ANALIZA NUMERYCZNA I BADANIA STRUKTURY PRĘTÓW AlCu4Mg WYCISKANYCH Z MAŁYM WSPÓŁCZYNNIKIEM WYDŁUŻENIA

Podobne dokumenty
POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

WPŁYW GEOMETRII MATRYCY NA JAKOŚĆ WYCISKANYCH KSZTAŁTOWNIKÓW Z TRUDNOODKSZTAŁCALNYCH STOPÓW ALUMINIUM

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.

Integralność konstrukcji

ODPORNOŚĆ NA ZUŻYCIE STOPOWYCH KOMPOZYTÓW POWIERZCHNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

Analiza matematyczna i algebra liniowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

URZĄD KOMISJI NADZORU FINANSOWEGO WARSZAWA, 2011 DAR/A/J/2011/001

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH

2. Tensometria mechaniczna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

Piłka nożna w badaniach statystycznych 1

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

Analiza obciążeń kratownicy obustronnie podpartej za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/ Sumy algebraiczne

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO

Nazwa studiów podyplomowych: Studia Podyplomowe Samorządu Terytorialnego i Gospodarki Lokalnej

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

Katalog produktów. Kuźnia Batory

LASER TREATMENT WITH PREHEATING OF CAST IRON ELEMENTS

OCENA BARWY ORAZ ZAWARTOŚCI BARWNIKÓW KAROTENOIDOWYCH W OWOCACH POMIDORA NOWYCH LINII HODOWLANYCH

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Wspomaganie obliczeń za pomocą programu MathCad

XB Płytowy, lutowany wymiennik ciepła

Wymagania kl. 2. Uczeń:

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

Powłoki ze stopu Inconel 686 napawane metodą CMT na rury i ściany szczelne kotłów energetycznych do spalania odpadów

ZAMKNIĘCIE ROKU 2016 z uwzględnieniem zmian w prawie bilansowym. dr Gyöngyvér Takáts

temperatura

Numer yczne wyznaczanie wytr zymałości opakowań z tektury falistej

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Struktura i właściwości powłok ze stopów Inconel 625 i 686 napawanych metodą CMT na rury i ściany szczelne kotłów energetycznych

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Wymagania edukacyjne z matematyki

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

usuwa niewymierność z mianownika wyrażenia typu

Badania struktury i charakterystyki przepływu płaskiej strugi wodnej i wodno-ściernej

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU

ULTRADŹWIĘKOWE BADANIE ODLEWÓW STALIWNYCH WYMAGANIA NORMY EN

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Modelowanie 3 D na podstawie fotografii amatorskich

WPŁYW WYTRĄCONEJ SOLI NA STRUKTURĘ I WŁASNOŚCI WYTRZYMAŁOŚCIOWE ZAPRAWY CEMENTOWEJ

Modelowanie w wytrzymałości materiałów

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

4. RACHUNEK WEKTOROWY

Z INFORMATYKI RAPORT

Temat lekcji Zakres treści Osiągnięcia ucznia

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

pobrano z

STYLE. TWORZENIE SPISÓW TREŚCI

Charakterystyka składu strukturalno-grupowego olejów napędowych i średnich frakcji naftowych z zastosowaniem GC/MS

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

SZTUCZNA INTELIGENCJA

3. Rozkład macierzy według wartości szczególnych

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

SYSTEMY KANAŁÓW OKRĄGŁYCH

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

CHEMIA MIĘDZY NAMI U S Z C Z E L K I P R O F I L E

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1

Klasa obróbki skrawani em (10=bdb ; 1=ndst) Przydatnoś ć do utwardzani bardzo dobra nie 9

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ KONSTRUKCJI DREWNIANYCH

Nowy system wsparcia rodzin z dziećmi

Własności mechaniczne stali 13CrMo4-5

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

TEORETYCZNY I RZECZYWISTY ROZKŁAD CIECZY DLA WYBRANYCH PARAMETRÓW USTAWIENIA ROZPYLACZA

Obliczenia naukowe Wykład nr 14

KOREKTA AKUSTYCZNA WNĘK PODBALKONOWYCH W SALI OPERY LWOWSKIEJ ACOUSTICAL CORRECTION OF UNDER BALCONY CAVITIES IN LVIV OPERA HALL

Odbudowa estetyczna materiałem DiaFil. Przypadki kliniczne

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych

Metoda kropli wosku Renferta

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Transkrypt:

ALUMINIUM PROCESSING Redktor odpowiedzilny: dr h. inż. WOJCIECH LIBURA, prof. nzw. JUSTYNA GRZYB GRZEGORZ KRUPNIK WOJCIECH LIBURA ARTUR RĘKAS Rudy Metle R53 2008 nr 8 UKD 669.018:669.715 35 721.5: :519.6:620.18:669-432 ANALIZA NUMERYCZNA I BADANIA STRUKTURY PRĘTÓW AlCu4Mg WYCISKANYCH Z MAŁYM WSPÓŁCZYNNIKIEM WYDŁUŻENIA Przeprowdzono oliczeni numeryczne metodą elementów skończonych (MES) procesu wyciskni prętów o przekroju kwdrtowym dl trudno odksztłclnego stopu luminium AlCu4Mg (2017A) w zkresie młych współczynników wydłużeni. Dokonno nlizy mkrostrukturlnej prętów wycisknych w wrunkch przemysłowych. Celem rtykułu ył nliz sposou płynięci mteriłu w przekroju poprzecznym wyrou. Uzupełnieniem oserwcji strukturlnych yły oliczeni numeryczne. Skorelownie orzu płynięci z rozkłdmi prędkości, intensywności odksztłceni i tempertury we wlewku i gotowym wyroie dostrczyło szereg wżnych informcji dotyczących sposou płynięci mteriłu, który rzutuje n jkość uzysknego wyrou. Stwierdzono, że w zkresie dnych współczynników wydłużeni, poniżej 10, wycisknie z większym współczynnikiem prowdzi do zwiększeni rozrzutu intensywności odksztłceni orz tempertury w przekroju poprzecznym wyrou. W rezultcie, zoserwowno większe różnice w strukturze mteriłu. Słow kluczowe: wycisknie, modelownie numeryczne, stopy Al, mkro- i mikrostruktur NUMERICAL AND STRUCTURAL ANALYSIS OF AlCu4Mg ALUMINUM ALLOY RODS EXTRUDATES WITH LOW EXTRUSION RATIOS Mcro- nd microstructure of extruded sections from 2017A luminum lloy ws exmined. FEM numericl clcultions of extrusion process within the rnge of smll extrusion rtios were crried out. The im of the work ws to investigte the influence of the mteril flow, strin nd temperture distriution cross the illet nd extrudte on the extrudte qulity. It ws found tht extrusion with higher extrusion rtio, ut elow 10, leds to higher difference in oth effective strin nd temperture on extrudte cross-section. As result, the higher vrition in the mteril micro nd mcrostructure ws otined. Keywords: extrusion, numericl modelling, luminum lloys, mcro- nd microstructure Wprowdzenie Wycisknie metli n gorąco jest jednym z podstwowych procesów w przemyśle metli nieżelznych pozwljącym uzyskć wyroy o zróżnicownych wymirch i ksztłtch. Ze względu n specyfikę procesu wyciskni wyroy chrkteryzują się niejednorodnością struktury zrówno n długości, jk i n przekroju poprzecznym. Prmetrmi de- Mgr inż. Justyn Grzy Akdemi Górniczo-Hutnicz, Wydził Metli Nieżelznych, Ktedr Przeróki Plstycznej i Metloznwstw, Krków, mgr inż. Grzegorz Krupnik Grup KĘTY S.A., Kęty, dr h. inż. Wojciech Liur, prof. nzw, dr inż. Artur Ręks Akdemi Górniczo-Hutnicz, Wydził Metli Nieżelznych, Ktedr Przeróki Plstycznej i Metloznwstw, Krków. 493

cydującymi o finlnej strukturze wyrou są tempertur, prędkość wyciskni orz stopień odksztłceni. Odpowiedni doór wymienionych prmetrów procesu wyciskni w połączeniu ze zminą geometrii mtrycy wpływ n poprwę sposou płynięci metlu, tym smym n poprwę struktury i włsności mechnicznych. Jednym z istotnych prolemów, jki pojwi się w procesie wyciskni wyroów o dużych przekrojch poprzecznych z młym współczynnikiem wydłużeni, jest zpewnienie jednorodnego, równomiernego płynięci mteriłu w otworze mtrycy. Wiąże się to z uzyskniem odpowiedniego poziomu równomierności włsności i struktury w przekroju wyroów. Dotychczsowe dni przeprowdzone zrówno n mteriłch modelowych w wrunkch lortoryjnych jk i w zkłdch przemysłowych produkujących wyroy ze stopów luminium, dowodzą, że grniczny stopień przerou metlu, zdefiniowny jko minimlny współczynnik wydłużeni λ min, gwrntujący odpowiedni poziom jednorodności wyroów, ksztłtuje się n poziomie λ min = 15 20 [1]. Pomimo to, w wycisknych stopch luminium często pojwi się zjwisko owódki gruozirnistej, występującej niezleżnie od wielkości współczynnik wydłużeni. Owódkę tką zoserwowno tkże podczs wyciskni prętów o przekroju kwdrtowym ze stopu 2017A, przy młych wrtościch współczynnik wydłużeni [2]. Występownie owódki gruokrystlicznej jest ściśle powiązne ze sposoem płynięci mteriłu wewnątrz wycisknego wlewk. Poprzez odpowiedni doór mteriłu orz sposou prowdzeni procesu wyciskni możn zncząco wpływć n wyeliminownie wd i poprwę jkości otrzymnych prętów [3]. Celem rtykułu jest nliz sposou płynięci mteriłu orz struktury prętów z trudno odksztłclnego stopu luminium AlCu4Mg, wycisknych w zkresie młych współczynników wydłużeni. Przeprowdzono oliczeni numeryczne procesu wyciskni stosując metodę elementów skończonych w celu uzyskni rozkłdów prędkości płynięci metlu w strefie odksztłceni, intensywności odksztłceni i tempertury we wlewku i w gotowym wyroie. Uzyskne dne z oliczeń zostły skonfrontowne z orzem płynięci metlu i strukturą mteriłu wycisknego. Bdni strukturlne wycisknych prętów Bdni eksperymentlne i oliczeni numeryczne przeprowdzono n prętch ze stopu AlCu4Mg (2017A), wycisknych z młymi współczynnikmi wydłużeni. Wyciskno dw rodzje prętów o przekroju kwdrtowym: 90 90 mm i 120 120 mm. Skłd chemiczny wlewków podno w tlicy 1. Wycisknie przeprowdzono n prsie współieżnej o ncisku mksymlnym 32 MN, przy użyciu mtryc pł- Tlic 1 Skłd chemiczny wlewków ze stopu 2017A Tle 1 Chemicl composition of 2017A luminum lloys Procentow zwrtość pierwistków w stopie serii 2017A Si Fe Cu Mn Mg Cr Zn Al 0,475 0,288 4,458 0,839 0,966 0,019 0,151 reszt Rys. 1. Mkrostruktur piętki wlewk ze stopu 2017A orz mikrostruktur w pręcie 90 90 mm wycisknym ze współczynnikiem wydłużeni λ = 9,02 Fig. 1. Mcrostructure of 2017A illet rest nd microstructure of extrudte 90 90 mm otined with extrusion rtio λ = 9.02 494

Rys. 2. Mkrostruktur piętki wlewk ze stopu 2017A orz mikrostruktur w pręcie 120 120 mm wycisknym ze współczynnikiem wydłużeni λ = 5,07 Fig. 2. Mcrostructure of 2017A illet rest nd microstructure of extrudte 120 120 mm otined with extrusion rtio λ = 5.07 skich jednootworowych. Prmetry procesu wyciskni yły nstępujące: średnic wlewk, D 0 295 mm, długość wlewk, L 0 600 mm, współczynniki wydłużeni, λ 9,02; 5,07, prędkość stempl, v 0 2,3 mm/s, tempertur ngrzewni wlewków, T w 420 C, tempertur nrzędzi, T n 425 C. Przeprowdzone wcześniej dni nd wyciskniem prętów o przekroju kwdrtowym ze stopu 2017A pozwlją n uzysknie informcji związnych z mkrostrukturą wyrou orz rozkłdem włsności mechnicznych w przekroju poprzecznym dnych prętów. Stwierdzono, że owódk gruokrystliczn zwiększ się wrz ze wzrostem stopni odksztłceni, pondto njsilniej rozwinięt stref gruozirnist występuje w nrożch pręt kwdrtowego. Różnice w poziomie włsności mechnicznych w przekroju pręt 120 120 mm wyniosły: w przypdku wytrzymłości n rozciągnie R m ok. 33 MP, grnicy plstyczności R 0,2 = 24,5 MP i yły dużo większe niż w przypdku pręt o wymirch 90 90 (λ = 9,02). Bdni przeprowdzone w rmch niniejszej prcy oejmowły nlizę płynięci metlu n podstwie oserwcji mkrostruktury piętek pozostłych po wyciskniu orz dnie mikrostruktury prętów. Otrzymne mkrostruktury piętek orzują tworzenie się trzech chrkterystycznych stref wewnątrz wycisknego wlewk, tj. strefy mrtwej, strefy ścinni i strefy odksztłceni głównego (rys. 1 i 2). Podczs wyciskni z większym współczynnikiem wydłużeni λ = 9,02 w strefie ścinni wytwrz się struktur Rys. 3. Mkrostruktur końców prętów ze stopu 2017A wycisknych z różnymi współczynnikmi wydłużeni λ = 9,03, λ = 5,07 [2] Fig. 3. Mcrostructure of extrudte ends of 2017A sections extruded with vrious extrusion rtios λ = 9.03, λ = 5.07 [2] gruozirnist, wywołn głównie przez grdient deformcji pomiędzy poszczególnymi oszrmi wycisknego mteriłu. Stref t przechodzi do gotowego wyrou w postci owódki gruozirnistej. Dl przypdku pręt 120 120 mm rozrost zirn w strefie ścinni jest minimlny, co przejwi się rkiem owódki gruozirnistej Ntomist w przypdku pręt 120 120 mm (rys. 2) widoczne są wyrźne oszry niejednorodnej struktury we wlewku, przechodzące do gotowego wyrou w postci wrstw o niejednkowej gruości n długości wyrou. Świdczy to o tym, 495

że nie osiągnięto w tym przypdku stnu ustlonego płynięci mteriłu. N rysunkch 1 i 2 ook mkrostruktury piętek zmieszczono tkże zdjęci z mikroskopu optycznego orzujące wyrne oszry w przekroju poprzecznym wyroów w powiększeniu 200. Widoczne n zdjęcich orzy uwidoczniją strukturę włóknistą mteriłu z wydzielenimi rozmieszczonymi w sposó chrkterystyczny dl wyroów wycisknych. Środkow wrstw pręt 120 120 mm wykzuje strukturę o zncznie większej gruości zirn w stosunku do wrstw wewnętrznych. Jk wykzły wcześniejsze dni, w tym przypdku prktycznie, poz nrożmi pręt, nie wystąpił owódk gruozirnist w wrstwie zewnętrznej pręt, w przeciwieństwie do pręt 90 90 mm (rys. 3) [2]. Anliz numeryczn Przeprowdzono modelownie numeryczne procesu wyciskni prętów dl wrunków identycznych jk w próch wyciskni, w celu uzyskni informcji n temt płynięci metlu poprzez rozkłdy prędkości cząstek, intensywności odksztłceni i tempertury n przekroju poprzecznym wlewk i gotowych wyroów. Oliczeni przeprowdzono w progrmie Deform 3D oprtym n metodzie elementów skończonych. Dne chrkteryzujące mterił uzyskno z wewnętrznej zy mteriłowej progrmu. Ze względu n tendencję tego mteriłu do przywierni do powierzchni pojemnik czynnik trci przyjęto m = 0,7. Anliz prędkości cząstek mteriłu w wycisknych prętch (rys. 4) wykzuje duże zróżnicownie prędkości cząstek w przekroju poprzecznym. Orz płynięci uzyskny Rys. 5. Rozkłd intensywności odksztłceni we wlewku ze stopu Al 2017A dl wyciskni w zkresie młych współczynników wydłużeni pręt 90 90 mm (λ = 9,02), pręt 120 120 mm (λ = 5,07) Fig. 5. Distriutions of effective strin for low extrusion rtios λ = 9.02, λ = 5.07 Rys. 6. Rozkłd intensywności odksztłceni ε i n przekroju wyrou ze stopu 2017A podczs wyciskni w zkresie młych współczynników wydłużeni Fig. 6. Effective strin distriution on the extrudte cross-section for low extrusion rtios Rys. 4. Rozkłdy skłdowej osiowej prędkości V z we wlewku podczs wyciskni w zkresie młych współczynników wydłużeni pręt o wymirch 90 90 mm (λ = 9,02), pręt o wymirch 120 120 mm (λ = 5,07) Fig. 4. Distriutions of xil velocity V z within the illet for two extrusion rtios λ = 9.02, λ = 5.07 n drodze modelowni numerycznego jest rdzo podony do rzeczywistego, ujwnionego poprzez mkrostrukturę wlewk. Podony jest ksztłt stref mrtwych, co świdczy o prwidłowym doorze wrunków procesu, w szczególności wrtości czynnik trci m. W zkresie nlizownych wielkości współczynnik wydłużeni nie oserwuje się mkroskopowych różnic w orzie płynięci dl oydwu przypdków wyciskni. N rysunku 5 umieszczono rozkłdy intensywności odksztłceni ε i w przekroju poprzecznym wlewk podczs wyciskni w zkresie młych współczynników wydłużeni. W przypdku pręt kwdrtowego, wycisknego z mniejszym współczynnikiem wydłużeni λ = 5,07, rozkłd intensywności odksztłceni jest rdziej nierównomierny. Widć to szczególnie wyrźnie n wykresie przedstwijącym rozkłd ε i n przekroju prętów (rys. 6). W wrstwch zewnętrznych wyrou intensywność odksztłceni dl oydwu wycisknych prętów jest podon i osiąg wrtość ok. 496

Rys. 7. Rozkłd tempertury we wlewku ze stopu 2017A podczs wyciskni w zkresie młych współczynników wydłużeni pręt o wymirch 90 90 (λ = 9,02), pręt o wymirch 120 120 (λ = 5,07) Fig. 7. Temperture distriutions within the illet for low extrusion rtios λ = 9.02, λ = 5.07 Rys. 8. Rozkłd tempertury n przekroju wyrou ze stopu 2017A dl wyciskni w zkresie młych współczynników wydłużeni Fig. 8. Temperture distriution on the extrudte cross-section for low extrusion rtios 3,4, ntomist w wrstwch wewnętrznych różni się zncznie, co jednk wynik z różnych współczynników wydłużeni w procesie. Tym smym w przypdku mniejszego współczynnik wydłużeni występuje większy grdient odksztłceni. Tłumczy to, dlczego nie wystąpił w tym przypdku wyrźn owódk gruozirnist (rys. 3). Podone zjwisko zoserwowno w przypdku prętów okrągłych z luminium 1050 [2]. Anlizując rozkłdy tempertury n przekroju wlewk i gotowego wyrou możn zuwżyć znczny przyrost tempertury w zewnętrznych wrstwch wycisknych prętów (rys. 7 i 8). Sytucj tk m miejsce zrówno w przypdku wyciskni pręt 90 90 mm (λ = 9,02), jk i dl pręt 120 120 mm (λ = 5,07). W przypdku współczynnik wydłużeni λ = 9,02 oserwujemy wyższą temperturę wyrou opuszczjącego mtrycę, równą 470 C, podczs gdy dl mniejszego λ uzyskno 456 C, co wiąże się z różnicą w prcy odksztłceni, któr nieml w cłości zmieni się n ciepło. Przyrost tempertury w stosunku do tempertury ngrzewni wlewk wynosi odpowiednio 45 i 35 C. W przypdku większego współczynnik wydłużeni oserwuje się tkże większe zróżnicownie tempertury w przekroju wycisknego pręt (rys. 8). Różnic pomiędzy temperturą rdzeni powierzchnią pręt wynosi ok. 15 C i jest o 5 stopni większ niż w przypdku mniejszego λ. Anliz uzysknych dnych z oliczeń numerycznych wyjśni uzyskne orzy struktury mteriłu po wyciskniu. Przy rdzo młych odksztłcenich grdient odksztłceni w wrstwch zewnętrznych, podonie jk i przyrost tempertury jest zyt mły y doprowdzić do normlnego rozrostu zirn Wnioski Przeprowdzone oserwcje mkrostrukturlne i dni numeryczne pozwoliły n powiąznie zmin struktury mteriłu ze stnem odksztłceni i zminmi tempertury w procesie wyciskni stopu 2017A z niewielkimi współczynnikmi wydłużeni. Wycisknie z młym współczynnikiem wydłużeni wiąże się z dużym grdientem intensywności odksztłceni orz większym zróżnicowniem pol tempertury. Tkie zróżnicownie może prowdzić do niejednorodności włsności mechnicznych i strukturlnych n przekroju poprzecznym gotowego wyrou. Brdzo młe współczynniki wydłużeni w procesie wyciskni nie wywołują co prwd normlnej niejednorodności struktury wyrou w postci owódki gruozirnistej w stopie 2017A, tym niemniej, jk wynik z wcześniejszych dń, poziom uzysknych włsności mechnicznych wyrou jest niższy. W prktyce, występuje pewien przedził niskich wrtości współczynników wydłużeni, prowdzący do otrzymywni wyroów o zniżonej jkości. Litertur 1. Leśnik D., Liur W., Zsdziński J.: Anliz numeryczn procesu wyciskni trudno odksztłclnych stopów luminium w zkresie młych współczynników wydłużeni. Rudy Metle 2005, t. 50, nr 6, s. 336 340. 2. Krupnik G., Grzy J., Oleksy A., Liur W.: Jkość prętów ze stopów Al wycisknych z młym współczynnikiem wydłużeni. Rudy Metle 2007, t. 52, nr 11, s. 728 733. 3. Liur W.: Anliz pol odksztłceń i struktury mteriłu podczs wyciskni stopów luminium. AGH, Rozprwy i Monogrfie, 1994, nr 17. 497