Wymgni progrmowe n poszczególne oceny w klsie I A LP, I B LP 07/08 Przygotowne w oprciu o propozycję Wydwnictw Now Er Kryteri oceny Znjomość pojęć, definicji, włsności orz wzorów objętych progrmem nuczni. Umiejętność zstosowni wiedzy teoretycznej do rozwiązywni konkretnych zdń. Czytnie ze zrozumieniem tekstu dotyczącego pojęć mtemtycznych. Aktywność podczs lekcji. Systemtyczne przygotowywnie prc domowych, udził w ich omwiniu i poprwiniu. Strnne prowdzenie zeszytu. Wyróżnione zostły nstępujące wymgni progrmowe: Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez kżdego uczni. Wymgni podstwowe (P) zwierją wymgni z poziomu (K) wzbogcone o typowe problemy o niewielkim stopniu trudności. Wymgni rozszerzjące (R), zwierjące wymgni z poziomów (K) i (P), dotyczą zgdnień brdziej złożonych i nieco trudniejszych. Wymgni dopełnijące (D), zwierjące wymgni z poziomów (K), (P) i (R), dotyczą zgdnień problemowych, trudniejszych, wymgjących umiejętności przetwrzni przyswojonych informcji. Wymgni wykrczjące (W) dotyczą zgdnień trudnych, oryginlnych, wykrczjących poz obowiązkowy progrm nuczni. Poniżej przedstwiony zostł podził wymgń n poszczególne oceny szkolne: ocen dopuszczjąc wymgni n poziomie (K) ocen dostteczn wymgni n poziomie (K) i (P) ocen dobr wymgni n poziomie (K), (P) i (R) ocen brdzo dobr wymgni n poziomie (K), (P), (R) i (D) ocen celując wymgni n poziomie (K), (P), (R), (D) i (W). LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności liczb rozróżni liczby pierwsze i liczby złożone porównuje liczby wymierne podje przykłd liczby wymiernej zwrtej między dwiem dnymi liczbmi orz przykłdy liczb niewymiernych zzncz n osi liczbowej dną liczbę wymierną przedstwi liczby wymierne w różnych postcich wyzncz przybliżeni dziesiętne dnej liczby rzeczywistej z zdną dokłdnością (również przy użyciu klkultor) orz określ, czy dne przybliżenie jest przybliżeniem z ndmirem, czy z niedomirem wykonuje proste dziłni w zbiorch liczb cłkowitych, wymiernych i rzeczywistych oblicz wrtość pierwistk dowolnego stopni z liczby nieujemnej orz wrtość pierwistk nieprzystego stopni z liczby rzeczywistej (typowe przypdki, niewielki stopień trudności) wyłącz czynnik przed znk pierwistk włącz czynnik pod znk pierwistk wykonuje dziłni n pierwistkch tego smego stopni, stosując odpowiednie twierdzeni usuw niewymierność z minownik wyrżeni typu przeksztłc i oblicz wrtości wyrżeń zwierjących pierwistki kwdrtowe stosując wzory skróconego mnożeni wykonuje proste dziłni n potęgch o wykłdnikch cłkowitych przedstwi liczbę w notcji wykłdniczej oblicz procent dnej liczby oblicz, jkim procentem jednej liczby jest drug liczb
wyzncz liczbę, gdy dny jest jej procent posługuje się procentmi w rozwiązywniu prostych zdń prktycznych prwidłowo odczytuje informcje przedstwione n digrmch wykonuje dziłni n wyrżenich lgebricznych (w tym: stosuje wzory skróconego mnożeni dotyczące drugiej potęgi) stosuje ogólny zpis liczb nturlnych przystych, nieprzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstwieni liczby nturlnej w postci k + r konstruuje odcinki o długościch niewymiernych usuw niewymierność z minownik wyrżeni typu b c d wykonuje dziłni łączne n liczbch rzeczywistych zmieni ułmek dziesiętny okresowy n ułmek zwykły porównuje pierwistki bez użyci klkultor wykonuje dziłni łączne n potęgch o wykłdnikch cłkowitych oblicz, o ile procent jedn liczb jest większ (mniejsz) od drugiej rozwiązuje złożone zdni tekstowe, wykorzystując obliczeni procentowe oceni dokłdność zstosownego przybliżeni przeprowdz dowody twierdzeń dotyczących podzielności liczb uzsdni prw dziłń n potęgch o wykłdnikch nturlnych (cłkowitych) przeprowdz dowód nie wprost rozwiązuje zdni o zncznym stopniu trudności dotyczące liczb rzeczywistych. JĘZYK MATEMATYKI posługuje się pojęcimi: zbiór, podzbiór, zbiór skończony, zbiór nieskończony opisuje symbolicznie dne zbiory wyzncz iloczyn, sumę orz różnicę dnych zbiorów zzncz n osi liczbowej przedziły liczbowe wyzncz iloczyn, sumę i różnicę przedziłów liczbowych rozwiązuje proste nierówności liniowe zzncz n osi liczbowej zbiór rozwiązń nierówności liniowej zpisuje zbiory w postci przedziłów liczbowych, np. 4, oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby do rozwiązywni elementrnych równń i nierówności typu x, x wyzncz błąd bezwzględny orz błąd względny przybliżeni zzncz n osi liczbowej zbiory liczb spełnijących ukłd nierówności liniowych z jedną niewidomą wykonuje złożone dziłni n przedziłch liczbowych rozwiązuje nierówności liniowe wymgjące złożonych przeksztłceń przeksztłc wyrżeni lgebriczne, korzystjąc z włsności wrtości bezwzględnej rozwiązuje zdni o zncznym stopniu trudności dotyczące zbiorów i włsności wrtości bezwzględnej 3. FUNKCJA LINIOWA
rozpoznje funkcję liniową n podstwie wzoru lub wykresu podje przykłdy funkcji liniowych opisujących sytucje z życi codziennego rysuje wykres funkcji liniowej dnej wzorem oblicz wrtość funkcji liniowej dl dnego rgumentu i odwrotnie wyzncz miejsce zerowe funkcji liniowej interpretuje współczynniki ze wzoru funkcji liniowej wyzncz lgebricznie orz odczytuje z wykresu funkcji liniowej zbiór rgumentów, dl których funkcj przyjmuje wrtości dodtnie (ujemne) odczytuje z wykresu funkcji liniowej jej włsności: dziedzinę, zbiór wrtości, miejsce zerowe, monotoniczność wyzncz wzór funkcji liniowej, której wykres przechodzi przez dne dw punkty wyzncz wzór funkcji liniowej, której wykresem jest dn prost (przypdki elementrne) wyzncz współrzędne punktów przecięci wykresu funkcji liniowej z osimi ukłdu współrzędnych sprwdz lgebricznie i grficznie, czy dny punkt nleży do wykresu funkcji liniowej przeksztłc równnie ogólne prostej do postci kierunkowej i odwrotnie sprwdz, czy dne trzy punkty są współliniowe stosuje wrunek równoległości i prostopdłości prostych wyzncz wzór funkcji liniowej, której wykres przechodzi przez dny punkt i jest równoległy do wykresu dnej funkcji liniowej wyzncz wzór funkcji liniowej, której wykres przechodzi przez dny punkt i jest prostopdły do wykresu dnej funkcji liniowej rozstrzyg, czy dny ukłd dwóch równń liniowych jest oznczony, nieoznczony czy sprzeczny rozwiązuje ukłdy równń liniowych z dwiem niewidomymi metodą podstwini i metodą przeciwnych współczynników określ liczbę rozwiązń ukłdu równń liniowych, korzystjąc z jego interpretcji geometrycznej sprwdz, dl jkich wrtości prmetru funkcj liniow jest rosnąc, mlejąc, stł rysuje wykres funkcji przedziłmi liniowej i omwi jej włsności oblicz pole figury ogrniczonej wykresmi funkcji liniowych orz osimi ukłdu współrzędnych sprwdz, dl jkich wrtości prmetru dwie proste są równoległe, prostopdłe znjduje współrzędne wierzchołków wielokąt, gdy dne są równni prostych zwierjących jego boki rozwiązuje zdni tekstowe prowdzące do ukłdów równń liniowych z dwiem niewidomymi rozwiązuje lgebricznie ukłd trzech równń liniowych z trzem niewidomymi określ włsności funkcji liniowej w zleżności od wrtości prmetrów występujących w jej wzorze wykorzystuje włsności funkcji liniowej w zdnich dotyczących wielokątów w ukłdzie współrzędnych rozwiązuje grficznie ukłd równń, w którym występuje wrtość bezwzględn rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji liniowej 4. FUNKCJE rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi sposobmi (wzorem, tbelką, wykresem, opisem słownym) poprwnie stosuje określeni związne z pojęciem funkcji: dziedzin, zbiór wrtości, rgument, wrtość, wykres odczytuje z wykresu dziedzinę, zbiór wrtości, miejsc zerowe, njmniejszą i njwiększą wrtość funkcji wyzncz dziedzinę funkcji określonej tbelą lub opisem słownym wyzncz dziedzinę funkcji dnej wzorem, wymgjącym jednego złożeni oblicz miejsc zerowe funkcji dnej wzorem (w prostych przykłdch) oblicz wrtość funkcji dl różnych rgumentów n podstwie wzoru funkcji oblicz rgument odpowidjący podnej wrtości funkcji (w prostych przykłdch) sprwdz lgebricznie położenie punktu o dnych współrzędnych względem wykresu funkcji dnej wzorem wyzncz współrzędne punktów przecięci wykresu funkcji dnej wzorem z osimi ukłdu współrzędnych rysuje w prostych przypdkch wykres funkcji dnej wzorem sporządz wykresy funkcji: y f ( x p), y q, y f ( x p) q,, y f( x) n podstwie 3
dnego wykresu funkcji y f (x) odczytuje z wykresu wrtość funkcji dl dnego rgumentu orz rgument dl dnej wrtości funkcji n podstwie wykresu funkcji określ rgumenty, dl których funkcj przyjmuje wrtości dodtnie, ujemne określ n podstwie wykresu przedziły monotoniczności funkcji wskzuje wykresy funkcji rosnących, mlejących i stłych wśród różnych wykresów stosuje funkcje i ich włsności w prostych sytucjch prktycznych rozpoznje i opisuje zleżności funkcyjne w otczjącej ns rzeczywistości przedstwi dną funkcję n różne sposoby określ dziedzinę orz wyzncz miejsc zerowe funkcji dnej wzorem, który wymg kilku złożeń n podstwie wykresu funkcji określ liczbę rozwiązń równni f(x) = m w zleżności od wrtości prmetru m n podstwie wykresu funkcji odczytuje zbiory rozwiązń nierówności: m dl ustlonej wrtości prmetru m odczytuje z wykresów funkcji rozwiązni równń i nierówności typu f(x) = g(x), f(x)<g(x), f(x)>g(x) szkicuje wykres funkcji spełnijącej podne wrunki uzsdni, że funkcj f x nie jest monotoniczn w swojej dziedzinie x rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji 5. FUNKCJA KWADRATOWA rysuje wykres funkcji x i podje jej włsności sprwdz lgebricznie, czy dny punkt nleży do wykresu dnej funkcji kwdrtowej rysuje wykres funkcji kwdrtowej w postci knonicznej i podje jej włsności ustl wzór funkcji kwdrtowej w postci knonicznej n podstwie informcji o przesunięcich wykresu funkcji x przeksztłc wzór funkcji kwdrtowej z postci knonicznej do postci ogólnej i odwrotnie oblicz współrzędne wierzchołk prboli dnej wzorem ogólnym znjduje brkujące współczynniki funkcji kwdrtowej, znjąc współrzędne punktów nleżących do jej wykresu (w prostych przykłdch) rozwiązuje równni kwdrtowe niepełne metodą rozkłdu n czynniki orz stosując wzory skróconego mnożeni wyzncz lgebricznie współrzędne punktów przecięci prboli z osimi ukłdu współrzędnych określ liczbę pierwistków równni kwdrtowego w zleżności od znku wyróżnik rozwiązuje równni kwdrtowe, stosując wzory n pierwistki sprowdz funkcję kwdrtową do postci iloczynowej, o ile możn ją w tej postci zpisć odczytuje miejsc zerowe funkcji kwdrtowej z jej postci iloczynowej rozwiązuje nierówności kwdrtowe wyzncz njmniejszą i njwiększą wrtość funkcji kwdrtowej w podnym przedzile n podstwie wykresu funkcji kwdrtowe f określ liczbę rozwiązń równni f(x) = m w zleżności od prmetru m rozwiązuje zdni tekstowe prowdzące do wyznczni wrtości njmniejszej i njwiększej funkcji kwdrtowej rozwiązuje zdni tekstowe prowdzące do równń lub nierówności kwdrtowych znjduje iloczyn, sumę i różnicę zbiorów rozwiązń nierówności kwdrtowych przeksztłc n ogólnych dnych wzór funkcji kwdrtowej z postci ogólnej do postci knonicznej wyprowdz wzory n współrzędne wierzchołk prboli wyprowdz wzory n pierwistki równni kwdrtowego rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji kwdrtowej 4
6. PLANIMETRIA rozróżni trójkąty: ostrokątne, prostokątne, rozwrtokątne stosuje twierdzenie o sumie mir kątów w trójkącie sprwdz, czy z trzech odcinków o dnych długościch możn zbudowć trójkąt uzsdni przystwnie trójkątów, wykorzystując cechy przystwni wykorzystuje cechy przystwni trójkątów do rozwiązywni prostych zdń uzsdni podobieństwo trójkątów, wykorzystując cechy podobieństw zpisuje proporcje boków w trójkątch podobnych wykorzystuje podobieństwo trójkątów do rozwiązywni elementrnych zdń sprwdz, czy dne figury są podobne (w prostych przykłdch) oblicz długości boków figur podobnych posługuje się pojęciem skli do obliczni odległości i powierzchni przedstwionych z pomocą plnu lub mpy stosuje w zdnich twierdzenie o stosunku pól figur podobnych wskzuje w wielokątch odcinki proporcjonlne stosuje twierdzenie Pitgors wykorzystuje wzory n przekątną kwdrtu i wysokość trójkąt równobocznego rozwiązuje zdni o trójkątch ekierkch, korzystjąc z relcji między ich bokmi stosuje w wzór n pole trójkąt: P h orz wzór n pole trójkąt równobocznego o boku : przeprowdz dowód twierdzeni o sumie mir kątów w trójkącie stosuje cechy przystwni trójkątów do rozwiązywni trudniejszych zdń geometrycznych wykorzystuje podobieństwo trójkątów do rozwiązywni prktycznych problemów stosuje twierdzeni o związkch mirowych podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu rozwiązuje zdni wymgjące uzsdnieni i dowodzeni z zstosowniem twierdzeni Tles i twierdzeni odwrotnego do twierdzeni Tles stosuje włsności podobieństw figur podczs rozwiązywni zdń problemowych orz zdń wymgjących przeprowdzeni dowodu stosuje włsności czworokątów podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu rozwiązuje zdni o zncznym stopniu trudności dotyczące przystwni i podobieństw figur P 3 4 Wrunki i tryb otrzymni wyższej niż przewidywn oceny rocznej z mtemtyki. Spełninie wymgń n dną ocenę zgodnych z obowiązującymi w ZPSP kryterimi ocenini.. Ponowne przystąpienie do sprwdzinów, które zostły przeprowdzone w bieżącym roku szkolnym obowiązuje ten sm zkres zgdnień, zdni są inne. Ocen z kżdego sprwdzinu m wgę. 3. Niezwłoczne przyniesienie do sprwdzeni zeszytów z okresu od 7 styczni do osttniej lekcji mtemtyki. Ocenion zostnie prc uczni podczs lekcji orz prce domowe. Kżd z tych ocen m wgę. Uwg Poniewż uczeń zobowiązny jest do systemtycznej prcy i nuki przez cły rok szkolny, to jego ktywność podczs lekcji, sposób w jki przygotowywł się do nich będą miły wpływ n ostteczną oceną. Uwg W przypdku uczni, który nie mógł uczęszczć n lekcje z wżnych przyczyn zdrowotnych punkt 3 orz uwg zostną odpowiednio zmodyfikowne. wrześni 07 r Iwon Rynkowsk 5