Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)"

Transkrypt

1 Carl Adam Petri ( ) Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń) Problemy statyczne Kommunikation mit Automaten praca doktorska (1962) opis procesów współbieżnych za pomocą notacji graficznej metoda modelowania pozwalającą na przedstawianie i analizowanie procesów przebiegających równolegle Elementy sieci Petriego Zbiór wierzchołków grafu opisujących możliwe stany badanego systemu (sytuacje, warunki logiczne) Oznaczane graficznie elipsą (okręgiem) Zbiór wierzchołków grafu opisujących zdarzenia, które modyfikują stany badanego systemu Oznaczane graficznie prostokątami 1

2 Elementy grafu opisujące relacje pomiędzy stanami badanego systemu a zdarzeniami: wskazują stany, w których zdarzenie może zajść (warunki konieczne) wskazują stany, w których zdarzenie nie może zajść (blokady) wskazują zmianę stanu powodowaną przez zdarzenie Oznaczane graficznie liniami zakończonymi strzałkami (kółkami) Graf jest dwudzielny, tzn. łuki łączą wierzchołki różnych typów Łuki są skierowane Łuki mogą być wielokrotne (mogą mieć przypisane wagi) Tranzycje mogą być wykonywane natychmiast lub z pewnym opóźnieniem Łuki są trzech typów: wejściowe do tranzycji, wyjściowe z tranzycji, inhibitory tranzycji Mogą występować pętle Nierozróżnialne znaczniki występujące w miejscach, używane są do rozróżniania stanów sieci Petriego (znakowanie sieci) Dla miejsc opisujących warunki występowanie znacznika oznacza, że warunek jest spełniony (prawda), brak znacznika warunek nie jest spełniony (fałsz) Dla miejsc opisujących sytuacje liczba znaczników określa rodzaj sytuacji Pozwalają opisać dynamikę systemu Znakowanie początkowe, znakowania pośrednie i końcowe Reguły określające dynamikę sieci (reguły zmiany znakowania) Ta sama sieć z różnymi znakowaniami początkowymi opisuje różne systemy 2

3 Tranzycję t nazywamy aktywną przy oznakowaniu M gdy: wszystkie miejsca wejściowe tranzycji zawierają odpowiednią liczbę znaczników, wszystkie inhibitory tranzycji nie zawierają znaczników. Odpalenie tranzycji t, aktywnej przy oznakowaniu M, powoduje: usunięcie znaczników z każdego miejsca wejściowego, dodanie znaczników do wszystkich miejsc wyjściowych. to znaczy powoduje zmianę oznakowania na. Zależność ta jest zapisywana skrótowo. 3

4 Przykłady z różnych gałęzi transportu i tak dalej w nieskończoność 4

5 Sieć jest nazywana żywą, jeśli wszystkie jej tranzycje są żywe Tranzycja t jest żywa, jeśli dla każdego znakowania M (osiągalnego ze znakowania początkowego) istnieje takie znakowanie M, w którym tranzycja t jest aktywna Tranzycja, która nie jest żywa jest martwa Znakowanie martwe takie znakowanie, w którym żadna tranzycja nie jest aktywna Znakowanie M nazywamy osiągalnym z M, jeśli istnieje dowolny ciąg tranzycji, których odpalenie powoduje przejście ze znakowania M do znakowania M Analiza osiągalności jest kluczowa przy rozważaniu systemów transportowych pozwala np. znaleźć stany niebezpieczne, ocenić prawdopodobieństwo wypadku itp. Sieć Petriego nazywamy odwracalną, jeśli dla dowolnego znakowania M (osiągalnego ze znakowania początkowego M 0 ) istnieje sekwencja tranzycji, których odpalenie powoduje przejście do znakowania początkowego M 0. Sieć Petriego nazywamy k-ograniczoną, jeśli dla każdego osiągalnego znakowania, liczba znaczników w dowolnym miejscu sieci jest mniejsza niż k. Sieć Petriego, która jest 1-ograniczona nazywa się siecią bezpieczną Pułapka zbiór miejsc, które nigdy nie stracą znaczników. Zatrzask (blokada) zbiór miejsc, który po utracie wszystkich znaczników nie będzie nigdy znakowany ponownie pułapka zatrzask 5

6 Uogólniona sieć Petriego jest opisana piątką gdzie: P zbiór miejsc, T zbiór tranzycji, =, =,,,, I, O, H, to funkcje odpowiednio wejścia, wyjścia oraz inhibitory: Mając daną tranzycję t T, można zdefiniować: + = :,>0 zbiór wejść tranzycji t, = :,>0 zbiór wyjść tranzycji t, = :,>0 zbiór inhibitorów tranzycji t. Znakowana sieć Petriego jest opisany szóstką =,,,,, 0 gdzie =,,,, - uogólniona sieć Petriego, 0 : Z + jest znakowaniem początkowym, tzn. funkcją przypisującą każdemu z miejsc liczbę całkowitą nieujemną. Mówimy również, że znakowanie określa liczbę znaczników przypisanych każdemu z miejsc. Sieć miejsc i przejść jest to uogólniona, znakowana sieć Petriego, uzupełniona o charakterystykę miejsc interpretowaną jako ich pojemność, to znaczy maksymalną liczbę znaczników jakie może pomieścić każde z miejsc. =,,,,,!, 0 gdzie =,,,, - uogólniona sieć Petriego,!: N pojemność miejsc sieci, przy czym symbol oznacza, że miejsce ma nieograniczoną pojemność, 0 : Z + % : 0! znakowanie początkowe. Realizacja tranzycji nie jest natychmiastowa, lecz zajmuje określony czas. =,,,,, 0,( gdzie =,,,,, 0 znakowana sieć Petriego, (: R + funkcja opóźnień, określająca opóźnienie statyczne τ(t) tranzycji t. Czas związany z realizacją tranzycji: deterministyczny opisany zmienną losową o zadanym rozkładzie prawdopodobieństwa. Opóźnienie dynamiczne δ(t) - reszta czasu pozostałego do odpalenia tranzycji t. Znaczniki różnych typów. Typ znacznika nazywany jest kolorem. Każde miejsce ma przypisany zbiór kolorów, które może przechowywać. Łuki i przejścia mają przypisane wyrażenia, które pozwalają na manipulowanie różnymi typami znaczników. + = Γ,,,,,,+,-,., 0 gdzie =,,,,, 0 znakowana sieć Petriego, Г niepusty, skończony zbiór kolorów, C funkcja określająca jakiego koloru znaczniki mogą być przechowywane w danym miejscu: +: Γ, G funkcja określająca warunki, jakie muszą być spełnione, aby tranzycja mogła być odpalona; E funkcja opisująca tzw. wagi łuków, 6

Definicja sieci. Sieć Petriego jest czwórką C = ( P, T, I, O ), gdzie: P = { p 1, p 2,, p n } T = { t 1, t 2,, t m }

Definicja sieci. Sieć Petriego jest czwórką C = ( P, T, I, O ), gdzie: P = { p 1, p 2,, p n } T = { t 1, t 2,, t m } Sieci Petriego Źródła wykładu: 1. http://www.ia.pw.edu.pl/~sacha/petri.html 2.M. Szpyrka: Sieci Petriego w modelowaniu i analizie systemów współbieżnych, WNT 2008 Definicja sieci Sieć Petriego jest czwórką

Bardziej szczegółowo

Rozszerzenia sieci Petriego

Rozszerzenia sieci Petriego Rozszerzenia sieci Petriego Ograniczenia klasycznej sieci Petriego Trudność w modelowaniu specyficznych przepływów: testowania braku żetonów w danym miejscu, blokowania odpalania, itp. Brak determinizmu

Bardziej szczegółowo

Rozszerzenia sieci Petriego

Rozszerzenia sieci Petriego Rozszerzenia sieci Petriego Ograniczenia klasycznej sieci Petriego Trudność w modelowaniu specyficznych przepływów: testowania braku żetonów w danym miejscu, blokowania odpalania, itp. Brak determinizmu

Bardziej szczegółowo

miejsca przejścia, łuki i żetony

miejsca przejścia, łuki i żetony Sieci Petriego Sieć Petriego Formalny model procesów umożliwiający ich weryfikację Główne konstruktory: miejsca, przejścia, łuki i żetony Opis graficzny i matematyczny Formalna semantyka umożliwia pogłębioną

Bardziej szczegółowo

Sieci Petriego. Sieć Petriego

Sieci Petriego. Sieć Petriego Sieci Petriego Sieć Petriego Formalny model procesów umożliwiający ich weryfikację Główne konstruktory: miejsca, przejścia, łuki i żetony Opis graficzny i matematyczny Formalna semantyka umożliwia pogłębioną

Bardziej szczegółowo

Analiza sieci Petriego

Analiza sieci Petriego Analiza sieci Petriego Przydatność formalnej analizy modelu procesów Szpital obsługa 272 pacjentów 29258 zdarzeń 264 różnych czynności Czy powyższy model jest poprawny? Własności behawioralne sieci Petriego

Bardziej szczegółowo

1. Sieci Petriego. Rys. 1-1 Przykład sieci Petriego

1. Sieci Petriego. Rys. 1-1 Przykład sieci Petriego 1 1. Sieci Petriego Narzędzie wprowadzone przez Carla A. Petriego w 1962 roku do pierwotnie modelowania komunikacji z automatami. Obecnie narzędzie stosowane jest w modelowaniu systemów współbieżnych,

Bardziej szczegółowo

CZĘŚĆ PIERWSZA. Seminarium grupy RSPN. Piotr Lasek Uniwersytet Rzeszowski. Kontakt

CZĘŚĆ PIERWSZA. Seminarium grupy RSPN. Piotr Lasek Uniwersytet Rzeszowski. Kontakt Sieci Petriego w CZĘŚĆ PIERWSZA Seminarium grupy RSPN Piotr Lasek Uniwersytet Rzeszowski Kontakt lasek@univ.rzeszow.pl Agenda Sieci Petriego w Snoopy 1. Wstęp a) podstawowe cechy i zalety sieci Petriego

Bardziej szczegółowo

Analiza sieci Petriego

Analiza sieci Petriego Analiza sieci Petriego Przydatność formalnej analizy modelu procesów Szpital obsługa 272 pacjentów 29258 zdarzeń 264 różnych czynności Czy powyższy model jest poprawny? Tomasz Koszlajda Instytut Informatyki

Bardziej szczegółowo

BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

BADANIA OPERACYJNE. dr Adam Sojda  Pokój A405 BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego

Bardziej szczegółowo

Modelowanie procesów współbieżnych

Modelowanie procesów współbieżnych Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.

Bardziej szczegółowo

SIECI PETRIEGO WYŻSZEGO RZEDU Kolorowane sieci Petriego. Kolorowane sieci Petriego 1

SIECI PETRIEGO WYŻSZEGO RZEDU Kolorowane sieci Petriego. Kolorowane sieci Petriego 1 SIECI PETRIEGO WYŻSZEGO RZEDU Kolorowane sieci Petriego Kolorowane sieci Petriego 1 PRZYKŁAD - DWA POCIAGI Kolorowane sieci Petriego 2 KONCEPCJA KOLORÓW Model z rysunku (a) nie jest równoważny poprzedniemu,

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ CYBERNETYKI

WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ CYBERNETYKI WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ CYBERNETYKI Analiza i modelowanie Systemów Teleinformatycznych Sprawozdanie z ćwiczenia laboratoryjnego nr 6 Temat ćwiczenia: Modelowanie systemów równoległych z zastosowaniem

Bardziej szczegółowo

Sterowniki Programowalne (SP) Wykład 11

Sterowniki Programowalne (SP) Wykład 11 Sterowniki Programowalne (SP) Wykład 11 Podstawy metody sekwencyjnych schematów funkcjonalnych (SFC) SP 2016 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA INŻYNIERII SYSTEMÓW STEROWANIA Kierunek: Automatyka

Bardziej szczegółowo

Wreferacie przedstawiono propozycję metody modelowania procesów transportowych

Wreferacie przedstawiono propozycję metody modelowania procesów transportowych Modelowanie procesów transportowych w magazynie elementów produkcyjnych Krzysztof Franczok 1 1 Fabryka Maszyn ROTOX Sp. z o.o. Pokój k/opola, kfranczok@op.pl Wreferacie przedstawiono propozycję metody

Bardziej szczegółowo

Zastosowanie sieci Petriego w modelowaniu procesów biznesowych

Zastosowanie sieci Petriego w modelowaniu procesów biznesowych Zeszyty Naukowe nr 736 Akademii Ekonomicznej w Krakowie 2007 Katedra Metod Organizacji i Zarządzania Zastosowanie sieci Petriego w modelowaniu procesów biznesowych 1. Geneza i klasyczne zastosowania metody

Bardziej szczegółowo

1. JĘZYK SFC WPROWADZENIE

1. JĘZYK SFC WPROWADZENIE DODATEK: JĘZYK SFC. JĘZYK SFC PROADZENIE Język SFC jest językiem graficznym opartym na teorii sieci Petriego typu P/T (pozycja/tranzycja). Należy do grupy języków sekwencyjnych schematów funkcjonalnych

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Zmiany. Initial Step krok inicjujący sekwenser

Zmiany. Initial Step krok inicjujący sekwenser Zmiany Initial Step krok inicjujący sekwenser W ferworze walki czasem usuniemy krok inicjujący (po rozpoczęciu FB z GRAPH jest on standardowo oznaczony S1). Skutkuje to tym, że wszystko wygląda dobrze,

Bardziej szczegółowo

Podstawowe procedury przy tworzeniu programu do sterownika:

Podstawowe procedury przy tworzeniu programu do sterownika: Podstawowe procedury przy tworzeniu programu do sterownika: 1. Opracowanie algorytmu sterowania procesem, potwierdzonego przez technologa. 2. Oszacowanie wielkości obiektu, czyli liczby punktów (liczby

Bardziej szczegółowo

t i L i T i

t i L i T i Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

PLC - język tekstu strukturalnego ST

PLC - język tekstu strukturalnego ST PLC - język tekstu strukturalnego ST Język tekstu strukturalnego ST jest odpowiednikiem języka wysokiego poziomu, zawiera podobny zestaw instrukcji jak Pascal czy C. Podstawowymi elementami języka są wyrażenia

Bardziej szczegółowo

Język UML w modelowaniu systemów informatycznych

Język UML w modelowaniu systemów informatycznych Język UML w modelowaniu systemów informatycznych dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wykład 7 Przeglądowe diagramy interakcji Przeglądowe diagramy interakcji wiążą

Bardziej szczegółowo

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń.

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. 1.Zasada działania2 Funkcje_logiczne_wejsciowe_i_wyjsciowe_UTXvTR 16.04.09 Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. 1.ZASADA DZIAŁANIA... 2 2. FUNKCJE WEJŚCIOWE... 4 2.1 Zasada

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

TECHNOLOGIE OBIEKTOWE. Wykład 3

TECHNOLOGIE OBIEKTOWE. Wykład 3 TECHNOLOGIE OBIEKTOWE Wykład 3 2 Diagramy stanów 3 Diagram stanu opisuje zmiany stanu obiektu, podsystemu lub systemu pod wpływem działania operacji. Jest on szczególnie przydatny, gdy zachowanie obiektu

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

procesów Współbieżność i synchronizacja procesów Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak

procesów Współbieżność i synchronizacja procesów Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Abstrakcja programowania współbieżnego Instrukcje atomowe i ich przeplot Istota synchronizacji Kryteria poprawności programów współbieżnych

Bardziej szczegółowo

Information Systems Analysis

Information Systems Analysis THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY Część 1 Sieci Petriego Materiały są tłumaczeniem i rozszerzeniem instrukcji laboratoryjnych p.t.

Bardziej szczegółowo

Modelowanie produkcji obudowy separatora olejowego za pomocą diagramów aktywności UML i -sieci

Modelowanie produkcji obudowy separatora olejowego za pomocą diagramów aktywności UML i -sieci KNWS 2010 239 Modelowanie produkcji obudowy separatora olejowego za pomocą diagramów aktywności UML i -sieci Agnieszka Lasota Streszczenie: W artykule zostały opisane wytyczne, wskazujące na celowość wspomagania

Bardziej szczegółowo

Język UML w modelowaniu systemów informatycznych

Język UML w modelowaniu systemów informatycznych Język UML w modelowaniu systemów informatycznych dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wykład 4 Diagramy aktywności I Diagram aktywności (czynności) (ang. activity

Bardziej szczegółowo

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Podstawy techniki cyfrowej Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Charakterystyka układów asynchronicznych Brak wejścia: zegarowego, synchronizującego. Natychmiastowa (niesynchronizowana)

Bardziej szczegółowo

SFC zawiera zestaw kroków i tranzycji (przejść), które sprzęgają się wzajemnie przez połączenia

SFC zawiera zestaw kroków i tranzycji (przejść), które sprzęgają się wzajemnie przez połączenia Norma IEC-61131-3 definiuje typy języków: graficzne: schematów drabinkowych LD, schematów blokowych FBD, tekstowe: lista instrukcji IL, tekst strukturalny ST, grafów: graf funkcji sekwencyjnych SFC, graf

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

W_4 Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

W_4 Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów wytwarzania; jest określony przez schemat funkcjonalny oraz opis słowny jego przebiegu. Do napisania programu

Bardziej szczegółowo

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń.

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. Funkcje_logiczne_wejsciowe_i_wyjsciowe_UTXvL 15.01.10 Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. Spis treści 1.ZASADA DZIAŁANIA...2 2. FUNKCJE WEJŚCIOWE...4 2.1.Zasada działania...4

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

TECHNOLOGIE OBIEKTOWE WYKŁAD 2. Anna Mroczek

TECHNOLOGIE OBIEKTOWE WYKŁAD 2. Anna Mroczek TECHNOLOGIE OBIEKTOWE WYKŁAD 2 Anna Mroczek 2 Diagram czynności Czym jest diagram czynności? 3 Diagram czynności (tak jak to definiuje język UML), stanowi graficzną reprezentację przepływu kontroli. 4

Bardziej szczegółowo

Symboliczna analiza układów sterowania binarnego z wykorzystaniem wybranych metod analizy sieci Petriego

Symboliczna analiza układów sterowania binarnego z wykorzystaniem wybranych metod analizy sieci Petriego Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Agnieszka Węgrzyn Symboliczna analiza układów sterowania binarnego z wykorzystaniem wybranych metod analizy sieci Petriego Rozprawa

Bardziej szczegółowo

Zastosowanie kolorowej sieci Petriego do modelowania transakcji rozproszonej

Zastosowanie kolorowej sieci Petriego do modelowania transakcji rozproszonej Marek IWANIAK, Włodzimierz KHADZHYNOV Wydział Elektroniki i Informatyki, Politechnika Koszalińska E mail: marek.iwaniak@tu.koszalin.pl, hadginov@ie.tu.koszalin.pl 1. Wstęp Zastosowanie kolorowej sieci

Bardziej szczegółowo

UML cz. I. UML cz. I 1/1

UML cz. I. UML cz. I 1/1 UML cz. I UML cz. I 1/1 UML cz. I 2/1 UML - Unified Modeling Language ujednolicony można go współdzielić z wieloma pracownikami modelowania służy do opisu projektowanego modelu język posiada opisaną strukturę

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1 ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej

Bardziej szczegółowo

Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri. Andrzej Blikle 29 kwietnia 2010 materiały:

Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri. Andrzej Blikle 29 kwietnia 2010 materiały: Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri Andrzej Blikle 29 kwietnia 2010 materiały: www.firmyrodzinne.pl TOC: Theory of Constraints teoria ograniczeń Goldratta STATYSTYKA PORAŻEK PROJEKTÓW

Bardziej szczegółowo

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1 Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy

Bardziej szczegółowo

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń.

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. 1. ZASADA DZIAŁANIA...2 2. FUNKCJE WEJŚCIOWE...5 3. FUNKCJE WYJŚCIOWE...7 4. FUNKCJE LOGICZNE...11 Automat : ZSN 5R od: v. 1.0 Computers

Bardziej szczegółowo

koniec punkt zatrzymania przepływów sterowania na diagramie czynności

koniec punkt zatrzymania przepływów sterowania na diagramie czynności Diagramy czynności opisują dynamikę systemu, graficzne przedstawienie uszeregowania działań obrazuje strumień wykonywanych czynności z ich pomocą modeluje się: - scenariusze przypadków użycia, - procesy

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające

Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Liczniki klasyfikacja Licznik asynchroniczny:

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy

Bardziej szczegółowo

Przetwarzanie rozproszone

Przetwarzanie rozproszone Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Proces sekwencyjny Komunikaty, kanały komunikacyjne Stan kanału Operacje komunikacyjne Model formalny procesu sekwencyjnego Zdarzenia Warunek

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

MODELOWANIE SIECI PETRIEGO Z WYKORZYSTANIEM RELACYJNEJ BAZY DANYCH

MODELOWANIE SIECI PETRIEGO Z WYKORZYSTANIEM RELACYJNEJ BAZY DANYCH II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie MODELOWANIE SIECI PETRIEGO Z WYKORZYSTANIEM RELACYJNEJ BAZY DANYCH Małgorzata Kołopieńczyk Instytut

Bardziej szczegółowo

Diagramy czynności. Widok logiczny. Widok fizyczny

Diagramy czynności. Widok logiczny. Widok fizyczny Diagramy czynności System widoków 4+1 Kruchtena Widok logiczny Widok fizyczny Widok procesu Widok przypadków użycia Widok konstrukcji Diagramy czynności są jedynym diagramem w widoku procesu modelowanego

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri

Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri Dwa paradygmaty w zarządzaniu projektami: Goldratt i Petri Andrzej Blikle 13 czerwca 2011 Copyright by Andrzej Blikle. W ramach moich praw autorskich chronionych ustawą z dnia 4 lutego 1994 (z późniejszymi

Bardziej szczegółowo

Analiza i programowanie obiektowe 2016/2017. Wykład 6: Projektowanie obiektowe: diagramy interakcji

Analiza i programowanie obiektowe 2016/2017. Wykład 6: Projektowanie obiektowe: diagramy interakcji Analiza i programowanie obiektowe 2016/2017 Wykład 6: Projektowanie obiektowe: diagramy interakcji Jacek Marciniak Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Plan wykładu 1. Przejście

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT

Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI Opracował: mgr inż. Przemysław Pardel v1.01 2010 Inżynieria oprogramowania Część 8: Metoda szacowania ryzyka - PERT ZAGADNIENIA DO ZREALIZOWANIA (3H) PERT...

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Projektowanie Scalonych Systemów Wbudowanych VERILOG

Projektowanie Scalonych Systemów Wbudowanych VERILOG Projektowanie Scalonych Systemów Wbudowanych VERILOG OPIS BEHAWIORALNY proces Proces wątek sterowania lub przetwarzania danych, niezależny w sensie czasu wykonania, ale komunikujący się z innymi procesami.

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych

Bardziej szczegółowo

Teoria układów logicznych

Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń.

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń. 1.ZASADA DZIAŁANIA...2 2. FUNKCJE WEJŚCIOWE... 4 2.1 Zasada działania...4 2.2 Spis funkcji wejściowych oraz wejść...4 2.2.1 Nastawy

Bardziej szczegółowo

Analiza semantyczna. Gramatyka atrybutywna

Analiza semantyczna. Gramatyka atrybutywna Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej KATEDRA INFORMATYKI STOSOWANEJ ROZPRAWA DOKTORSKA MGR INŻ. WOJCIECH

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki. Paweł Witas Nr albumu:178860

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki. Paweł Witas Nr albumu:178860 Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Paweł Witas Nr albumu:178860 Symulator sieci Petriego ze znacznikami indywidualnymi Praca Magisterska na kierunku INFORMATYKA Praca wykonana

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego

1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać

Bardziej szczegółowo

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi

Bardziej szczegółowo

Automat skończony FSM Finite State Machine

Automat skończony FSM Finite State Machine Automat skończony FSM Finite State Machine Projektowanie detektora sekwencji Laboratorium z Elektroniki Współczesnej A. Skoczeń, KOiDC, WFiIS, AGH, 2019 AGH, WFiIS, Elektronika Współczesna 1 Deterministyczny

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Metoda dialogu diagnostycznego między komputerami sieci komputerowej, zalicza się do, tak zwanych, rozproszonych metod samodiagnozowania

Bardziej szczegółowo

Rysunek 1: Przykłady graficznej prezentacji klas.

Rysunek 1: Przykłady graficznej prezentacji klas. 4 DIAGRAMY KLAS. 4 Diagramy klas. 4.1 Wprowadzenie. Diagram klas - w ujednoliconym języku modelowania jest to statyczny diagram strukturalny, przedstawiający strukturę systemu w modelach obiektowych przez

Bardziej szczegółowo