AUS Aparatura Ultrasonograficzna Wykład 2 jednostki. Lech Padee

Podobne dokumenty
Impedancja akustyczna, czyli o odbiciu fal podłużnych

MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO-

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fal podłużna. Polaryzacja fali podłużnej

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Fale mechaniczne i akustyka

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

Podstawy fizyki wykład 7

Dźwięk. Cechy dźwięku, natura światła

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym

Efekt Dopplera. dr inż. Romuald Kędzierski

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

Fizyka 12. Janusz Andrzejewski

POMIAR APERTURY NUMERYCZNEJ

Imię i nazwisko ucznia Data... Klasa...

Wykład 17: Optyka falowa cz.1.

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

Drgania i fale sprężyste. 1/24

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Technika ultradźwiękowa w diagnostyce medycznej II

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

Zastosowanie ultradźwięków w technikach multimedialnych

12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie.

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Badanie USG - diagnostyka prenatalna

Wykład XI. Optyka geometryczna

2.6.3 Interferencja fal.

Sonochemia. Dźwięk. Fale dźwiękowe należą do fal mechanicznych, sprężystych. Fale poprzeczne i podłużne. Ciało stałe (sprężystość postaci)

Teoria sprężystości F Z - F Z

Ćwiczenie: "Zagadnienia optyki"

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Praktyczne aspekty ultrasonografii jamy brzusznej u małych zwierząt

w diagnostyce medycznej III

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

Zjawisko interferencji fal

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

1.3. ZASADY PROPAGACJI DŹWIĘKU.

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Załamanie na granicy ośrodków

Falowa natura światła

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Fale w przyrodzie - dźwięk

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

obszary o większej wartości zaburzenia mają ciemny odcień, a

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie.

4. Ultradźwięki Instrukcja

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

FIZYKA KLASA III GIMNAZJUM

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Prawa optyki geometrycznej

I. PROMIENIOWANIE CIEPLNE

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3

WYMAGANIA EDUKACYJNE Z FIZYKI

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

Podstawy fizyki wykład 8

Fizyka 11. Janusz Andrzejewski

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Optyka geometryczna MICHAŁ MARZANTOWICZ

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

lim Np. lim jest wyrażeniem typu /, a

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy

Prawa ruchu: dynamika

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Defektoskop ultradźwiękowy

INTERFERENCJA WIELOPROMIENIOWA

Zjawisko interferencji fal

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Wyznaczanie prędkości dźwięku

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

Człowiek najlepsza inwestycja FENIKS

LASERY I ICH ZASTOSOWANIE

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

PDF stworzony przez wersję demonstracyjną pdffactory

Funkcja liniowa - podsumowanie

Transkrypt:

AUS Aparatura Ultrasonograficzna Wykład jednostki Lech Padee

Badanie USG stało się jedną z najpopularniejszych technik diagnostycznych. Stosuje się je do obrazowania i pomiarów geometrycznych tkanek, pomiarów i obrazowania przepływów krwi i innych płynów oraz diagnostyki kości. Rozwój aparatury ultrasonograficznej sprawił, że obecnie głównym ograniczeniem jakości zobrazowania ultrasonograficznego jest sama fala ultradźwiękowa, jej właściwości fizyczne i prawa propagacji.. Wiadomości wstępne.. Właściwości fal akustycznych i ośrodków propagacji Fala ultradźwiękowa w ośrodku sprężystym jest falą podłużna, stanowiącą lokalne zagęszczenia i rozrzedzenia ośrodka, propagujące się w kierunku rozchodzenia się fali. Zagęszczenia materii X t Rys.. Fala akustyczna w ośrodku sprężystym. Takie parametry fali, jak długość i prędkość rozchodzenia się zależą od właściwości mechanicznych ośrodka, tzn przede wszystkim od modułu sprężystości E i gęstości. Na poniższym rysunku przedstawiono wykres zmian energii cząsteczki, 0. wychylanej z położenia Siła równowagi. To położenie równowagi znajduje 0.05 się w odległości,8 0 umownych jednostek. -0.05 W tych samych Energia cząsteczki współrzędnych -0. przedstawiono wykres siły, potrzebnej do -0.5 wychylenia cząsteczki. Widać, że dla małych -0. wychyleń wokół położenia 3 4 5 6 równowagi siła przyrasta Odległość międzycząsteczkowa Rys. Energia potencjalna i siła w układzie cząsteczki dwuatomowej. nieomal proporcjonalnie do wychylenia. W tym zakresie naprężenia mechaniczne,

powodowane falą akustyczną, nie przekraczają zakresu stałych wartości modułu sprężystości E = const,. Wówczas siły działające na cząsteczki wychylane z położenia równowagi spełniają warunek sił harmonicznych F = - k x gdzie k współczynnik sprężystości liniowej x wychylenie cząsteczki Zgodnie z drugą zasadą dynamiki można napisać: -k x = m a gdzie m masa zagęszczenia (dużej liczby cząsteczek) a przyspieszenie ruchu tego zagęszczenia podstawiając przyspieszenie jako d x/dt otrzymujemy - k x = m (d x / dt ) Rozwiązaniem lokalnych przesunięć cząsteczek, czyli zaburzeń gęstości ośrodka jest oczywiście równanie falowe, podstawmy je w postaci x(t) = X 0 cos (t) Po podstawieniu : stąd -(X 0 cos(t)) = - (k / m) X 0 cos (t) = k / m Chwilowa prędkość zaburzeń gęstości ośrodka (lokalna): V = dx / dt = - X 0 sin(t) Prędkość maksymalna, stanowiąca prędkość propagacji : C = X 0 = k X0. m Biorąc pod uwagę sześcian ośrodka o rozmiarach X 0 otrzymujemy : C = E ρ gdzie E moduł sprężystości ośrodka gęstość ośrodka A zatem w ośrodku o dużym module sprężystości fale ultradźwiękowe rozchodzą się szybciej, w ośrodku o dużej gęstości wolniej. Przykładowe gęstości i prędkości rozchodzenia się fal podano w poniższej tabeli: 3

Tabela. Propagacja fal USG Ośrodek Moduł Sprężystości [kg/m/s x 0-9 ] Gęstość [kg/m 3 ] Prędkość [m/s] Impedancja akustyczna [kg/m /s x 0-6 ] Powietrze 0,000034, 330 0,0004 Woda (0 0 C),9 000 480,48 Rtęć 8,5 3 600 450 0,0 Tkanki miękkie śr,5 060 540,63 Tk tłuszczowa,0 95 450,38 Wątroba,54 060 550,64 Mięśnie wzdłużnie,74 080 59,70 Mięśnie poprzecznie,80 080 60,74 Mózg,40 994 550,55 Śledziona,59 045 578,64 Krew,47 057 057,6 Kość 3,0 9 4 080 7,8 Płuca 0,69 400 650 0,6 Soczewka oka 3,03 4 60,85 Ciało szkliste,3 000 50,5 Ciało wodniste,5 000 500,50 Kwarc 88,0 650 5 750 5, Tytanian baru 07,0 5 400 4 460 4,0 Olej mineralny, 969 477,43 Prędkość rozchodzenia się ultradźwięków zależy w niewielkim stopniu od temperatury ośrodka. Na przykład dla wody wzrost temperatury od 0 0 C do 37 0 C powoduje wzrost prędkości propagacji c od 480 do 570m/s. Niektóre alkohole mają z kolei ujemny współczynnik zmian prędkości propagacji od temperatury, toteż ich odpowiednia mieszanina z wodą może dać ośrodek wzorcowy, o stałej prędkości propagacji. (Stosowany jako wzorzec w ultrasonograficznej diagnostyce osteoporozy) Zależność prędkości lub innego parametru fali od częstotliwości nazywana jest dyspersją. W przypadku ultradźwięków zależność prędkości od częstotliwości jest mniejsza od % w zakresie częstotliwości od MHz do 0MHz i zmienia się nieznacznie w zależności od rodzaju tkanki. Moc, niesioną przez akustyczną falę płaską znajdujemy, licząc energię kinetyczną warstwy cząsteczek o masie m. E = m v = m c. E = s x c / t Po podzieleniu przez t otrzymamy : 4

E x = P = ρ s c t t stąd moc niesiona przez falę ultradźwiękową P = ρ s v ω x0 (postać amplitudowa). albo P V c s m ρ. (odniesienie do prędkości maksymalnej). P P p p m s ρ c m V m s (odniesienie do ciśnienia maksymalnego). (odniesienie do ciśnienia i prędkości maksymalnej). Natężenie fali I dalej I = I = P S = pm = ρ v ρ ω x 0 v pm Z gdzie pm ciśnienie akustyczne Z impedancja akustyczna ośrodka Z = v = c W klinicznej aparaturze USG natężenie fali akustycznej jest ograniczone od góry ze względu na ryzyko szkodliwych oddziaływań fal dźwiękowych o dużym natężeniu z tkanką. Impedancja akustyczna ośrodka Z określona jest zależnością Z = c = ρ E gdzie - gęstość ośrodka c - prędkość propagacji fali E - moduł sprężystości (moduł Younga) Przykładowe wartości impedancji akustycznej różnych ośrodków podano w tabeli, kolumna 4. Odbicie fali na granicy ośrodków I o I r Gdy fala ultradźwiękowa przechodzi przez granicę dwóch ośrodków o różnej wartości impedancji akustycznej, a rozmiary tej granicy są znacznie większe od długości fali, część energii tej fali ulega odbiciu, część natomiast pokonuje granicę i wnika do drugiego ośrodka. I t 5

Współczynnik odbicia R definiuje się jako iloraz natężeń fali odbitej i padającej. I r R = gdzie I r - natężenie fali odbitej, I 0 I 0 - natężenie fali padającej. Uwzględniając impedancję akustyczną ośrodka Z Z Z Z R = Z + Z Z Z Zależności przybliżone można stosować tylko dla małych różnic impedancji akustycznej Z. Natężenie fali przechodzącej można opisać przy pomocy współczynnika transmisji T. T = R 4Z Z T = Z + Z ( ) Wartości współczynników odbicia w różnych rodzajach tkanek dla fali padającej prostopadle na granicę ośrodków przedstawiono w poniższej tabeli Tabela. Współczynnik odbicia na granicy ośrodków. Granica ośrodków Wartość R Tkanka miękka Powietrze 0,9989 Tkanka miękka Płuca 0,5 Tkanka miękka Kość 0,43 Ciało wodniste oka Soczewka oka 0,0 Tkanka tłuszczowa Wątroba 0,0079 Tkanka miękka Tkanka tłuszczowa 0,0069 Tkanka miękka Mięśnie 0,0004 Olej mineralny Tkanka miękka 0,0043 Jeżeli na drodze fali ultradźwiękowej znajdzie się wiele różnych tkanek, każda o nieco innej impedancji akustycznej, granice między tymi tkankami będą miejscami częściowego odbicia fali. Odbierając fale odbite można uzyskać zobrazowanie granic tkanek. I 0 Ośrodek I I t - I Z 3 I t -3 Z 4 Przetwornik Z Z I I t 3-4 r - I r 3-, t - I r 3- I 3 x I p I r - I r 3-, t - I r 4-3, t3-, t - t =x /c t =t +x /c t 3 Rys 3. Powstawanie obrazu ultradźwiękowego granic obszarów o różnej impedancji. t 6

Załamanie fali Jeżeli fala pada na granicę dwóch ośrodków o różnych prędkościach propagacji pod kątem różnym od normalnego, następuje wówczas załamanie fali. C, C, Rys -4. Załamanie fali na granicy dwóch ośrodków. Kąt padania i kąt załamania spełniają prawo Snell a: sinϕ sinϕ c = c Wraz ze wzrostem kąta padania fali rośnie także współczynnik odbicia. Rys 4. Zmiany współczynnika odbicia w funkcji kąta padania na granicy kolagen tkanka tłuszczowa. Zależność współczynnika odbicia od kąta padania fali na granicy tkanka tłuszczowa - kolagen przedstawiono na rysunku obok. Można na nim zauważyć różny przebieg współczynnika odbicia w zależności od tego, czy fala propaguje się z kolagenu do tkanki tłuszczowej, czy odwrotnie. Jeżeli fala propaguje się z ośrodka o mniejszej prędkości c do ośrodka o większej prędkości propagacji c, wówczas dla pewnego kąta, zwanego kątem granicznym, kąt załamania osiąga wartość 90. Całkowite wewnętrzne odbicie Dla kąta padania większego niż kąt graniczny θ = arcsin c gr c współczynnik odbicia wynosi. Zjawisko to nazywa się całkowitym wewnętrznym odbiciem. 7

W diagnostyce ultrasonograficznej całkowite wewnętrzne odbicie występuje często na granicy kamienie nerkowe miąższ nerek i stanowi istotny element interpretacji obrazu USG. Kamienie nerkowe silnie błyszczą, odbijają bowiem całą energię akustyczną. Za kamieniami występuje charakterystyczny cień ponieważ poza strefę całkowitego wewnętrznego odbicia nie transmituje się żadna energia ruchu falowego. Kamień w woreczku żółciowym Cień akustyczny Rys 5. Ultrasonogram woreczka żółciowego Refrakcja Załamanie fali jest źródłem charakterystycznego błędu podczas obrazowania tkanek, zwanego refrakcją. Jest to błąd wynikający z różnicy założonego przy obrazowaniu prostoliniowego ruchu fali a jej rzeczywistego toru w ośrodku niejednorodnym. Głowica USG Obiekt pozorny Obiekt rzeczywisty C C Rys -6. Błąd refrakcji. Przy C > C obiekt rzeczywisty odwzorowywany jest wyżej i bliżej głowicy USG. 8

Bardzo typowym zniekształceniem refrakcyjnym jest tworzenie się soczewek akustycznych na niejednorodnościach o kształcie elipsoidalnym (cysty). C C >C C C <C C Obraz dna C Strefa obrazu pomniejszonego Dno cysty Strefa obrazu powiększonego Cień akustyczny Rys -7. Błędy obrazowania, powodowane przez refrakcję, na niejednorodnościach o kształcie kulistym. Strona lewa rysunku przypadek gdy C > C. Strona prawa C < C. Rys -8. Przykład ultrasonogramu, odpowiadającego sytuacji przedstawionej po prawej stronie rys -7. 9

Rozpraszanie fali Jeżeli ośrodek o innej impedancji akustycznej ma wymiary porównywalne z długością fali akustycznej lub mniejsze, mamy wówczas do czynienia z rozpraszaniem fali. Rozpraszanie Tyndalla rozpraszanie na niejednorodnościach porównywalnych z długością fali, współczynnik rozpraszania jest proporcjonalny do kwadratu częstotliwości: T = k T f Rozpraszanie Reileigh a rozpraszanie na niejednorodnościach o rozmiarach znacznie mniejszych od długości fali. Współczynnik rozpraszania jest proporcjonalny do czwartej potęgi częstotliwości. R = k R f 4 Osłabianie fali Fala akustyczna, propagująca się w ośrodku traci swą energię na tarcie wewnętrzne oraz akumulację energii na pozostałe stopnie swobody ruchu cząsteczek. Jej natężenie maleje także na skutek rozpraszania. Łączny współczynnik osłabiania fali jest sumą współczynników absorpcji i rozpraszania = a + gdzie całkowity współczynnik osłabiania fali a współczynnik absorpcji energii na inne stopnie swobody ruchu cząsteczki współczynnik rozpraszania Natężenie fali po przebyciu przez nią grubości x ośrodka opisywane jest zależnością I = I 0 e -x Osłabianie fali USG w tkance miękkiej wynosi średnio 0,8dB/cm/MHz. Wartości osłabiania fali USG dla różnych tkanek dla częstotliwości MHz podano w poniższej tabeli: Tabela 3 Osłabianie fali USG w różnych rodzajach tkanek. Tkanka Osłabianie db/cm Krew 0,8 Tkanka tłuszczowa 0,6 Nerka,0 Mięsień (wzdłuż włókien), Mięsień (poprzecznie do włókien) 3,3 Mózg 0,85 Wątroba 0,9 Płuca 40,0 Czaszka 0,0 Soczewka oka,0 Ciało wodniste 0,0 Ciało szkliste 0,3 Woda 0,00 Olej mineralny 0,95 Polimetakrylan metylu (plexi),0 0

Dla wyższych częstotliwości osłabianie będzie miało w przybliżeniu proporcjonalnie większe wartości. W typowym aparacie USG nadaje się impuls ultradźwiękowy, a następnie odbiera się echa przychodzące z coraz większych głębokości. Chcąc utrzymać ten sam poziom sygnału przez cały czas odbioru ech, nawet z najgłębszych struktur, należy systematycznie powiększać wzmocnienie toru. Regulacja ta nosi nazwę TGC od Time Gain Control. Przebieg wzmocnienia toru sygnałowego USG w funkcji czasu lub głębokości, z której przychodzi echo, przedstawia poniższy rysunek. K u db 7,5 MHz 5 MHz 3,5 MHz 00 50 0, 0, 0,3 t ms 5 0 5 0 5 X cm Rys -9. Przebieg wzmocnienia toru USG w funkcji czasu dla różnych częstotliwości fali USG (nie uwzględniono opóźnienia wnoszonego przez wpływ pola bliskiego). Jak widać z tabeli 3, osłabianie ultradźwięków w różnych tkankach jest różne, w organizmie natomiast poszczególne rodzaje tkanek występują w pewnym anatomicznym porządku, dlatego często, dla zapewnienia optymalnych warunków tworzenia obrazu trzeba lokalnie skorygować charakterystykę TGC. Najczęściej dzieli się ją na osiem regionów i w każdym z tych regionów reguluje się wzmocnienie jednym z ośmiu potencjometrów TGC.

Rozdzielczość obrazu ultrasonograficznego Większość badań ultrasonograficznych prowadzi się w zakresie częstotliwości od 50kHz do 00MHz. Ten szeroki zakres częstotliwości jest jednakże wyraźnie podzielony na poszczególne rodzaje badań Zakres częstotliwości Rodzaj badania 50kHz 600kHz Badania kości (diagnostyka osteoporozy) 00kHz - 5MHz Badania przepływów MHz - 0MHz Obrazowanie tkanek wewnętrznych 0MHz 00MHz Obrazowanie skóry (operacje plastyczne) Wyższa częstotliwość to oczywiście krótsza fala, dla średniej tkanki długości fal wynoszą odpowiednio: f 50 khz 30,8 mm 500 khz 3,08 mm,5 MHz 0,684 mm 3,5 MHz 0,440 mm 5,0 MHz 0,308 mm 7,5 MHz 0,05 mm 0 MHz 0,54 mm 00 MHz 5,4 m Dobór częstotliwości jest zawsze kompromisem między głębokością zobrazowania a jego jakością. Współczesne aparaty uzyskują osiową zdolność rozdzielczą rzędu 0,8,5 poprzeczną zdolność rozdzielczą 5 5

Szybkość odwzorowania ultrasonograficznego. Podczas badania ultrasonograficznego często obserwuje się struktury ruchome. Dobre ich odwzorowanie wymaga dostosowanej do szybkości ruchu częstości powtarzania obrazów FR (Frame Rate) Ograniczenie częstości powtarzania obrazów wynika głównie z małej prędkości propagacji ultradźwięków w tkance. Obraz ultradźwiękowy tkanki może mieć albo wysoką rozdzielczość przestrzenną, albo czasową. Obraz o wysokiej rozdzielczości przestrzennej będzie się składał z wielu promieni ultradźwiękowych stanowiących linie obrazowe Zwiększanie liczby linii prowadzi do poprawy jakości zobrazowania w dziedzinie przestrzennej. Dalszą poprawę można uzyskać poprzez uśrednianie kilku obrazów. Uśrednianie poprawia stosunek sygnał szum i manifestuje się jako wygładzenie obrazu. Obraz o wysokiej rozdzielczości czasowej to obraz o wysokiej częstości powtarzania. Obraz taki musi składać się z niewielu linii. Każda linia to czas potrzebny do jej odsłuchu. Przy głębokości obrazowania 5cm czas odsłuchu jednej linii wyniesie t lin = x / c = 0,5m / 540 m/s = 0,35ms Przy obrazie tzw podwójnej gęstości, składającym się z około n = 350 linii czas odsłuchu pełnego obrazu wyniesie t ob. = n t lin = 350 0,35ms = 4ms Stąd częstość powtarzania obrazów wyniesie tylko około 9 obrazów na sekundę. Jest to częstość zdecydowanie za mała np. w badaniach serca, szczególnie podczas obserwacji ruchu zastawek. W tego rodzaju badaniach nie stosuje się podwójnej gęstości oraz ogranicza się szerokość obrazu, redukując liczbę linii obrazowych do około 00. Wtedy częstość powtarzania obrazów przekracza 30 obrazów na sekundę. 3