Geometria analityczna

Podobne dokumenty
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Odległośc w układzie współrzędnych. Środek odcinka.

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

GEOMETRIA ANALITYCZNA. Poziom podstawowy

Geometria analityczna - przykłady

M10. Własności funkcji liniowej

Indukcja matematyczna

Równania prostych i krzywych; współrzędne punktu

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

Rozkład materiału nauczania

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Prosta i płaszczyzna w przestrzeni

Matura próbna 2014 z matematyki-poziom podstawowy

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

Skrypt 23. Geometria analityczna. Opracowanie L7

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

Rozkład materiału nauczania

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Zadania do samodzielnego rozwiązania zestaw 11

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Funkcje IV. Wymagania egzaminacyjne:

I. Funkcja kwadratowa

Dział I FUNKCJE I ICH WŁASNOŚCI

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

I. Funkcja kwadratowa

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

KLUCZ PUNKTOWANIA ODPOWIEDZI

3. FUNKCJA LINIOWA. gdzie ; ół,.

Arkusz I Próbny Egzamin Maturalny z Matematyki

Repetytorium z matematyki ćwiczenia

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

MATURA Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/ ZAKRES PODSTAWOWY

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Geometria analityczna

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

Przykładowe rozwiązania

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

FUNKCJA LINIOWA, OKRĘGI

Funkcja liniowa - podsumowanie

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

a =, gdzie A(x 1, y 1 ),

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

Tematy: zadania tematyczne

Próbny egzamin maturalny z matematyki Poziom rozszerzony

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

(a b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

PRÓBNY EGZAMIN MATURALNY

Ostatnia aktualizacja: 30 stycznia 2015 r.

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Dział I FUNKCJE TRYGONOMETRYCZNE

FUNKCJA LINIOWA - WYKRES

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Geometria analityczna

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..

KLASA III LO Poziom podstawowy (wrzesień/październik)

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

Transkrypt:

Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem kierunkowym prostej. Twierdzenie (o prostych równoległych i prostopadłych). Dwie proste są równoległe wtedy i tylko wtedy, gdy mają takie same współczynniki kierunkowe. warunek równoległości Dwie proste są prostopadłe wtedy i tylko wtedy, gdy iloczyn ich współczynników kierunkowych wynosi. Twierdzenie 3 (odległość punktu od prostej). Odległość d punktu (x 0, y 0 ) od prostej Ax+By+C = 0 (A + B 0) wynosi d = A x 0 + B y 0 + C A + B. Definicja (równanie okręgu). Okręgiem o środku w punkcie (x 0, y 0 ) i promieniu r, r > 0, nazywamy zbiór punktów (x, y) spełniających równanie (x x 0 ) + (y y 0 ) = r. Równanie to nazywane jest postacią kanoniczną. Zadania obowiązkowe Zadanie. Narysować zbiór A = { (x, x ) : x R }. Jak można nazwać zbiór A? W jaki inny sposób można go opisać? Szkic rozwiązania. Można A = { (x, y) : y = x, x R }. Zbiór A da się przedstawić jako prosta w postaci: ogólnej: x + y + = 0, kierunkowej: y = x. Zadanie. Wyznaczyć równanie prostej przechodzącej przez punkty (, 5) oraz (, ). Szkic rozwiązania. Szukamy prostej o równaniu kierunkowym y = ax + b. Oba punktu należą do prostej, więc jej wzór znajdziemy rozwiązując układ równań: 5 = a + b = a + b. Rozwiązując układ dowolną znaną metodą znajdujemy: a = 4 3, b = 3 3. Uwagi metodologiczne. Warto wspomnieć, że w tablicach matematycznych znajduje się wzór na współczynniki prostej, który można wyprowadzić choćby metodą wykorzystaną do rozwiązania zadania. Korzystając z tego wzoru można znaleźć współczynnik a = 5 = 4 3. Należy zobrazować sytuację na rysunku i zwrócić uwagę, że współczynnik kierunkowy jest tangensem odpowiedniego kąta. Odpowiedź: y = 4 3 x + 3 3

Zadanie 3. Wyznaczyć prostą równoległą do prostej x + y 8 = 0 i przechodzącą przez punkt (, 3). Szkic rozwiązania. Przedstawiamy równanie prostej w postaci kierunkowej: y = 4x + 6. Szukamy prostej o równaniu y = 4x+b (patrz twierdzenie ). Punkt (, 3) należy do tej prostej, zatem rozwiązujemy równanie 3 = 4 + b. Stąd b =. Odpowiedź: y = 4x + Zadanie 4. Wyznaczyć prostą prostopadłą do prostej y = x + 3 i przechodzącą przez punkt (0, 0). Szkic rozwiązania. Szukamy prostej postaci y = ax + b, gdzie współczynnik a spełnia warunek a = (patrz twierdzenie ). Stąd a = oraz ponieważ (0, 0) należy do prostej: b = 0. Odpowiedź: y = x Zadanie 5. Czy proste x + y + = 0 oraz y = x + 5 są równoległe? Szkic rozwiązania. Obie proste przedstawiamy w postaci kierunkowej i stwierdzamy, że mają takie same współczynniki kierunkowe. Odpowiedź: Tak. Zadanie 6. Narysować w układzie współrzędnych okrąg dany równaniem x + y + x 6y + 4 = 0. Szkic rozwiązania. Przedstawiamy okrąg w postaci kanonicznej: (x + ) + (y 3) = ( 6). Uwagi metodologiczne. y (, 3) Odpowiedź: x Zadanie. Znaleźć styczne do okręgu x + y = 9 przechodzące przez punkt (4, 0). Szkic rozwiązania. Szukamy stycznych postaci y = ax + b. Ponieważ styczne mają przechodzić przez punkt (4, 0), więc b = 4a. Stąd należy sprawdzić, dla jakiego parametru a układ równań x + y = 9 y = ax 4a ma dokładnie jedno rozwiązanie. Jest tak dla a = ± 3 Odpowiedź: y = 3 x lub y = 3 x +.

Zadanie 8. Znaleźć styczne do okręgu x +y +4x 8y+ = 0 i równoległe do prostej x+y+ = 0. Szkic rozwiązania. Szukamy prostych o równaniu x + y + b = 0 dla odpowiedniej wartości b. Przedstawiamy okrąg w postaci kanonicznej (x + ) + (y 4) = ( ). Szukamy takich wartości b, dla których odległość środka okręgu (, 4) od prostej x + y + b = 0 będzie równa. Korzystając ze wzoru na odległość prostej od punktu otrzymujemy równanie którego rozwiązaniem jest b = lub b = 6. + b = 4, Uwagi metodologiczne. Zadanie można rozwiązać sprowadzając sytuację analogicznie jak w zadaniu do równania kwadratowego z parametrem. Ten sposób można zaproponować jako zadanie domowe. Odpowiedź: y = x lub y = x + 6 Zadanie 9. Ile punktów wspólnych z okręgiem x + y x + y = 0 ma prosta y = x + 3? Szkic rozwiązania. Przedstawiamy równanie okręgu w postaci kanonicznej: (x ) + (y + ) = ( ). Liczymy odległość środka okręgu (, ) od prostej x y + 3 = 0. Odległość ta wynosi 5 i jest większa od promienia okręgu. Uwagi metodologiczne. Można rozwiązać odpowiedni układ równań i zbadać ilość jego rozwiązań. Odpowiedź: Prosta nie ma punktów wspólnych z okręgiem. Zadania dodatkowe Zadanie 0. Wyznaczyć liczbę punktów wspólnych okręgu o równaniu x + y + x 6y + 4 = 0 z prostą o równaniu y x m = 0 w zależności od parametru m. Szkic rozwiązania. Rozwiązujemy układ równań y = x + m x + y + x 6y + 4 = 0 w zależności od parametru m. Sprowadza się to do rozwiązania równania w zależności od m. x + (m 4)x + m 6m + 4 = 0 Uwagi metodologiczne. Zadanie można rozwiązać korzystając ze wzoru na odległość punktu od prostej. Odpowiedź: Dla m (4 3, 4 + 3) są dwa wspólne punkty, dla m = 4 + 3 lub m = 4 3 jest jeden punkt wspólny (prosta jest styczną), dla m (, 4 3) ((4 + 3, ) nie ma punktów wspólnych. 3

Zadanie. Czy okręgi x + y + x + 8y + 6 = 0 oraz x + y 4x 6y + 8 = 0 mają punkty wspólne? Szkic rozwiązania. Przedstawiamy oba okręgi w postaci kanonicznej: (x + ) + (y + 4) =, (x ) + (y 3) = ( 5). Ponieważ odległość środków obu okręgów wynosi 58, natomiast suma długości promieni wynosi 5 +, więc okręgi nie mają punktów wspólnych. Odpowiedź: Brak punktów wspólnych. Zadanie. Wyznaczyć równanie okręgu stycznego do dwóch prostych o równaniach x+ y = 0 oraz x + y + 3 = 0 i przechodzącego przez punkt (, 0). Szkic rozwiązania. Zauważmy na początek, że proste są równoległe. Stąd środek szukanego okręgu znajdować się będzie na prostej x + y + b = 0. Wyznaczymy b, korzystając z poniższego rysunku. y m : x + y + b = 0 E k : x + y = 0 l : x + y + 3 = 0 D = (0, b) B x C A Prosta przechodząca przez punkty A, B i C jest prostopadła do prostych k i l. Korzystamy teraz z twierdzenia Talesa oraz faktu, że z warunków zadania wynika AC = CB i otrzymujemy AD DE = AC CB Stąd D leży w połowie długości odcinka AE, czyli D = (0, ), więc b =. Oznaczmy środek okręgu przez (x 0, x 0 ). Odległość środka okręgu od prostej x+ y+3 = 0 jest taka sama jak odległość środka okręgu od punktu (, 0). Stąd =. x 0 x 0 + 3 = (x 0 ) + (x 0 + ). 4

Rozwiązaniem powyższego równania są punkty: ( 3 4, 4 ) oraz ( 5 4, 4 ). Odpowiedź: ( ( ) x + 4) 3 + y 4 = 5 4 lub ( ) ( ) x 5 4 + y + 4 = 5 4 Zadanie 3. Punkty A = (, ), B = (, ) oraz C = ( 4, 3) są wierzchołkami trójkąta ABC. Obliczyć pole tego trójkąta. Szkic rozwiązania. Wyznaczymy długość podstawy AB oraz długość wysokości trójkąta opuszczonej z wierzchołka C. W tym celu znajdziemy równanie prostej k przechodzącej przez punkty A i B. Mamy: y = x. Długość odcinka AB wynosi 3. Długość wysokości h to odległość punktu C od prostej k. Mamy: h =. Odpowiedź: P = 3 Zadanie 4. Wierzchołki rombu ABCD znajdują się w punktach A = (, 0), B = (3, ) oraz D = (, 4). Znajdź współrzędne wierzchołka C oraz oblicz pole rombu P. Szkic rozwiązania. Wyznaczymy wektory AB oraz AD. Mamy AB = [4, ], AD = [, 4]. Wektory AC, DB, zawierające przekątne rombu d, d dane są wzorami AC = AB + AD, DB = AB AD, czyli AC = [3, 3], DB = [5, 5]. Mamy AC = [xc x a, y c y a ] = [x c +, y c 0] = [3, 3], skąd łatwo wyznaczamy współrzędne C = (, 3). Pole P = AC DB = 3 5 = 5. Uwagi metodologiczne. Warto wspomnieć o wektorach i działaniach na wektorach. Odpowiedź: C = (, 3), P = 5 Zadanie 5. Na prostej o równaniu y = 5 w taki sposób wyznaczyć punkt B, aby łamana ABC, gdzie A = (, 3), C = (5, 4), miała jak najmniejszą długość? Szkic rozwiązania. Można napisać funkcję liczącą długość łamanej (w zależności od współrzędnej punktu B) i znaleźć wartość najmniejszą tej funkcji. Znacznie łatwiej jednak jest skorzystać z symetrii. Niech C = (5, 6) będzie punktem powstałym z odbicia względem prostej y = 5 punktu C. Zauważmy, że długość łamanej ABC oraz ABC jest taka sama (dobre miejsce, żeby powiedzieć o izometriach). Leży on na przecięciu prostej y = 5 oraz prostej przechodzącej przez punkty A oraz C : y = x +. Uwagi metodologiczne. Warto wspomnieć i podyskutować o izometriach (w zadaniu pojawi się symetria, można popytać o inne, a nawet zrobić dygresję w stronę własności izometrii i teorii grup). Odpowiedź: B = (4, 5) Zadanie 6. Wyznaczyć pole trójkąta o wierzchołkach (0, x), (x, 3) oraz (, 3) jako funkcję f zmiennej x, x R i naszkicować jej wykres. Wyznaczyć liczbę rozwiązań równania f ( x ) = m w zależności od wartości parametru m, m R. Szkic rozwiązania. Długość podstawy to x a wysokości x 3 (rysunek!). Stąd wielkość pola można opisać funkcją f : R\{ 3,,, 3} R daną wzorem f (x) = x x 3 = (x )(x 3). Funkcje tego typu rysuje się na zajęciach z funkcji kwadratowej i wielomianów, studenci powinni sobie już poradzić. Z wykresu odczytujemy ilość rozwiązań w zależności od m. Wykres funkcji g, g(x) = f ( x ), x R \ { 3,,, 3}, przedstawia się następująco: 5

y 3 3 Uwagi metodologiczne. Warto przedyskutować dziedzinę (lub maksymalny zbiór określoności) funkcji. Odpowiedź: Ilość rozwiązań w zależności od m: 0 m (, 0), 4 (, ) ( ) 3, 8 m 0,, 6 m =, 3 m = 3 m ( 3, ). x Zadania domowe Zadanie. Wyprowadzić wzór na prostą przechodzącą przez punkty (x, y ) oraz (x, y ). Odpowiedź: y = y y x x (x x ) + y Zadanie 8. Znaleźć równanie okręgu o środku w punkcie S = (, 3), jeśli dodatkowo wiadomo, że punkt (, ) należy do tego okręgu. Odpowiedź: (x ) + (y 3) =. Zadanie 9. Okrąg, do którego środek należy do osi OY a promień ma długość r = 5 jest styczny do prostej o równaniu x + y = 0 Napisz równanie tego okręgu. Odpowiedź: (x 6) + y = 5 lub (x + 4) + y = 5. Zadanie 0. Czy prosta y = x + 3 ma punkt wspólny z okręgiem x + y + 4x + 4y + 4 = 0? Odpowiedź: Tak. Zadanie. Wyznacz równanie okręgu opisanego na trójkącie ABC, gdzie A = (, ), B = (0, 3) i C = (4, 3). Odpowiedź: (x + 8 ) + (y 3 ) = 5 49. Zadanie. Okrąg o równaniu (x ) + (y + 3) = 4 jest opisany na pewnym trójkącie równobocznym. Znajdź równanie okręgu wpisanego w ten trójkąt. Odpowiedź: (x ) + (y + 3) =. 6