ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30
Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest podzielna przez 3? Odpowiedź uzasadnij.. Poniżej opisano dwie metody obliczania wagi odpowiedniej dla osoby o danym wzroście. zy dla każdego wzrostu przy obu metodach otrzymamy tka samą wartośd wagi? Odpowiedź uzasadnij. Metoda Lorenza: osoba o wzroście H cm powinna ważyd h 00 0,5(h 50)kg. Metoda merykaoskiego Towarzystwa Ubezpieczeo na Życie: osoba o wzroście h cm powinna ważyd 50 + 0,75 (h 50) kg. 3. Wiadomo, że jeden z kątów równoległoboku jest prosty. Uzasadnij, że równoległobok ten jest prostokątem. 4. Uzasadnij, że jeśli kula mieści się w prostopadłościennym pudełku o wymiarach 6cm 7cm 8cm, to jej objętośd jest mniejsza niż 6 cm. 5. Punkt jest środkiem boku trójkąta. Wykaż, że jeśli trójkąt jest równoboczny, to trójkąt jest prostokątny. 6. Uzasadnij, że suma dwóch kolejnych liczb naturalnych jest liczbą nieparzystą. 7. Uzasadnij, że pole koła wpisanego w kwadrat stanowi ponad 75% pola tego kwadratu, a pole kwadratu wpisanego w koło to mniej niż 75% pola tego koła. 8. Średnia arytmetyczna liczb a i b jest równa 0. Wykaż, że średnia arytmetyczna liczb a, b oraz 0 jest także równa 0. 9. Uzasadnij, że kąt oznaczony na rysunku literą δ ma miarę równą sumie miar kątów α i β. δ α β
Strona3 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 0. Podaj dwa przykłady takich liczb naturalnych nieparzystych, z których pierwiastek kwadratowy jest liczbą naturalną. Wykaż, że takich liczb nieparzystych jest nieskooczenie wiele.. (I) Na jednym z ramion dowolnego kąta o wierzchołku O zaznaczono punkty i, a na drugim ramieniu punkty i tak, aby O O, O O. Uzasadnij, że trójkąty O i O są przystające.. Uzasadnij, że liczba 0 jest podzielna przez 3, 5 i 5. 3. Zapisz średnią arytmetyczną średniej arytmetycznej liczb a i b oraz średniej arytmetycznej liczb c i d. Wykaż, że jest ona równa średniej arytmetycznej liczb a, b, c i d. 4. Wykaż, że różnica między liczbą czterocyfrową, której cyfrą dziesiątek jest zero, a liczbą zapisaną za pomocą tych samych cyfr, ale w odwrotnej kolejności, jest podzielna przez 9. 5. Wykaż, że suma miar kątów α, β i γ wynosi 360 0. 6. Uzasadnij, że jeżeli wielokąt jest czworokątem, to suma miar jego kątów wewnętrznych jest równa 360 0. 7. Liczba doskonała to liczba naturalna, która jest równa sumie wszystkich swoich dzielników mniejszych od niej samej. Uzasadnij, że liczba 8 jest liczbą doskonałą. 8. Uzasadnij, że iloczyn dwóch kolejnych liczb parzystych jest podzielny przez 8. 9. Uzasadnij, że suma dwóch kolejnych liczb parzystych jest podzielna przez 4. 0. ane są trzy liczby naturalne a, b i c. Wiadomo, że ich suma jest nieparzysta i liczba a jest nieparzysta. Jakimi liczbami są liczby b i c: parzystymi czy nieparzystymi? Odpowiedź uzasadnij.. ane są trzy liczby a, b i c. Liczba a jest dodatnia, b jest zerem. Jaką liczbą jest liczba c, jeżeli suma tych liczb jest równa zero?
Strona4 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Uzasadnij, że każda liczba trzycyfrowa, której cyfra setek jest o większa od cyfry jedności, po przestawieniu cyfr w odwrotnej kolejności daje liczbę o 99 mniejszą od danej. 3. ana jest liczba trzycyfrowa, której cyfrą dziesiątek jest 0. Uzasadnij, że suma tej liczby i liczby trzycyfrowej zapisanej za pomocą tych samych cyfr, ale w odwrotnej kolejności, jest podzielna przez 0. 4. W trójkącie punkt jest środkiem boku. Pola trójkątów i E podane są na rysunku. Uzasadnij, że pole trójkąta E jest równe 8. E 4 4 5. any jest trójkąt. Na boku obrano punkt tak, że 5. Punkt ten połączono z wierzchołkiem. Uzasadnij, że pole trójkąta jest 5 razy większe od pola trójkąta. 6. Punkt E jest środkiem boku równoległoboku. Punkt ten połączono z wierzchołkiem. Uzasadnij, że pole trójkąta E jest trzy razy mniejsze od pola czworokąta E. 7. Kąty wewnętrzne trójkąta mają miary α, β i γ, a kąt przyległy do kąta o mierze β ma miarę δ. Wykaż, że δ = α + γ. 8. (II) Uzasadnij, że: 8 4 = 9 8 3 = 60 64 3 = 4 9 9. Uzasadnij, że: 0,5 5 3 3 0,75 6 5 30. Wykaż, że liczba 5 jest liczbą naturalną. 5 3. Wiedząc, że a b c, uzasadnij, że a 3 3 b c a a b c b 3. Wykaż, że cyfrą jedności liczby 0 4 jest 4. 33. Wykaż, że liczba postaci 3 0 3 jest podzielna przez 30.
Strona5 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 34. Przyjrzyj się rysunkowi poniżej. Wiedząc, że odcinki KM i ML są równe, uzasadnij, że trójkąt MPN jest równoramienny. 35. (III) ługośd boku kwadratu jest równa a. Na bokach tego kwadratu wyznaczono punkty K, L, M i N w następujący sposób: K leży na boku w odległości /3 od, L leży na boku również w odległości /3a od, M leży na boku a N na boku obydwa w odległości /3a od. Uzasadnij, że czworokąt KLMN jest prostokątem. 36. W trapezie prostokątnym, w którym II, kąt jest prosty, przekątna jest prostopadła do ramienia. Uzasadnij, że trójkąt i są podobne. 37. W czworokąt można wpisad okrąg, gdy sumy długości przeciwległych boków tego czworokąta są równe. Uzasadnij, że w trapez prostokątny, którego podstawy mają długości 6a i a, wysokośd ma długośd 3a, można wpisad okrąg. 38. Na bokach trójkąta prostokątnego zbudowano prostokąty w taki sposób, że drugi bok każdego prostokąta jest dwa razy dłuższy od danego boku trójkąta. Uzasadnij, że suma pól prostokątów zbudowanych na przyprostokątnych jest równa polu prostokąta zbudowanego na przeciwprostokątnej tego trójkąta. 39. Uzasadnij, że dwusieczne kątów i równoległoboku są prostopadłe 40. Uzasadnij, że jeśli liczba jest podzielna przez 5 i przez 4, to jest podzielna przez 0. 4. Paweł rzucił 5 razy zwykłą sześcienną kostką do gry. Zapisane kolejno wyniki rzutów utworzyły liczbę pięciocyfrową. Liczba ta jest parzysta i podzielna przez 9, a jej początkowe trzy cyfry to: 3,,. Ile oczek wyrzucił Paweł za czwartym i piątym razem? Podaj wszystkie możliwości. Odpowiedź uzasadnij. 4. Trzy proste przecinające się w sposób przedstawiony na rysunku tworzą trójkąt. Uzasadnij, że trójkąt jest równoboczny.
Strona6 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 43. Uzasadnij, że dwusieczne kątów przyległych są prostopadłe. 44. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejszą jest liczba n. zy ta suma jest podzielna przez 3? 45. Uzasadnij, że jedna z wysokości trójkąta przedstawionego na rysunku zawiera się w dwusiecznej jednego z kątów tego trójkąta. 74 46. Uzasadnij, że kwadrat liczby parzystej jest podzielny przez 4, a kwadrat liczby podzielnej przez 3 jest podzielny przez 9. 7 7 0 47. Uzasadnij, że przekątna równoległoboku dzieli go na dwa przystające trójkąty. 48. Uzasadnij, że w trójkącie równoramiennym kąty przy podstawie są równe. 49. *Kąt dopisany to kąt ostry między cięciwą a styczną w punkcie wspólnym cięciwy i okręgu. Uzasadnij, że kąt dopisany ma taką samą miarę jak kąt wpisany oparty na tej cięciwie. 50. o bardziej wypełni pudełko sześcienne: jedna duża kula, czy milion kulek o promieniu 00 razy mniejszym? Odpowiedź uzasadnij. 5. Na podstawie rysunku uzasadnij, że suma kątów w trójkącie jest równa 80 0. Oznacz odpowiednie kąty.
Strona7 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 5. Uzasadnij bez obliczania dokładnej wartości, że suma 99 + 99 + 99 + 399 jest mniejsza od 000. 53. Uzasadnij, że trójkąt O jest równoboczny. O O 60 54. ez wykonywania dzielenia uzasadnij, że liczba 345678 dzieli się przez 6. 55. Uzasadnij, że długośd krawędzi sześcianu o objętości,78 dm 3 jest 3 razy większa od długości krawędzi sześcianu o polu powierzchni 96 cm. 3 3 56. Uzasadnij, że dla a>0 wartośd wyrażenia ( a) a a jest równa. a 4 9 5 a a : a 57. Uzasadnij, że dla dowolnego a 0 iloraz wyrażenia przez liczbę a jest równy a 3. 4 a : a 58. W trójkącie prostokątnym równoramiennym poprowadzono, z wierzchołka kąta prostego, wysokośd. Uzasadnij, że trójkąty i są przystające. 59. Każdy bok prostokąta zmniejszono o połowę. Ile razy jest mniejszy obwód tego prostokąta od obwodu wyjściowego prostokąta? Ile razy jest mniejsze pole tego prostokąta od pola wyjściowego prostokąta? 60. Każdy bok prostokąta powiększono razy. Ile razy jest większy obwód tego prostokąta od obwodu wyjściowego prostokąta? Ile razy jest większe pole tego prostokąta od pola wyjściowego prostokąta? Odpowiedzi uzasadnij. 6. * Uzasadnij, że pole koła opisanego na trójkącie równobocznym jest cztery razy większe od pola koła wpisanego w ten trójkąt 6. * Uzasadnij, że pole trójkąta, w który wpisano okrąg o promieniu r, jest równe iloczynowi połowy obwodu tego trójkąta i promienia r. 63. Marek wymyślił sztuczkę. Poprosił Kasię, aby pomyślała pewną liczbę i nie mówiła, co to za liczba. Poprosił ją, aby do pomyślanej liczby dodała 3, następnie otrzymany wynik pomnożyła przez i na koniec od otrzymanej liczby odjęła 6. Gdy Kasia podała Markowi ostateczny wynik, Marek szybko odpowiedział jej, jaką liczbę pomyślała na początku. Jaka jest zależnośd pomiędzy ostatecznym wynikiem a pomyślaną liczbą? zy tak jest zawsze?
Strona8 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 64. Uzasadnij, że pole kwadratu o przekątnej długości d jest równe d. 65. Na bokach a, b, c trójkąta prostokątnego zbudowano trójkąty prostokątne równoramienne odpowiednio o przeciwprostokątnych a, b, c. zy suma pól trójkątów prostokątnych równoramiennych tak zbudowanych na przyprostokątnych trójkąta prostokątnego jest równa polu trójkąta prostokątnego równoramiennego zbudowanego na przeciwprostokątnej? 66. Na bokach a, b, c trójkąta prostokątnego zbudowano trójkąty równoboczne odpowiednio o bokach a, b, c. zy suma pól trójkątów równobocznych zbudowanych na przyprostokątnych trójkąta prostokątnego jest równa polu trójkąta równobocznego zbudowanego na przeciwprostokątnej? 67. Ile wynosi ostatnia cyfra liczby, która jest wartością sumy: 0 0 + 0 + 3 0? 68. Ile wynosi ostatnia cyfra liczby, która jest wartością sumy: 0 3 + 3 + 3 3? 69. Zapisz za pomocą wyrażenia algebraicznego wartośd liczby trzycyfrowej, której cyfrą jedności jest n, cyfra dziesiątek jest o 3 mniejsza od cyfry jedności, a cyfra setek jest dwa razy większa od cyfry dziesiątek. Określ, dla jakich wartości n istnieje rozwiązanie tego zadania. Podaj wszystkie możliwe liczby o podanej własności. 70. Zapisz za pomocą wyrażenia algebraicznego wartośd liczby trzycyfrowej, której cyfrą jedności jest a, cyfra dziesiątek jest o mniejsza od cyfry jedności, a cyfra setek jest dwa razy większa od cyfry dziesiątek. Określ, dla jakich wartości a istnieje rozwiązanie tego zadania. Podaj wszystkie możliwe liczby o podanej własności. 7. Na rysunku przedstawiono trapez. Uzasadnij, że trójkąty i mają jednakowe pola. W OPROWNIU WYKORZYSTNO:. Matematyka trening przed egzaminem, WSiP, Warszawa 0,. W. Paczesna, K. Mostowski Liczę na matematykę, Wydawnictwo Tales, Gdaosk 0,
Strona9 ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ 3. E. uvnjak, E. Kokiernak-Jurkiewicz, M. Wójcicka, Matematyka wokół nas Podręcznik klasa gimnazjum, WSiP, Warszawa 008, 4.. rążek, E. uvnjak, E. Kokiernak-Jurkiewicz, Matematyka wokół nas, Podręcznik klasa gimnazjum, WSiP, Warszawa 009, 5.. rążek, E. uvnjak, E. Kokiernak-Jurkiewicz, Matematyka wokół nas, Podręcznik klasa 3 gimnazjum, WSiP, Warszawa 00, 6. J. Walczak, U. Sawicka-Patrzałek, Matematyka wokół nas gimnazjum, zbiór zadao I testów klasa suplement, WSiP, Warszawa 008, 7. U. Sawicka-Patrzałek, J. Walczak, Matematyka wokół nas gimnazjum, zbiór zadao I testów klasa suplement, WSiP, Warszawa 009, 8. U. Sawicka-Patrzałek, J. Walczak, Matematyka wokół nas gimnazjum, zbiór zadao I testów klasa 3 suplement, WSiP, Warszawa 00, 9. wsipnet.pl