy 2 niepuste pola i w±ród nich a 4 jest zdecydowanym faworytem. Mo»emy dosta w ten sposób redukt: R 1 = {a 1, a 2, a 4 }. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

18 Jak dobra jest heurystyka Johnsona? Niech X = {(u, v) U 2 : dec(u) dec(v)}; Niech S ai = {(u, v) X : a i (u) a i (v)}; Niech C A b dzie minimalnym reduktem, lecz C = {a 1,..., a k } b dzie reduktem znalezionym przez heurystyk Johnsona; Zaªó»my,»e heurystyka Johnsona musi pªaci 1zª za ka»dym razem, gdy dodaªa a i do C. Rozªó»my ten koszt tym elementom, które zostaªy po raz pierwszy pokryte przez zbiór S ai Niech c x = koszt ponoszony przez x. Je±li x jest pokryty po raz pierwszy przez a i, to c x = 1 S ai (S a1... S ai 1 ) H.S. Nguyen (MIM UW) SYD 30 listopada / 297

19 Jak dobra jest heurystyka Johnsona? Heurystyka Johnsona ponosi ª czny koszt = C. Mamy C = x X c x c x a C x S a Gdyby±my pokazali,»e dla dowolnego altrybutu a A x S a c x H( S a ) gdzie H(n) = n i=1 1 i, wówczas mo»emy oszacowa dalej: C c x C H(max{ S a : a A }) a C x S a C H( X ) C ln( X + 1) H.S. Nguyen (MIM UW) SYD 30 listopada / 297

20 Lemat: Dla dowolnego altrybutu a A Dowód: x S a c x H( S a ) Niech u i = S a (S a1... S ai 1 ), mamy: u 0 = S a... u i 1 u i... u k = 0; gdzie k jest najmniejszym indeksem t.,»e S a = S a1... S ak Zatem x S a c x = k 1 (u i 1 u i ) S ai (S a1... S ai 1 ) i=0 k 1 (u i 1 u i ) u i 1 i=0 k (H(u i 1 ) H(u i )) = H( S a ) i=0 H.S. Nguyen (MIM UW) SYD 30 listopada / 297

21 Inne heurystyki do szukania implikantów pierwszych ILP (Integer Linear Program) Symulowane wy»arzanie (simulated annealing) Algorytmy genetyczne SAT solver??? H.S. Nguyen (MIM UW) SYD 30 listopada / 297

22 ILP Dana jest funkcja f : {0, 1} n {0, 1} zapisana w postaci CNF za pomoc zmiennych x 1,..., x n 1 Utwórz nowe zmienne {y 1,..., y 2n } odpowiadaj ce literaªom x 1, x 1,..., x n, x n ; 2 Dla ka»dej zmiennej x i, utwórzmy nierówno± y 2i 1 + y 2i 1 3 Zamie«ka»d klausul ω i = (l i1... l ini ) na nierówno± y i y ini 1; 4 Utwórzmy ukªad nierówno±ci z poprzednich punktów: Ay b 5 Zagadnienie programowania liniowego liczb caªkowitych (ILP) jest deniowane jako problem szukania min n y i przy ograniczeniu: Ay b. i=1 H.S. Nguyen (MIM UW) SYD 30 listopada / 297

23 J zyk deskryptorów (ang. description language) Dla danego zbioru atrybutów A deniujemy j zyk deskryptorów jako trójk gdzie D jest zbiorem deskryptorów L(A) = (D, {,, }, F) D = {(a = v) : a A and v Val a }; {,, } jest zbiorem standardowych operatorów logicznych; F jest zbiorem formuª logicznych zbudowanych na deskryptorach z D. Dla ka»dego zbioru atrybutów B A oznaczamy: D B = {(a = v) : a B and v Val a }, czyli zbiór deskryptorów obci tych do B. F B zbiór formuª zbudowanych na D B. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

24 Semantyka w systemach informacyjnych Semantyka: Niech S = (U, A) b dzie tablic informacyjn. Ka»da formuªa φ F, jest (semantycznie) skojarzona ze zbiorem [[φ]] S zawieraj cym obiekty speªniaj ce φ. Formalnie mo»emy indukcyjnie deniowa semantyk jak nast puj co: [[(a = v)]] S = {x U : a(x) = v} (1) [[φ 1 φ 2 ]] S = [[φ 1 ]] S [[φ 2 ]] S (2) [[φ 1 φ 2 ]] S = [[φ 1 ]] S [[φ 2 ]] S (3) [[ φ]] S = U \ [[φ]] S (4) Ka»da formuªa φ mo»e by charakteryzowana przez: length(φ) = liczba deskryptorów w φ; support(φ) = [[φ]] S = liczba obiektów speªniaj cych formuª H.S. Nguyen (MIM UW) SYD 30 listopada / 297

25 Reguªy decyzyjne Denition Denicja reguª decyzyjnych Niech S = {U, A {dec}} b dzie tablic decyzyjn. Reguª decyzyjn dla S nazywamy formuªy postaci: φ δ gdzie φ F A i δ F dec. Formuª φ nazywamy poprzednikiem (lub zaªo»eniem) reguªy r, a δ nazywamy nast pnikiem (lub tez ) reguªy r. Oznaczamy poprzednik i nast pnik reguªy r przez prev(r) oraz cons(r). Denition Reguªy atomowa: S to reguªy postaci: r (a i1 = v 1 )... (a im = v m ) (dec = k) (5) H.S. Nguyen (MIM UW) SYD 30 listopada / 297

26 Reguªy decyzyjne (c.d.) Ka»da reguªa decyzyjna r postaci (5) mo»e by charakteryzowana nast puj cymi cechami: length(r) = liczba deskryptorów wyst puj cych w zaªo»eniu reguªy r [r] = no±nik reguªy r, czyli zbiór obiektów z U speªniaj cych zaªo»enie reguªy r support(r) = liczba obiektów z U speªniaj cych zaªo»enie reguªyr: support(r) = card([r]) confidence(r) = wiarygodno± reguªy r: confidence(r) = [r] DEC k [r] Mówimy,»e reguªa r jest niesprzeczna z A je±li confidence(r) = 1 H.S. Nguyen (MIM UW) SYD 30 listopada / 297

27 Minimalne reguªy Denition Minimalne niesprzeczne reguªy: Niech S = (U, A {dec}) b dzie dan tablic decyzyjn. Niesprzeczn reguª (a i1 = v 1 )... (a im = v m ) (dec = k) nazywamy minimaln niesprzeczn reguª decyzyjn je±li usuni cie któregokolwiek z deskryptorów spowoduje,»e reguªa przestaje by niesprzezcna z S. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

28 Ogólne metody Klasykatory reguªowe dzialaj w trzech fazach: 1 Faza treningu: Generuje pewien zbiór reguª RULES(A) z danej tablicy decyzyjnej A. 2 Faza selekcji reguª: Szuka w RULES(A) tych reguª, które s wspierane przez obiekt x. Oznaczamy zbiór tych reguª przez MatchRules(A, x). 3 Faza klasykacji: wyznacza klas decyzyjn dla x za pomoc reguª z MatchRules(A, x) wedªug nast puj cego schematu: 1 Je±li MatchRules(A, x) jest pusty: odpowied¹ dla x jest NIEWIEM, tzn. nie mamy podstaw, aby klasykowa obiekt x do którejkolwiek z klas; 2 Je±li MatchRules(A, x) zawiera tylko obiekty z k-tej klasy: wówczas dec(x) = k; 3 Je±li MatchRules(A, x) zawiera reguªy dla ró»nych klas decyzyjnych: wówczas decyzja dla x okre±limy za pomoc pewnego, ustalonego schematu gªosowania mi dzy reguªami z MatchRules(A, x). H.S. Nguyen (MIM UW) SYD 30 listopada / 297

29 Metoda Oparta o Wnioskowanie Boolowskie Ka»da reguªa powstaje poprzez skracanie opisu jakiego± obiektu. Redukty lokalne Te same heurystyki dla reduktów decyzyjnych. H.S. Nguyen (MIM UW) SYD 30 listopada / 297

30 Przykªad tablicy decyzyjnej Hurt. Jako± obsªugi Jako± towaru Obok autostrady? Centrum? decyzja ID a 1 a 2 a 3 a 4 dec 1 dobra dobra nie nie strata 2 dobra dobra nie tak strata 3 bdb dobra nie nie zysk 4 slaba super nie nie zysk 5 slaba niska tak nie zysk 6 slaba niska tak tak strata 7 bdb niska tak tak zysk 8 dobra super nie nie strata 9 dobra niska tak nie zysk 10 slaba super tak nie zysk 11 dobra super tak tak zysk 12 bdb super nie tak zysk 13 bdb dobra tak nie? 14 slaba super nie tak? H.S. Nguyen (MIM UW) SYD 30 listopada / 297

31 Macierz i funkcja lokalnych odró»nialno±ci M a 1 a 1, a 4 a 1, a 2, a 3, a 4 a 1, a 2 4 a 1, a 2 a 1, a 2, a 4 a 2, a 3, a 4 a 1 5 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 4 a 1, a 2, a 3 7 a 1, a 2, a 3, a 4 a 1, a 2, a 3 a 1 a 1, a 2, a 3, a 4 9 a 2, a 3 a 2, a 3, a 4 a 1, a 4 a 2, a 3 10 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 2, a 4 a 1, a 3 11 a 2, a 3, a 4 a 2, a 3 a 1, a 2 a 3, a 4 12 a 1, a 2, a 4 a 1, a 2 a 1, a 2, a 3 a 1, a 4 f u3 = (α 1 )(α 1 α 4 )(α 1 α 2 α 3 α 4 )(α 1 α 2 ) = α 1 Reguªy: (a 1 = bdb) = dec = zysk H.S. Nguyen (MIM UW) SYD 30 listopada / 297

32 Macierz i funkcja lokalnych odró»nialno±ci M a 1 a 1, a 4 a 1, a 2, a 3, a 4 a 1, a 2 4 a 1, a 2 a 1, a 2, a 4 a 2, a 3, a 4 a 1 5 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 4 a 1, a 2, a 3 7 a 1, a 2, a 3, a 4 a 1, a 2, a 3 a 1 a 1, a 2, a 3, a 4 9 a 2, a 3 a 2, a 3, a 4 a 1, a 4 a 2, a 3 10 a 1, a 2, a 3 a 1, a 2, a 3, a 4 a 2, a 4 a 1, a 3 11 a 2, a 3, a 4 a 2, a 3 a 1, a 2 a 3, a 4 12 a 1, a 2, a 4 a 1, a 2 a 1, a 2, a 3 a 1, a 4 f u8 = (α 1 α 2 )(α 1 )(α 1 α 2 α 3 )(α 1 α 2 α 3 α 4 )(α 2 α 3 ) (α 1 α 3 )(α 3 α 4 )(α 1 α 4 ) = α 1 (α 2 α 3 )(α 3 α 4 ) = α 1 α 3 α 1 α 2 α 4 Reguªy: (a 1 = dobra) (a 3 = nie) = dec = strata (a 1 = dobra) (a 2 = super) (a 4 = nie) = dec = strata H.S. Nguyen (MIM UW) SYD 30 listopada / 297

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów

Bardziej szczegółowo

Systemy decyzyjne. Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych. Nguyen Hung Son. Nguyen Hung Son () 1 / 61

Systemy decyzyjne. Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych. Nguyen Hung Son. Nguyen Hung Son () 1 / 61 Systemy decyzyjne Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych Nguyen Hung Son Nguyen Hung Son () 1 / 61 Spis treści 1 Wprowadzenie do teorii zbiorów przybliżonych Systemy

Bardziej szczegółowo

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Wyk lad 8: Leniwe metody klasyfikacji

Wyk lad 8: Leniwe metody klasyfikacji Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

Matematyka stosowana. Systemy decyzyjne. Hung Son Nguyen

Matematyka stosowana. Systemy decyzyjne. Hung Son Nguyen Matematyka stosowana Systemy decyzyjne Hung Son Nguyen son@mimuw.edu.pl http://www.mimuw.edu.pl/~son Uniwersytet Warszawski, 2011 Streszczenie. Przegląd metod klasyfikacji i wspomagania podejmowania decyzji

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Systemy decyzyjne Wprowadzenie

Systemy decyzyjne Wprowadzenie Hung Son Nguyen (UW) Systemy decyzyjne Wprowadzenie 2007 1 / 34 Systemy decyzyjne Wprowadzenie Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen (UW) Systemy

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

Algebra Boole'a i logika cyfrowa

Algebra Boole'a i logika cyfrowa Algebra Boole'a i logika cyfrowa 7.X. 2009 1 Aksjomatyczna denicja algebry Boole'a Do opisywanie ukªadów cyfrowych b dziemy u»ywali formalizmu nazywanego algebr Boole'a. Formalnie algebra Boole'a to struktura

Bardziej szczegółowo

Wst p. Elementy systemów decyzyjnych Sprawy organizacyjne. Wprowadzenie Przegl d metod klasykacji

Wst p. Elementy systemów decyzyjnych Sprawy organizacyjne. Wprowadzenie Przegl d metod klasykacji Wst p 1 Wprowadzenie do systemów decyzyjnych Elementy systemów decyzyjnych Sprawy organizacyjne 2 Problem klasykacji i klasykatory Wprowadzenie Przegl d metod klasykacji 3 Metody oceny klasykatorów Skuteczno±

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

COLT - Obliczeniowa teoria uczenia si

COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen (UW) COLT - Obliczeniowa teoria uczenia si 2007 1 / 32 COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna 9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

Algebra Boole'a i logika cyfrowa

Algebra Boole'a i logika cyfrowa Algebra Boole'a i logika cyfrowa 1 Aksjomatyczna denicja algebry Boole'a Do opisywanie ukªadów cyfrowych b dziemy u»ywali formalizmu nazywanego algebr Boole'a. Formalnie algebra Boole'a to struktura matematyczna

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Preliminaria logiczne

Preliminaria logiczne Preliminaria logiczne Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR Jerzy Pogonowski (MEG) Preliminaria

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Jan Rodziewicz-Bielewicz, Wydziaª Informatyki ZUT May 8, 2019 8 Struktury algebraiczne ZASTOSOWANIE: Kryptograa. 1. Sprawdzi, czy jest dziaªaniem wewn trznym: (a) y y w zbiorze Q,

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Optymalizacja wypukªa: wybrane zagadnienia i zastosowania

Optymalizacja wypukªa: wybrane zagadnienia i zastosowania Optymalizacja wypukªa: wybrane zagadnienia i zastosowania 21 wrze±nia 2010 r. Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Ogólne zadanie

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Pewne algorytmy algebry liniowej Andrzej Strojnowski

Pewne algorytmy algebry liniowej Andrzej Strojnowski Pewne algorytmy algebry liniowej ndrzej Strojnowski 6 stycznia 2011 Przedstawimy tu kilka algorytmów rozwi zuj ce typowe zadania algebry liniowej Wszystkie zaprezentowane tu algorytmy polegaj na zbudowaniu

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Lech Jakóbczyk Instytut Fizyki Teoretycznej Uniwersytet Wrocªawski 1 / 17 Spl tanie stanów czystych Formalna denicja spl tania Ukªad zªo»ony: Hilberta

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów wiczenia

Podstawy logiki i teorii zbiorów wiczenia Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje

Bardziej szczegółowo

ALGORYTMIKA Wprowadzenie do algorytmów

ALGORYTMIKA Wprowadzenie do algorytmów ALGORYTMIKA Wprowadzenie do algorytmów Popularne denicje algorytmu przepis opisuj cy krok po kroku rozwi zanie problemu lub osi gni cie jakiego± celu. (M. Sysªo, Algorytmy, ±ci±lejszej denicji w ksi»ce

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

Minimalne drzewa rozpinaj ce

Minimalne drzewa rozpinaj ce y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo