ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ SZCZECIN 2007

Podobne dokumenty
ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście

Inżynieria Ruchu Morskiego wykład 01. Dr inż. Maciej Gucma Pok. 343 Tel //wykłady tu//

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE

Modelowanie komputerowe

Modele procesów masowej obsługi

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO

Spacery losowe generowanie realizacji procesu losowego

Elementy Modelowania Matematycznego

W3 - Niezawodność elementu nienaprawialnego

Wyznaczanie optymalnych parametrów pojazdu trakcyjnego w warunkach zakłócenia ruchu pociągów

I. KARTA PRZEDMIOTU INŻYNIERIA BEZPIECZEŃSTWA NAWIGACJI

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

ZASTOSOWANIE MODELU GOMPERTZ A W INŻYNIERII ROLNICZEJ

Podstawy Informatyki Elementy teorii masowej obsługi

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

Bałtyckie Centrum Badawczo-Wdrożeniowe Gospodarki Morskiej i jego rola we wzmacnianiu innowacyjności Pomorza Zachodniego.

5 Błąd średniokwadratowy i obciążenie

WPŁYW ŹRÓDEŁ FINANSOWANIA RYNKU MIESZKANIOWEGO

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Matematyka ubezpieczeń majątkowych r.

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Teoria masowej obsługi. Geneza. Teoria masowej obsługi

Funkcja liniowa - podsumowanie

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

Badania operacyjne egzamin

OKREŚLENIE PARAMETRÓW PORTU ZEWNĘTRZNEGO W ŚWINOUJŚCIU W ASPEKCIE BEZPIECZEŃSTWA EKSPLOATACJI GAZOWCÓW LNG

Inżynieria Rolnicza 5(93)/2007

TEORIA DECYZJE KRÓTKOOKRESOWE

POZIOM UFNOŚCI PRZY PROJEKTOWANIU DRÓG WODNYCH TERMINALI LNG

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Matematyka ubezpieczeń majątkowych r.

Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

Sterowanie wielkością zamówienia w Excelu - cz. 3

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

Pobieranie prób i rozkład z próby

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

ANALIZA PARAMETRÓW STRUMIENIA STATKÓW NA TORZE WODNYM SZCZECIN - ŚWINOUJŚCIE ANALYSIS OF VESSEL STREAM PARAMETERS AT THE FAIRWAY

STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Analiza korespondencji

Statystyka i Analiza Danych

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

Prawdopodobieństwo i rozkład normalny cd.

Statystyka opisowa- cd.

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

ODDZIAŁYWANIE RUCHU STATKU NA LIP W OBSZARZE TORU PODEJŚCIOWEGO DO PORTU

Weryfikacja hipotez statystycznych

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Statystyka w pracy badawczej nauczyciela

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Stanisław Gucma Budowa terminalu LNG w Świnoujściu : ocena dotychczasowych działań. Ekonomiczne Problemy Usług nr 49,

Wprowadzenie do analizy korelacji i regresji

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

SYMULACJA EFEKTÓW PRACY UKŁADÓW TECHNOLOGICZNYCH PRZERÓBKI RUD MIEDZI Z WYKORZYSTANIEM KRYTERIÓW TECHNOLOGICZNYCH I EKONOMICZNYCH**

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII

Prawa wielkich liczb, centralne twierdzenia graniczne

lp tematy pracy promotor dyplomant data otrzymania tematu uwagi ZAKŁAD URZĄDZEŃ NAWIGACYJNYCH

Matematyka ubezpieczeń majątkowych r.

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

Laboratorium. Hydrostatyczne Układy Napędowe

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

W4 Eksperyment niezawodnościowy

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Analiza progu rentowności

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

Modelowanie systemu remontu techniki wojsk lądowych w operacjach

Matematyka ubezpieczeń majątkowych r.

Rozkłady prawdopodobieństwa

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

Modelowanie sieci ciepłowniczych jako istotny element analizy techniczno-ekonomicznej

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Wycena opcji rzeczywistych zgodnie z teorią perspektywy

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

9 Funkcje Użyteczności

13. Równania różniczkowe - portrety fazowe

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

Podstawy metodologiczne symulacji

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

ECONOMIC ORDER QUANTITY (EOQ)

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Transkrypt:

ISSN 1733-8670 ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ SZCZECIN 2007 WYDZIAŁ INŻYNIERYJNO-EKONOMICZNY TRANSPORTU Piotr Majzner Wojciech Piszczek Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym Słowa kluczowe: podsystem przeładunkowy, przepustowość, strumień jednostek pływających Artykuł jest kontynuacją rozważań na temat miar określających przepustowość systemów inżynierii ruchu wodnego. Dotyczy racjonalnego doboru poziomu intensywności ruchu statków kierowanych do przeładunku. Podstawy teoretyczne poparto egzemplifikacją w zakresie realnych wartości wielkości identyfikujących proces ruchu jednostek pływających. Wykazano użyteczność metody symulacyjnej do wyznaczania charakterystyk systemu IRW. Wyciągnięto istotne wnioski praktyczne. Simulations Research of Vessel Traffic Streams in on Transshipment System Key words: transshipment subsystem, traffic capacity, traffic stream This article, continuing considerations on the measures determining the capacity of water traffic engineering system, refers to a rational choice of traffic capacity for acceptable operating conditions. The theoretical foundation has been supported with examples of real values of quantities identifying the process of vessel traffic. The simulation method has proved to be useful in determining measures of choice of the capacity characteristics of a WTE system. Important practical conclusions have been drawn.

Piotr Majzner, Wojciech Piszczek Wprowadzenie Spośród różnych systemów transportowych ważną rolę pełni transport drogami wodnymi ze względu na relatywnie niskie koszty eksploatacji. Ruchem jednostek pływających na akwenach ograniczonych zajmuje się inżynieria ruchu morskiego IRM, dokonując jakościowego i ilościowego opisu procesów tego ruchu [7]. Biorąc pod uwagę dynamiczny rozwój IRM i fakt, że poligon badawczy tej dyscypliny w przeważającej mierze dotyczy akwenów ograniczonych, a te pod względem procesów ruchu wykazują znaczne podobieństwo również do akwenów śródlądowych, można wnioskować o uogólniającą zmianę nazwy tej dyscypliny na inżynierię ruchu wodnego IRW. Wśród problematyki badawczej IRW istotną rolę odgrywają badania relacji strumienie jednostek akwen. W artykułach [1, 2] przedstawiono wyniki badań stacjonarnych procesów ruchu strumieni jednostek, a w opracowaniu [3] dynamiki procesów. W kolejnych pracach [4, 5, 6] przeprowadzono badania ruchu strumieni jednostek na podejściu do toru wodnego i na samym torze wodnym, w tym opracowano szereg użytecznych miar. Postęp w badaniach ukierunkowany jest na analizę kolejnych procesów w systemie IRW. Niniejszy artykuł jest kolejnym krokiem w tym kierunku badaniu poddano proces ruchu strumieni jednostek przechodzących przez podsystem IRW, składający się z elementu realizującego przeładunek (np. nabrzeże przeładunkowe itp.) oraz elementu realizującego oczekiwanie na przeładunek (np. nabrzeże postojowe, kotwicowisko, dalbowisko itp.). Celem analizy procesów ruchu w badanym podsystemie zastosowano analogiczną metodykę badań, jak przy opracowaniach [1 6]. Po sformułowaniu problemu badawczego dokonano analizy deterministycznej, której wyniki potraktowano jako tło dla metody symulacji komputerowej. Opracowanie statystyczne wyników symulacji pozwoliło na znalezienie interesujących współzależności i przebiegu wartości miar opisujących badany proces. Szczególną uwagę zwrócono na zjawiska związane z przepustowością badanego podsystemu w aspekcie uwzględnienia: ograniczonej pojemności miejsca postojowego, racjonalnego doboru intensywności strumienia wejściowego jednostek. 1. Określenie problemu badawczego Rozpatrzmy podsystem systemu IRW zawierający element pozwalający oczekiwać jednostkom pod nazwą: rejon oczekiwania i element realizujący przeładunek pod nazwą: rejon przeładunku rys. 1. Załóżmy, że badany podsystem zasilany jest jednorodnym strumieniem jednostek o intensywności λ we(t). Jednostki, które bez opóźnienia mogą zostać 114

Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym skierowane do przeładunku tworzą strumień o intensywności λ bo(t). Gdy nabrzeże przeładunkowe jest zajęte lub w oczekiwaniu znajdują się już jednostki nowo pojawiający się statek przechodzi do stanu oczekiwania, tworząc element strumienia o intensywności λ do(t). Tak więc o kolejności przeładunku decyduje zasada first in, first out. Jednostki przeładowywane tworzą strumień o intensywności λ P(t), na wyjściu powstaje strumień o intensywności λ wy(t). Kiedy jednostka cumująca przy nadbrzeżu zostanie przeładowana (załadowana lub wyładowana), ze stanu oczekiwania do nadbrzeża przeładunkowego podchodzi następna jednostka realizując element strumienia o intensywności λ zo(t) lub podsystem oczekuje na podejście kolejnej jednostki strumienia λ we(t). W stanie oczekiwania może pozostawać pewna liczba jednostek N o(t). Rejon oczekiwania Rejon przeładunku λ do(t) N o(t) oczekiwanie λ zo(t) λ we(t) λ bo(t) λ P(t) przeładunek λ wy(t) Rys.1. Proces ruchu strumieni jednostek w podsystemie IRW Fig. 1. The process of vessel traffic streams in the IRW subsystem Źródło: opracowanie własne Liczba jednostek N o(t), jaka przebywa w chwili t k w stanie oczekiwania jest różnicą między liczbą jednostek N do(t k) skierowanych do oczekiwania do chwili t k a liczbą jednostek N zo(t k) wychodzących ze stanu oczekiwania do chwili t k z uwzględnieniem stanu początkowego Np, co wyraża się zależnością: k t k N ( t ) N N ( t ) N ( t ) N ( t) dt o k p do k zo k p t do( t) dt 0 (1) Intensywność strumienia λ we(t) jest odwrotnością okresu pojawiania się jednostek na wejściu T we, który można traktować jako zmienną losową. Z punktu widzenia IRW, podstawową miarą opisującą przepustowość systemu przeładunkowego jest przepustowość nominalna μ nom, określona najpraktyczniej w rozpatrywanym przypadku (jednorodny strumień jednostek) w statkach na dobę [st/d] lub [1/d] i wyrażająca się wzorem: 0 zo 115

Piotr Majzner, Wojciech Piszczek gdzie: N s R nom R N s 1 d (2) masa ładunku statku [t], wydajność systemu przeładunkowego wyrażona w t/d. Jeśli intensywność strumienia wejściowego λ we jest mniejsza od przepustowości μ nom, podsystem pracuje w stanie podkrytycznym. Proces przebiega bez istotnych opóźnień, ale powstają straty z powodu niewykorzystania przepustowości systemu, natomiast średnia liczba jednostek w stanie oczekiwania N o(t) rośnie nieproporcjonalnie w miarę zbliżania się λ we do μ nom. Stan krytyczny występuje, gdy intensywność ruchu strumienia wejściowego λ we jest równa przepustowości μ nom danego podsystemu. Jest to stan pożądany, ponieważ wykorzystuje przepustowość systemu, lecz jest to stan niestabilny, gdyż przy minimalnych zmianach λ we stan ten może przechodzić w podkrytyczny lub nadkrytyczny. Stan nadkrytyczny występuje, gdy intensywność ruchu strumienia wejściowego λ we jest większa niż przepustowość systemu μ nom. W stanie tym powstaje strumień jednostek oczekujących λ o, rosnący z czasem do nieskończoności (dla systemów otwartych). Jest to stan niepożądany, w praktyce trwale nie występujący. Pozostawanie pewnej liczby jednostek N o(t) w stanie oczekiwania, szczególnie w podsystemach nie sterowanych jest zjawiskiem naturalnym. Decydenci takiego podsystemu często decydują się na uruchomienie rejonu oczekiwania dla jednostek nie mogących wchodzić bezpośrednio na stanowiska przeładunkowe. Rejon oczekiwania ma zwykle ograniczoną pojemność N omax ogranicza to przepustowość całego podsystemu. Istotną miarą staje się wtedy przepustowość graniczna ze względu na możliwości oczekiwania μ No: dla N ) N d (3) No we o( we o max 1 Poza liczbą jednostek przebywających w danej chwili w stanie oczekiwania N o(t) dla eksploatatorów systemów IRW istotne staje się, z punktu widzenia ekonomicznego, wyznaczenie takich parametrów strumienia wejściowego, przy którym praca podsystemu przynosi największe dochody. Wtedy jakość procesu ruchu może być opisana miarą, którą można nazwać dochodem jednostkowym D o i określić wzorem: D ( ) ( t) N ( t) [ /d] o we o (4) 116

Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym gdzie: α przychód za przeładowanie jednostki, [ /st.]; γ koszt zmienny przeładowania jednostki, [ /st.]; λ we(t) intensywność wejściowa, [st./d]; β wskaźnik strat związanych z oczekiwaniem na obsługę, [ /st.*d]; N o(t) średnia liczba jednostek przebywających w stanie oczekiwania, [st.]; δ jednostkowe koszty stałe, [ /d]. Funkcja D o(λ we) jest wypukła i posiada ekstremum (maksimum) w punkcie λ we = μ ek, które wynosi D omax. Wtedy system przeładunkowy zyskuje kolejną miarę zwaną przepustowością ekonomiczną μ ek określoną wzorem: dla D ) D d (5) ek we o( we o max 1 3. Egzemplifikacja Celem ilustracji możliwości zastosowania metody symulacji cyfrowej dla znalezienia interesujących współzależności i przebiegu wartości opracowanych miar, opisujących badany proces z punktu widzenia IRW przeanalizujmy następujący przykład rachunkowy. Załóżmy, że okres pojawiania się jednostek na wejściu T we, można opisać rozkładem wykładniczym przesuniętym [4] o funkcji gęstości prawdopodobieństwa f Twe( t we) opisanej wzorem: f gdzie: Twe ( t t we λ T p we ) 0 dla t we T, p f Twe ( t we ) realizacja zmiennej losowej T we; średnia wartość intensywności ruchu; przesunięcie. ( t we Tp ) e dla t T we p (6) W niniejszym artykule, aby badania prowadzić dla warunków mieszczących się w granicach realnych wartości przyjęto przybliżone wartości liczbowe niektórych parametrów podsystemu i procesu ruchu, określone na podstawie identyfikacji procesu ruchu w Porcie Szczecin. Badania przeprowadzono dla ograniczonego czasu pracy systemu. Założono, że czas przejścia statku ze stanu oczekiwania do przeładunku można pominąć lub został wkalkulowany w zdolność przeładunkową nabrzeża. Przyjęto następujące parametry procesu istotne dla przedmiotu badań: podsystem przeładunkowy zasilany jest jednorodnym strumieniem jednostek typu m/s Kopalnia Siersza ; 117

Piotr Majzner, Wojciech Piszczek ładowność statków wynosi 15 077 t (90% nośności); okres pojawiania się jednostek na wejściu systemu przeładunkowego opisany jest rozkładem wykładniczym przesuniętym o wartości średniej T śr, oraz T p= 0 s; zdolność przeładunkowa nabrzeża wynosi 4500 t/d; opłata za przeładowanie jednej tony wynosi 3 /t; kara za oczekiwanie statku na obsługę wynosi 3000 /d; niech koszty zmienne związane z przeładunkiem wynoszą odpowiednio: a) 25% przychodu; b) 50% przychodu; c) 75% przychodu; koszty stałe dla ilustracji przykładu przyjęto na poziomie δ = 720 /d. 4. Analiza deterministyczna Przy podanych założeniach, jeśli uznać, że wartości średnie dostatecznie dobrze opisują podsystem, można wyznaczyć przepustowość nominalną systemu przeładunkowego μ nom na podstawie zależności (2): 0,3 d (7) nom 1 Zależności deterministyczne dobrze odzwierciedlają proces (rys. 2 i 3 linia gruba przerywana) pod warunkiem, że wariancje wszystkich zmiennych losowych występujących w badanym procesie są bliskie, równe zeru, co wiązałoby się z realizacją strategii just in time. Rzeczywistość zwykle odbiega od tego założenia, aczkolwiek korzyści dla badanego podsystemu są zachęcające (maksymalizacja dochodu a na pewno przychodu, minimalizacja kosztów oczekiwania), co nie gwarantuje analogicznych korzyści dla makrosystemu. Liczba jednostek przebywających w stanie oczekiwania wg analizy deterministycznej, w stanie podkrytycznym i krytycznym wynosi N o = 0. Dla stanu nadkrytycznego N o jest funkcją czasu trwania tego stanu (jak wiadomo, stan taki w rzeczywistości nigdy nie jest permanentny) i wyraża się wzorem: N o ( ) T st. we nom s (8) gdzie: λ we intensywność wejściowa, μ nom przepustowość nominalna, T s czas trwania stanu nadkrytycznego. Liczba jednostek przebywających w stanie oczekiwania N o wraz ze wzrostem czasu dąży do nieskończoności. Oczywiście, stan nadkrytyczny 118

Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym w praktyce jest stanem nietrwałym, N o osiąga ograniczone wartości, gdyż system IRW reaguje zwykle spadkiem λ we i powrotem do stanu krytycznego lub podkrytycznego. Dochód jednostkowy D o (rys. 3) narasta liniowo proporcjonalnie do λ we, osiągając maksimum D omax = 8500 /d dla intensywności wejściowej równej przepustowości. Przepustowość ekonomiczna μ ek jest równa przepustowości nominalnej μ nom. 5. Metoda symulacyjna Dokonano szeregu prób symulacyjnych. W trakcie badań zwiększano intensywność strumienia wejściowego λ we rejestrując: intensywność strumienia wyjściowego λ wy, liczbę jednostek przebywających w stanie oczekiwania N o, intensywność strumienia jednostek przeładowywanych bez przechodzenia przez stan oczekiwania λ bo, intensywność strumienia jednostek kierowanych do stanu oczekiwania λ do. Wyniki poddano obróbce statystycznej, określając i interpolując przebieg badanych miar w funkcji intensywności strumienia wejściowego λ we. Na rysunku 2 przedstawiono wykresy zależności średniej liczby jednostek przebywających w stanie oczekiwania N o w zależności od intensywności strumienia wejściowego λ we. Wielkość przepustowości granicznej ze względu na możliwości oczekiwania μ No można skalkulować na podstawie badania parametrów rozkładu zmiennej losowej, jaką jest N o. Jeśli przyjąć, że rejon oczekiwania ma pojemność około trzech jednostek, intensywność strumienia wejściowego nie powinna przekraczać około 0,26 1/d (88% przepustowości). Jeżeli pojemność rejonu oczekiwania należy traktować bardzo rygorystycznie, tzn. nie ma możliwości wytracania czasu dla więcej niż np. trzech jednostek z prawdopodobieństwem nie mniejszym niż 0,95, wtedy strumień wejściowy należy ograniczyć znacznie mocniej do 0,24 1/d (82% przepustowości przecięcie N o = 3 z kwantylem rzędu np. 0,95). 119

Piotr Majzner, Wojciech Piszczek 30 Średnia liczba jednostek oczekujacych N o 25 20 15 10 N o średnie prz. ufn. dla średniej na poz. 0.95 kwantyl rzędu p = 0.95 determinizm 5 3,0 0 0,16 0,21 0,24 0,26 0,31 Intensywność wejściowa λ we [1/d] 60 70 80 90 100 110 Intensywność wej ściowa λ we / μ nom [%] 120 Rys. 2. Wykresy średniej liczby jednostek oczekujących na wejście pod przeładunek No w funkcji intensywności wejściowej λwe Fig.2. Graphs of average number of vessels waiting for transshipment No in the function of entry intensity λwe Źródło: opracowanie własne W badanym przykładzie rachunkowym ograniczenie to nie będzie jednak decydujące. Na rysunku 3 przedstawiono wykresy zależności dochodu jednostkowego D o w funkcji intensywności wejściowej λ we. Funkcja D o(λ we) dla żadnego z badanych wariantów nie posiada maksimum w punkcie λ we => 80% μ nom. Przebieg tej funkcji potwierdza znaną z ekonomii prawidłowość. Niepracujący podsystem przynosi straty z tytułu ponoszenia kosztów stałych, próg dochodowości osiąga po przekroczeniu pewnej intensywności realizowanych przeładunków (w badanym przypadku kilku dwudziestu kilku procent μ nom. Maksymalny dochód D omax osiąga dla przepustowości ekonomicznej μ ek (w tym wypadku 40 70%). Dalsze wymuszanie wzrostu λ we nie jest racjonalne, gdyż zmniejsza dochód a nawet może doprowadzić do strat. Można natomiast wyobrazić sobie inne działania racjonalizacyjne, np. zmianę rozkładu zmiennej losowej okresu pojawiania się jednostek na wejściu T we na mniej rozproszony. Wykres ten może być inspiracją do podejmowania dalszych działań optymalizacyjnych, których omówienie przekroczyłoby ograniczoną objętość niniejszego artykułu.

Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym 8000 determinizm dla = 25%* 6000 = 25%* = 50%* (0,20;4416) Dochód jednostkowy D o [ /d] 4000 2000 0-2000 = 75%* (0,135;384) (0,19;2208) -4000-6000 0,00 0,05 0,10 0,15 0,20 0,25 0,30 Intensywność wejściowa λ we [1/d] 0 10 20 30 40 50 60 70 80 90 100 Intensywność wejściowa λ we / μ nom [%] Rys. 3. Wykresy dochodu jednostkowego Do w funkcji intensywności wejściowej λwe Fig.3. Graphs of unit income Do in the function of entry intensity λwe Źródło: opracowanie własne Wnioski z przeprowadzonych badań W artykule sformułowano podstawowe miary podsystemu przeładunkowego w aspekcie badań IRW. Miary te pozwalają na identyfikację parametrów tego podsystemu i procesów w nim zachodzących a w dalszej kolejności na optymalizację systemów IRW i procesów ruchu. Opracowane miary związane są z przepustowością podsystemu przeładunkowego w aspekcie uwzględnienia: ograniczonych możliwości oczekiwania statków na wejście pod przeładunek, optymalizacji eksploatacyjnego poziomu strumienia wejściowego λ we. Podstawy teoretyczne poparto egzemplifikacją w zakresie realnych wartości wielkości identyfikujących proces ruchu jednostek pływających. Wyciągnięto istotne wnioski praktyczne, pozwalające na zasadną interpretację zjawisk znanych 121

Piotr Majzner, Wojciech Piszczek często intuicyjnie jako wynik doświadczenia praktyków i na podejmowanie działań usprawniających proces ruchu. Na podstawie przeprowadzonych badań można stwierdzić, że metoda symulacji umożliwia bardziej adekwatne w stosunku do rzeczywistości odzwierciedlenie zjawisk procesu ruchu. Pozwala na: elastyczność w projektowaniu modeli systemów IRW i procesów ruchu; identyfikację zjawisk zachodzących w podsystemie przeładunkowym; wyznaczenie wartości miar przepustowości w zależności od różnych przyjętych kryteriów wartościujących procesy w systemach IRW; określenie miar mających istotne znaczenie dla praktyki nawigacyjnej. Literatura 1. Majzner P., Piszczek W., Symulacyjne badania procesów ruchu strumieni jednostek na akwenach ograniczonych, IX MKN-T IRM, Świnoujście 2003. 2. Majzner P., Piszczek W., Symulacyjne badania przepustowości i bezpieczeństwa ruchu strumieni jednostek na torze wodnym w warunkach probabilistyki zjawisk zgłoszeń i prędkości jednostek, Zeszyty Naukowe nr 2(74) Akademii Morskiej w Szczecinie, Szczecin 2004. 3. Majzner P., Piszczek W., Symulacyjne badania dynamiki procesów ruchu strumieni jednostek na akwenach ograniczonych, VI Sym. Naw., Gdynia 2005. 4. Majzner P., Piszczek W., Problemy przepustowości torów wodnych, Zeszyty Naukowe nr 6 (78) Akademii Morskiej w Szczecinie, Szczecin 2005. 5. Majzner P., Piszczek W., Miary oceny przepustowości toru wodnego, Zeszyty Naukowe nr 8 (80) Akademii Morskiej w Szczecinie, Szczecin 2005. 6. Majzner P., Piszczek W., Miary doboru przepustowości toru wodnego w aspekcie eksploatacyjnym. Zeszyty Naukowe nr 9(81) Akademii Morskiej w Szczecinie, Szczecin 2006. 7. Piszczek W., Modele miar systemu inżynierii ruchu morskiego. Studia nr 14, WSM, Szczecin 1990. Wpłynęło do redakcji w październiku 2006 r. 122

Symulacyjne badania procesów ruchu strumieni jednostek w systemie przeładunkowym Recenzent dr hab. inż. Władysław Buchholz, prof. PS Adres Autorów mgr inż. Piotr Majzner Instytut Nawigacji Morskiej e-mail: pmaj@am.szczecin.pl dr hab. inż. Wojciech Piszczek, prof. AM w Szczecinie Instytut Inżynierii Ruchu Morskiego e-mail: wojciech.piszczek2@neostrada.pl Akademia Morska w Szczecinie 70-500 Szczecin, ul. Wały Chrobrego 1/2 123