1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

Podobne dokumenty
LOGIKA I TEORIA ZBIORÓW

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Elementy logiki i teorii mnogości

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Matematyka ETId Elementy logiki

Egzamin z logiki i teorii mnogości, rozwiązania zadań

domykanie relacji, relacja równoważności, rozkłady zbiorów

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Relacje. Relacje / strona 1 z 18

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Elementy logiki matematycznej

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

1 Podstawowe oznaczenia

Zbiory, relacje i funkcje

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Logika I. Wykład 3. Relacje i funkcje

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

Relacje. opracował Maciej Grzesiak. 17 października 2011

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

1 Działania na zbiorach

IVa. Relacje - abstrakcyjne własności

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Zasada indukcji matematycznej

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

LOGIKA Klasyczny Rachunek Zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Wstęp do matematyki listy zadań

Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33

Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki

Pytania i polecenia podstawowe

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Logika. Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie.

Logika i teoria mnogości Ćwiczenia

Semantyka rachunku predykatów

Matematyka dyskretna. 1. Relacje

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Wstęp do Matematyki (2)

Dalszy ciąg rachunku zdań

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Rachunek zdań i predykatów

Podstawowe Pojęcia. Semantyczne KRZ

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

Indukcja matematyczna

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika i teoria mnogości Ćwiczenia

Lista zadań - Relacje

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Lista 1 (elementy logiki)

Logika pragmatyczna dla inżynierów

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

Elementy logiki. Zdania proste i złożone

Podstawowe struktury algebraiczne

Wstęp do logiki. Klasyczny Rachunek Zdań II

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Lekcja 3: Elementy logiki - Rachunek zdań

Wykład 1. Informatyka Stosowana. 1 października Informatyka Stosowana Wykład 1 1 października / 26

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Definicja: alfabetem. słowem długością słowa

Schematy Piramid Logicznych

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

RELACJE I ODWZOROWANIA

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Roger Bacon Def. Def. Def Funktory zdaniotwórcze

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

4 Klasyczny rachunek zdań

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

ZALICZENIE WYKŁADU: 30.I.2019

Przykładowe zadania z teorii liczb

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Elementy rachunku zdań i algebry zbiorów

Kultura logiczna Klasyczny rachunek zdań 2/2

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

Drzewa Semantyczne w KRZ

Podstawowe struktury algebraiczne

Transkrypt:

1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów logicznych. Wartość logiczna każdego zdania to prawda lub fałsz, albo krócej: 1 lub 0. Jeśli zdanie p jest prawdziwe to będziemy to oznaczać: w(p) = 1 lub p 1 lub [p] = 1 a jeśli jest fałszywe to: w(p) = 0 lub p 0 lub [p] = 0 Operatory logiczne najłatwiej zdefiniować przy użyciu tabelek w których podane jest jaką wartość logiczną ma operator zależnie od wartości logicznych zdań składowych. Najważniejsze operatory logiczne to jednoargumentowa negacja oraz dwuargumentowe alternatywa, koniunkcja, implikacja i równoważność: p p 1 0 0 1 p q p q 1 1 1 1 0 1 0 1 1 0 0 0 p q p q 1 1 1 1 0 0 0 1 0 0 0 0 p q p q 1 1 1 1 0 0 0 1 1 0 0 1 p q p q 1 1 1 1 0 0 0 1 0 0 0 1 Prawem logicznym lub inaczej tautologią nazywamy zdanie które jest prawdziwe dla dowolnych wartości logicznych zdań składowych. Zdaniem spełnialnym nazywamy zdanie, które jest prawdziwe dla pewnych wartości logicznych zdań składowych, a zdaniem niespełnialnym nazywamy zdanie fałszywe dla dowolnych wartości logicznych zdań składowych. Nietrudno zauważyć, że zdanie jest tautologią wtedy i tylko wtedy gdy jego negacja jest zdaniem niespełnialnym, a zdanie nie jest tautologią wtedy i tylko wtedy gdy jego negacja jest zdaniem spełnialnym. Najważniejsze prawa logiczne: Prawo podwójnej negacji : ( p) p Prawo wyłączonego środka : p p Pierwsze prawo de Morgana : (p q) ( p q) Drugie prawo de Morgana (p q) ( p q) Prawo zaprzeczenia implikacji : (p q) (p q) Prawo kontrapozycji : (p q) ( q p) Rozdzielność koniunkcji względem alternatywy : (p q) r (p r) (q r) Rozdzielność alternatywy względem koniunkcji : (p q) r (p r) (q r) W rachunku zdań najczęściej interesuje nas rozstrzygnięcie czy jakieś zdanie jest tautologią. Istnieje kilka sposobów by to zrobić - omówimy je na przykładzie zdania: p [( p q) ( p q)] 1

1) Metoda zero-jedynkowa (tabelka). Ta metoda jest najprostsza (bo schematyczna), ale zarazem najczęściej najdłuższa. Polega na rozpatrzeniu wszystkich możliwych wartości logicznych zdań składowych i zbadaniu (stopniowo) jaką wartość logiczną ma w poszczególnych przypadkach całe zdanie. p q p q p [( p q) ( p q)] 1 1 1 0 0 1 0 0 Poszczególne kolumny odpowiadają za poszczególne kawałki całego zdania - warto zwrócić uwagę, że nagłówki kolumn są takie, by było mniej pisania (nie jest to konieczne, ale wygodne). Najpierw wypełniamy kolumnę trzecią i czwartą, następnie szóstą i ósmą, na ich podstawie siódmą, a na koniec na podstawie pierwszej i siódmej - piątą, w której znajdą się wartości logiczne całego zdania: p q p q p [( p q) ( p q)] 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 W piątej kolumnie są same jedynki, a zatem nasze zdanie jest zawsze prawdziwe. Z uwagi na to, że w przypadku n zdań składowych tabelka ma 2 n wierszy zdrowy rozsądek podpowiada by w praktyce używać tej metody tylko dla n 3 (wersja dla leniwych: dla n 2). 2) Skrócona metoda zero-jedynkowa. Powyższy schemat można skrócić, ale niestety w sposób nieschematyczny, to znaczy wymaga to od nas pewnej inwencji twórczej. Skrócenie polega na sprytnym rozpatrywaniu poszczególnych przypadków. W naszym zdaniu zauważmy, że całość jest prawdziwa jeśli p jest zdaniem prawdziwym (ta prosta obserwacja zastępuje całe dwa pierwsze wiersze tabelki). Jeśli natomiast zdanie p jest fałszywe, to p jest fałszywe i wtedy można zauważyć, że p q ma taką samą wartość logiczną jak q, a p q ma taką samą wartość logiczną jak q. Stąd nawias kwadratowy ma taką samą wartość logiczną jak q q, czyli jest zdaniem zawsze prawdziwym, bo to prawo wyłączonego środka. Tak więc i w tym wypadku całe zdanie jest prawdziwe. 3) Dowód nie wprost. Jeśli zdanie jest tautologią, to jego zaprzeczenie jest zdaniem niespełnialnym. Pomysł polega więc na założeniu, że zaprzeczenie jest spełnialne - jeśli to założenie doprowadzi nas do sprzeczności, to znaczy ze zaprzeczenie jest niespełnialne, czyli wyjściowe zdanie jest tautologią. A jeśli to założenie nie doprowadzi nas do sprzeczności, to doprowadzi nas do takiego wartościowania zdań składowych dla których zaprzeczenie jest prawdziwe i wtedy wyjściowe zdanie nie jest tautologią. W naszym przykładzie zaprzeczenie zdania jest kolejno równoważne (na mocy praw de Morgana): (p [( p q) ( p q)]) p [( p q) ( p q)] p ( p q) ( p q) p (p q) (p q) Jeśli zakładamy, że to zdanie jest prawdziwe, to prawdziwe muszą być zdania: p, p q, p q. Jeśli p prawdziwe, to p fałszywe. Ale w takim razie z prawdziwości trzeciego zdania wynika, że q jest prawdziwe, a z prawdziwości drugiego zdania wynika, że q jest prawdziwe, czyli q fałszywe. To zaś oznacza sprzeczność, a stąd wniosek, że niemożliwe jest by zaprzeczenie naszego zdania było prawdziwe. Skoro więc zaprzeczenie zdania jest niespełnialne, to wyjściowe zdanie jest tautologią. 2

Warto zauważyć, że dowodzenie nie wprost jest wygodne gdy wyjściowe zdanie jest alternatywą lub koniunkcją, bo wtedy negacja tego zdania jest koniunkcją, a zatem z założenia jej prawdziwości dostajemy dużo warunków. 4) Przekształcenie zdania. Czasem możliwe jest proste przekształcenie równoważne zdania do jakiegoś prawa logicznego i to oczywiście wystarcza. Ta sytuacja (przynajmniej z naciskiem na słowo proste ) jest niestety rzadka. W naszym przypadku z prawa rozdzielności alternatywy względem koniunkcji nasze zdanie jest równoważne: p [ p (q q)] Tutaj zaś w nawiasie okrągłym mamy prawo wyłączonego środka, zatem nawias kwadratowy ma taką samą wartość logiczną jak p, więc zdanie jest równoważne... p p...to zaś znów jest prawo wyłączonego środka, czyli zdanie zawsze prawdziwe. Ćwiczenia 1.1 Rozstrzygnij czy następujące zdania są tautologiami: a) (p (q r)) ((p q) r) b) [(p q) (q r)] (p r) c) [(p q) (q r)] (p r) d) [(p q) (r s)] [(p r) (q s)] e) [(p q) p] q f) (q r) [(p q) (p r) g) (p q) [(p (q r)) (p r)] h) ([(p q) r] [(p q) r]) ( p q r) 1.2 Szalony ćwiczeniowiec zapytany przez studenta o to kiedy można przyjść na konsultacje odpowiedział: Będę we wtorek lub też, jeśli będę w poniedziałek, to będę w środę. Jeśli będę we wtorek, to nie będzie mnie w poniedziałek. Jeśli będę w środę, to będę w poniedziałek. Jeśli nie będzie mnie w poniedziałek, to będę w środę. Kiedy student może przyjść na konsultacje? 3

2 Rachunek kwantyfikatorów Funkcja zdaniowa zmiennej x to takie wyrażenie p(x) które staje się zdaniem dla ustalonej wartości x. Przykładowo jeśli p(x) znaczy tyle co x 2 4 = 0 to zdanie p(2) jest prawdziwe, a p(3) fałszywe. Funkcja zdaniowa sama w sobie nie jest zdaniem logicznym, ale stanie się nim jeśli poprzedzona zostanie kwantyfikatorami wiążącymi wszystkie zmienne. Zdaniami logicznymi są więc wyrażenia x p(x) (czyli: dla każdego x zachodzi p(x)) oraz x p(x) (czyli: dla pewnego x zachodzi p(x)). Pierwszy z tych kwantyfikatorów nazywamy ogólnym, a drugi szczegółowym. Warto jednak zwrócić, że wartość logiczna takiego zdania zależy od uniwersum, czyli zbioru w którym działają nasze kwantyfikatory. We wcześniejszym przykładzie zdanie x p(x) będzie zdaniem fałszywym w uniwersum R, ale zdaniem prawdziwym w uniwersum { 2}. Matematycy zwyczajowo podają uniwersum przy kwantyfikatorze, pisząc na przykład: x R p(x) (co z pewnych przyczyn nie zawsze pasuje informatykom). Zmiennych w funkcji zdaniowej może być więcej niż jedna, stąd sens mają też napisy p(x, y), p(x, y, z) itd. Zdanie z kwantyfikatorami nazwiemy prawem rachunku kwantyfikatorów jeśli dla dowolnych funkcji zdaniowych występujących w zdaniu oraz dla dowolnego uniwersum będzie zdaniem prawdziwym. Podstawowe takie prawa to prawa de Morgana dla kwantyfikatorów: ( x p(x)) x ( x p(x)) x p(x) p(x) Warto zauważyć, że oznacza to tyle, że łatwo obalić zdanie poprzedzone kwantyfikatorem ogólnym (jeśli jest fałszywe), bo wtedy wystarczy podać jeden kontrprzykład, a trudno obalić zdanie poprzedzone kwantyfikatorem szczegółowym (jeśli jest fałszywe), bo wówczas trzeba przeprowadzić rozumowanie ogólne. Tak samo łatwo udowodnić zdanie poprzedzone kwantyfikatorem szczegółowym (jeśli jest prawdziwe), bo wtedy wystarczy podać jeden przykład, a trudno udowodnić zdanie poprzedzone kwantyfikatorem ogólnym (jeśli jest prawdziwe), bo wówczas trzeba przeprowadzić rozumowanie ogólne. Na przykład dowód prawdziwego zdania, że każda funkcja różniczkowalna w punkcie jest w tym punkcie ciągła wymaga odrobiny wysiłku (jak przekonają się Państwo na wykładzie), natomiast obalić fałszywe twierdzenie, że funkcja ciągła w punkcie jest w tym punkcie różniczkowalna jest łatwo, bo wystarczy podać jeden kontrprzykład, np. f(x) = x i punkt x 0 = 0. W ogólności sprawdzanie czy jakieś zdanie z kwantyfikatorami jest lub nie jest prawem rachunku kwantyfikatorów - jest trudne, bo nie ma żadnego schematu jak w przypadku zwykłego rachunku zdań. Każdy przykład trzeba więc analizować osobno i zdać się na zdrowy rozsądek. Warto przy tym traktować zdanie p(x) jako x ma własność p, co pomaga zrozumieć co w istocie znaczy dane zdanie. Rozstrzygnijmy na przykład czy prawem rachunku kwantyfikatorów będzie: x (p(x) q(x)) ( x p(x)) ( x q(x)) 4

Zgodnie z poprzednią uwagą po przetłumaczeniu na język polski to zdanie znaczy tyle co jeśli każdy x ma którąś z własności p i q, to każdy x ma własność p lub każdy x ma własność q. I w tej postaci widać, że to nie jest w ogólności prawda - łatwo więc skonstruować kontrprzykład. Niech na przykład uniwersum będzie zbiór studentów Informatyki Stosowanej, zdanie p(x) oznacza, że x zaliczy ćwiczenia z matematyki, a q(x) - że x nie zaliczy ćwiczeń z matematyki. Wówczas poprzednik implikacji niewątpliwie jest prawdziwy, bo każdy student zaliczy bądź też nie zaliczy ćwiczeń. Ale następnik jest fałszywy, bo nie jest prawdą, że każdy student zaliczy ćwiczenia (choć szczerze Państwu tego życzę) ani też, że wszyscy studenci obleją ćwiczenia (a przynajmniej miejmy nadzieję, że nie jest prawdą). Natomiast prawem rachunku kwantyfikatorów byłoby: x (p(x) q(x)) ( x p(x)) ( x q(x)) Oznacza to bowiem tyle co jeśli każdy x ma obie własności p i q, to każdy x ma własność p i każdy x ma własność q, co w sposób oczywisty jest prawdą. Kontrprzykład z poprzedniego przypadku oczywiście tu nie działa, bo tym razem poprzednik nie byłby prawdziwy. Zauważmy jeszcze, że z praw de Morgana łatwo wynika w jaki sposób negować zdania z kwantyfikatorami - wystarczy zmienić każdy kwantyfikator na przeciwny oraz zanegować formułę zdaniową. Na przykład: ( x y z x + y z) jest równoważne: x y z x + y > z. 2.1 Rozstrzygnij czy następujące zdania są prawdziwe: a) x N y N x < y b) y N x N x < y c) y R x R x y 2.2 Napisz zaprzeczenia zdań bez użycia symbolu negacji: a) x y (x > y 2 y x) b) x y z [y > z (x z + 1 y = x + 3)] 2.3 Rozstrzygnij czy następujące zdania są prawami rachunku kwantyfikatorów. a) ( x p(x) q(x)) ( x p(x)) ( x q(x)) b) x (p(x) q(x)) [ x p(x) x q(x)] c) x (p(x) q(x)) [ x p(x) x q(x)] d) x y p(x, y) y x p(x, y) e) x y p(x, y) y x p(x, y) 5

3 Rachunek zbiorów Używając języka rachunku zdań możemy ściśle definiować relacje między zbiorami: oraz operatory rachunku zbiorów: A B x (x A x B) A = B (A B B A) x (x A x B) x A B (x A x B) x A B (x A x B( x A B (x A x B) Naszym najczęstszym celem jest sprawdzenie czy jakaś równość lub zawieranie zbiorów, jest prawdziwa-e dla dla dowolnych występujących tam zbiorów A, B, C,.... Jeśli chcemy to wykazać, to musimy skorzystać z powyższych definicji, a jeśli chcemy to obalić, to wystarczy wskazać przykład konkretnych zbiorów A, B, C,... dla których nie jest to prawda. Przykładowo by pokazać, że równość: A (B C) = (A B) (A C) nie zachodzi dla dowolnych zbiorów A, B, C wystarczy wskazać kontrprzykład A = C = {1} i B = dla którego lewa strona to {1}, a prawa. Natomiast by pokazać, że równość: A (B C) = (A B) (A C) zachodzi dla dowolnych A, B, C musimy pokazać, że x L x P. Mamy: x P x (A B) (A C) x (A B) (A C) (x A x B) (x A x B) x A (x B x C) x A ( (x B) (x C) x A (x B x C) x A (x B C) x A x (B C) x A (B C) x L Oczywiście powstaje naturalne pytanie skąd wiadomo, że w pierwszym przypadku trzeba szukać kontrprzykładu (i jak go znaleźć), a w drugim przypadku należy dowodzić prawdziwość równości. Rozstrzygnąć to mogą diagramy Venna, czyli graficzna ilustracja zbioru (teoretycznie zawsze wykonalna, ale czytelna tylko gdy w napisie występują co najwyżej trzy zbiory A, B, C). Nietrudno sprawdzić, że w drugim przykładzie zbiór po obu stronach to: 6

a stąd wniosek, że równość musi być prawdziwa i tego należy dowodzić (uwaga: sam rysunek nie jest formalnym dowodem!). Natomiast w pierwszym przykładzie prawa strona jest taka sama, ale lewa to: skąd widać, że lewa i prawa strona się różnią (ale i w tym wypadku sam rysunek to za mało i należy wskazać kontrprzykład). A różnią się na przykład tym fragmentem, który siedzi w A i C, a nie w B. Stąd też właśnie się wziął kontrprzykład: wystarczyło podać przykład takich zbiorów dla których istnieje element należący do A i C, ale nie do B (i oczywiście najlepiej podać najprostszy taki kontrprzykład). 3.0.1 Rozstrzygnij czy dla dowolnych zbiorów A, B, C, D prawdą jest, że: a) A (A B) = A f) (A B C) (B C) = A b) A (B C) = [(A B) C] (A C) g) A (A B) = A c) A (B C) = (A B) (A C) h) A B A B d) A (B C) = (A B) C i) (A B) C C (A B) e) A (B C) = (A B) C j) (A B) C (C A) C 7

4 Relacje Iloczynem kartezjańskim zbiorów A i B nazwiemy zbiór A B zawierający wszystkie pary elementów takich, że pierwszy element należy do A, a drugi do B. Formalnie: (x, y) A B (x A y B) Analogicznie można też zdefiniować iloczyn kartezjański większej liczby (nawet nieskończonej) zbiorów. Relacją dwuargumentową na zbiorze A nazwiemy dowolny podzbiór R iloczynu kartezjańskiego A A. Intuicyjnie należy rozumieć to w ten sposób, że relację definiuje się poprzez podanie które pary ze zbioru A są mają ze sobą ustalony związek (czyli są w tym co potocznie nazywa się relacją). Przykładowo relacja R = na zbiorze {1, 2, 3} to zbiór: R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} Zwyczajowo przy tym zamiast pisać (1, 2) R piszemy 1R2, tak samo jak w szkole pisało się 1 2, a nie (1, 2). Relacje mogą mieć różne własności, które są w matematyce na tyle użyteczne, że nadano im nazwy. Powiemy, że relacja jest: ˆ zwrotna, jeśli x A xrx; ˆ przeciwzwrotna, jeśli x A ˆ symetryczna, jeśli x,y A xrx; xry yrx; ˆ antysymetryczna, jeśli x,y A xry yrx; ˆ słabo antysymetryczna, jeśli x,y A xry yrx x = y; ˆ przechodnia, jeśli x,y,z A xry yrz xrz; ˆ spójna, jeśli x,y A xry yrx x = y; ˆ równoważności, jeśli jest zwrotna, symetryczna i przechodnia; ˆ częściowego porządku, jeśli jest zwrotna, słabo antysymetryczna i przechodnia; ˆ liniowego porządku, jeśli jest częściowego porządku i spójna. Uwaga: terminologia bywa różna, w szczególności przyjętą konwencją jest też, żeby zamiast terminu antysymetryczna używać terminu asymetryczna i wówczas zamiast słabo antysymetryczna mówi się po prostu antysymetryczna. Patologiczna relacja określona na zbiorze pustym ma wszystkie powyższe własności. Natomiast porządne relacje (określone na zbiorach niepustych) mają intuicyjne własności: zwrotność i przeciwzwrotność się wykluczają, podobnie jak symetryczność i antysymetryczność; jedyną relacją symetryczną i słabo antysymetryczną jest relacja równości. Dzięki tym obserwacjom łatwiej sprawdzać własności danej relacji, bo często skraca to nam pracę. 8

Zbadajmy dla przykładu własności relacji R określonej na zbiorze liczb naturalnych i zdefiniowanej jako xry x + y = 3. Z uwagi na 2R2 wiadomo, że relacja nie jest zwrotna, ale nie jest też przeciwzwrotna, bo 3 2 R 3 2. Jest za to w oczywisty sposób symetryczna, bo warunek z definicji xry yrx to w tym przypadku tyle co x + y = 3 y + x = 3, a to naturalnie prawda. Wyklucza to więc antysymetroczność i słabą antysymetryczność. Relacja nie jest też przechodnia, bo 1R2 i 2R 1, ale nie 1R( 1); ani spójna, bo ani nie jest 2R3, ani też 3R2. Zbadajmy jeszcze własności relacji xry 5 (x y) określonej na zbiorze liczb całkowitych. Z uwagi na to, że jest to nieznacznie trudniejszy przykład, warto podejść do zadania systematycznie, to znaczy przy badaniu kolejnych własności ściśle przełożyć warunek z definicji na naszą konkretną relację i sprawdzić czy ten warunek zachodzi. 1. Zwrotność - w naszym wypadku oznacza ona: x Z 5 (x x) czyli x Z 5 0 a to oczywiście prawda. 2. Symetryczność - u nas to tyle co: x,y Z 5 (x y) 5(y x) i jest to prawda, ponieważ y x = (x y) oraz wiadomo, że jeśli piątka dzieli jakąś liczbę całkowitą, to dzieli też liczbę do niej przeciwną. 3. Przechodniość - dla naszej relacji to spełnianie warunku: x,y,z Z [5 (x y) 5 (y z)] 5 (x z) Tym razem by wykazać, że to prawda, możemy powołać się na równość x z = (x y) + (y z) i fakt, że suma dwóch liczb podzielnych przez pięć też jest podzielna przez pięć. 4. Z powyższych trzech własności wynika, że nasza relacja to relacja równoważności. Z relacją równoważności (i tylko z nią!) związane jest pojęcie klas abstrakcji, tzn. zbiorów: [x] R = {y R xry} W poprzednim przykładzie nietrudno sprawdzić, że: [0] R = {0, 5, 5, 10,...} [1] R = {1, 6, 4, 11,...} [2] R = {2, 7, 3, 12,...} [3] R = {3, 8, 2, 12,...} [4] R = {4, 9, 1, 13,...} i więcej klas abstrakcji już nie ma, bo np. [5] R to to samo co [0] R. Warto zwrócić uwagę, że powyższe zbiory wyznaczają nam tak zwany podział zbioru liczb całkowitych, to znaczy są parami rozłączne, ale ich suma to zbiór wszystkich liczb całkowitych. Ponadto każda liczba jest w relacji ze wszystkimi elementami swojej klasy abstrakcji i z żadnymi innymi. Każda relacja równoważności dzieli nam zbiór na takie klasy abstrakcji i co więcej można powiedzieć, że jest to podział z uwagi na jedną wyabstrahowaną cechę - w naszym przykładzie ta cecha to reszta z dzielenia przez pięć. Często w matematyce utożsamia się elementy jednej klasy abstrakcji - można to zaobserwować na przykład na znanym działaniu modulo któro de facto jest działaniem wyłącznie na klasach abstrakcji (resztach z dzielenia). 9

Wszystkie powyższe uwagi dotyczyły relacji R A A. Równie dobrze jednak relacja może być określona na dwóch (a wieloargumentowa nawet na wielu) różnych zbiorach i w ogólności relacja dwuargumentowa między elementami zbioru A i elementami zbioru B to dowolny pozdbiór R A B. W tym przypadku w szczególności jeśli dla dowolnego a A istnieje dokładnie jeden element b B taki, że (a, b) R, to relację R nazywamy funkcją i piszemy: y = f(x) (x, y) R (napis ten ma sens z uwagi na jedyność igreka) W teorii mnogości takie ujęcie funkcji jest bardzo przydatne, bo zamiast nieścisłej definicji mówiącej, że funkcja to pewne przyporządkowanie, mamy definicję bardzo ścisłą. Rzecz jasna w matematyce teoretycznej taka ścisłość jest niezbędna, ale w matematyce praktycznej z powodzeniem można pozostać przy rozumieniu funkcji jako pewnego przyporządkowania i potraktowaniu powyższej definicji głównie w ramach ciekawostki. Ćwiczenia 4.1 Zbadaj czy poniższe równości są prawami rachunku zbiorów: a) A (B C) = (A B) (A C) b) A (B C) = (A B) (A C) c) A (B C) = (A B) (A C) d) (A B) (C D) = (A C) (B D) 4.2 Zbadaj własności następujących relacji: a) R R R, xry x 2 y 2 b) R N N, nrm n m c) R R R, xry xy = 0 d) R R R, xry y = x 2 e) R Z Z, xry x = 3 y = 3 f) r określona na zbiorze podzbiorów liczb rzeczywistych i taka, że ArB A B 4.3 Wykaż, że poniższe relacje są relacjami równoważności i wyznacz (opisz) ich klasy abstrakcji: a) R R R, xry x 2 = y 2 b) R R R, xry x y Q c) R R R, xry x = y d) R Z Z, nrm 7 (n 2 m 2 ) e) R (N N) (N N), (n, m)r(k, l) n + l = m + k f) r określona zbiorze wielomianów rzeczywistych i taka, że W rv W (0) = V (0) 10