Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ



Podobne dokumenty
KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

Badanie kinetyki katalitycznego rozkładu H 2 O 2

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Inżynieria Biomedyczna

Inżynieria Biomedyczna

EFEKT SOLNY BRÖNSTEDA

Kinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.

Kinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka

Odwracalność przemiany chemicznej

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1)

erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY

fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

KINETYKA INWERSJI SACHAROZY

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Kinetyka i równowaga reakcji chemicznej

Wpływ wybranych czynników na efektywność procesu

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...

KATALIZA HETEROGENICZNA

1 Kinetyka reakcji chemicznych

Ć W I C Z E N I E 5. Kinetyka cementacji metali

Politechnika Warszawska. Wydział Budownictwa Mechaniki i Petrochemii w Płocku Laboratorium Chemii Budowlanej

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH

WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI I ENERGII AKTYWACJI

Chemia fizyczna 2 - wykład

KATALIZA I KINETYKA CHEMICZNA

Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny.

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia

3. Badanie kinetyki enzymów

ĆWICZENIE NR 11 KINETYKA WYMIANY IZOTOPOWEJ W UKŁADZIE HOMOGENICZNYM

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym

KATALITYCZNE ODWODORNIENIE HEPTANU

Chemia - laboratorium

Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to:

TYPY REAKCJI CHEMICZNYCH

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

Enzymologia I. Kinetyka - program Gepasi. Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

c t x v KINETYKA CHEMICZNA

KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę.

Obliczanie wydajności reakcji

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

( liczba oddanych elektronów)

TYPY REAKCJI CHEMICZNYCH

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

Czynniki wpływające na szybkość reakcji

Wykład z Chemii Ogólnej i Nieorganicznej

Laboratorium Inżynierii Bioreaktorów

Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę

Opracowała: mgr inż. Ewelina Nowak

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Inżynieria Środowiska

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Kryteria oceniania z chemii kl VII

Wyznaczanie stałej szybkości reakcji wymiany jonowej

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawy kinetyki i termodynamiki chemicznej. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Kataliza heterogenna (heterogeniczna)

Chemia - laboratorium

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

Wykład 5. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 5. Anna Ptaszek 1 / 20

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

Ćwiczenie 1. Zależność szybkości reakcji chemicznych od stężenia reagujących substancji.

Terminy. Omówienie kolokwium I. Poprawa kolokwium I. Poprawa kolokwium II g. 15, s g. 15, s g. 15, s.

Ć W I C Z E N I E 1. Kinetyka roztwarzania miedzi metalicznej w roztworach amoniakalnych

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31

Badanie kinetyki inwersji sacharozy

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019

Wykład 5. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemiczne podstawy procesów przemysłu

Transkrypt:

Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu katalizatora na szybkość reakcji. 1. Czynniki wpływające na szybkość reakcji Zwiększenie szybkości reakcji można osiągnąć poprzez: - zwiększenie stężeń reagentów, - zwiększenie stałej szybkości k, (poprzez podwyższenie temperatury). - wprowadzenie katalizatora. Możliwość zwiększenia stężeń i ciśnienia - jest w praktyce ograniczona np. rozpuszczalnością reagentów, wytrzymałością aparatury. Podwyższenie temperatury zwiększa szybkość reakcji, ale w reakcjach egzotermicznych obniża wydajność. Już w XIX wieku zauważono, że pewne substancje obecne w układzie reagującym mogą wpływać na przebieg reakcji, choć same w wyniku jej, nie ulegają przemianom chemicznym. Substancje te nazwano katalizatorami, a reakcje zachodzące pod wpływem takich substancji - reakcjami katalitycznymi. Katalizatorem danej reakcji jest więc substancja, która wprowadzona do układu reagującego zwiększa szybkość tej reakcji, a sama nie ulega, w ostatecznym wyniku reakcji, przemianom chemicznym. Katalizator może stanowić jeden ze składników jednorodnej fazy (gazowej lub ciekłej) w której zachodzi reakcja - mówimy wówczas o katalizie homogenicznej, jednorodnej, jednofazowej. Jeśli katalizator stanowi odrębną fazę w układzie reagującym to katalizowana reakcja przebiega na granicy faz i wówczas mamy do czynienia z katalizą niejednorodną (heterogeniczną, wielofazową). Najczęściej katalizator jest wtedy ciałem stałym, reakcja zaś przebiega pomiędzy substancjami gazowymi. Np. katalityczne syntezy NH 3, SO 3, CH 3 OH. Reakcje katalizowane przebiegają zawsze przez stadium pośrednie, w których substraty reagują z katalizatorem tworząc związki przejściowe. Reakcja bez katalizatora zachodzi zgodnie z ogólnym równaniem: A + B P E A natomiast, w obecności katalizatora przebiega poprzez dwa etapy: A + K AK E 1 1

AK + B P + K E 2 Należy pamiętać, że produkt przejściowy AK nie jest kompleksem aktywnym. Każda z pojedynczych reakcji przebiega przez stadium powstawania takiego kompleksu, (zgodnie z teorią kompleksu aktywnego): A + K [A --- K] ---> AK Przyśpieszenie reakcji przez katalizator polega na zmniejszeniu energii aktywacji, E A, procesu chemicznego. Jeżeli reakcja bez katalizatora wymaga energii aktywacji E A, to w obecności katalizatora K, dwie reakcje wykazują energię aktywacji E 1 i E 2, przy czym każda z nich jest mniejsza od E A. Na rys.1. pokazano wykres zmian energii dla reakcji prowadzonej w obecności katalizatora. Rys.1.Wpływ katalizatora na szybkość reakcji. Wzrost szybkości reakcji wynika z niższej energii aktywacji kolejnych etapów w porównaniu z energiąaktywacji jednoetapowej przemiany bez katalizatora. 2. Katalizatory heterogeniczne Reakcje przyspieszane przez katalizatory heterogeniczne przebiegają poprzez kilka etapów, wśród których można wyróżnić: transport substratów z wnętrza fazy ciekłej lub gazowej do powierzchni katalizatora jest to etap najwolniejszy, kontrolowany przez szybkość dyfuzji, można go kontrolować poprzez zmianę szybkości mieszania, adsorpcję substratów na powierzchni katalizatora kontrolowany przez szybkość adsorpcji, reakcję międzycząsteczkową substratów zaadsorbowanych na powierzchni katalizatora etap ten kontrolowany jest przez szybkość reakcji powierzchniowej, desorpcję produktów reakcji z powierzchni katalizatora do wnętrza fazy etap ten, kontrolowany jest przez szybkość desorpcji. transport produktów reakcji od powierzchni katalizatora do wnętrza fazy etap, podobnie, jak etap pierwszy, kontrolowany jest przez szybkość dyfuzji. 2

O sumarycznej szybkości reakcji decyduje szybkość etapu najwolniejszego. 3. Stała szybkości reakcji Ważnym parametrem szybkości reakcji jest stała szybkości reakcji k. Jest ona wykładniczą funkcją odwrotności temperatury. Zależność ta podaje równanie Arrheniusa: A wielkość stała dla danego układu, E A energia aktywacji etapu, T temperatura, R stała gazowa. k = A e E A RT Każdy etap ma swoją energię aktywacji. Energia aktywacji przyjmuje najwyższe wartości dla reakcji powierzchniowych (E A >40kJ/mol), dla procesów dyfuzji jej wartość jest znacznie niższa (E A <17kJ/mol). Doświadczalne badania zależności wpływu temperatury na szybkość reakcji pozwala na wyznaczenie energii aktywacji. Po przekształceniu równania Arrheniusa otrzymujemy wyrażenie: E ln k = ln A A RT 1 Kreśląc graficznie zależność ln k = f( ), otrzymujemy prostą o równaniu y = ax+b, gdzie T współczynnik nachylenia prostej odpowiada: lna. E a = A, zaś punkt przecięcia prostej z osią OY: b = R Jeżeli badamy zmiany stałej szybkości reakcji w szerokim zakresie temperatur obserwuje się zmiany szybkości etapu, ograniczającego szybkość całego procesu. 4. Szybkość reakcji katalizowanych Według Ostwalda szybkość reakcji katalizowanej w układzie homogenicznym (lub mikroheterogenicznym) można wyrazić równaniem: k1 } stałe szybkości reakcji, k 2 a stężenie początkowe substratu, x stężenie produktu po czasie t, b stężenie katalizatora, dx dt = (k n 1 + k 2b)(a x) n rząd reakcji, dla reakcji katalizowanych przyjmuje często wartości ułamkowe, a nawet zerowe. Równanie to można przedstawić w postaci: 3

dx n n = k1 (a x) + k 2b(a x) dt Szybkość reakcji jest równa sumie dwóch niezależnych od siebie procesów: jednego przebiegającego tak, jakby katalizator był nieobecny i drugiego, uzależnionego od katalizatora. Jeżeli wyrażenie (k 1 + k 2 b) oznaczymy jako k, to równanie kinetyczne przyjmie postać: dx dt ' n = k (a x) Wynik działania katalizatora przejawia się zmianą wartości stałej szybkości reakcji. 5. Zadanie i sposób wykonania W ćwiczeniu tym będziemy oznaczać szybkość reakcji rozkładu wody utlenionej, bez katalizatora i w obecności katalizatora. Katalizatorem procesu jest brausztyn MnO 2, który należy wytworzyć w wyniku reakcji manganianu VII potasu (nadmanganianu potasu), KMnO 4, z wodą utlenioną w środowisku obojętnym. Reakcja ta przebiega zgodnie z równaniem: 2KMnO 4 + 3H 2 O 2 2MnO 2 + 3O 2 + 2KOH +2H 2 O Mn +7 + 3e - Mn +4 / 2 2O -1 O 2 0 + 2e - / 3 Woda utleniona jest związkiem termodynamicznie nietrwałym i ulega rozkładowi na tlen i wodę : H 2 O 2 H 2 O + 1/2O 2 Reakcja rozkładu wody utlenionej jest reakcją pierwszego rzędu, czyli przebiega zgodnie z równaniem kinetycznym pierwszego rzędu: dc H 2 O 2 dt = kc H 2 O 2 Równanie to, po rozdzieleniu zmiennnych i całkowaniu przyjmuje postać: ln c( H ) = ln c0 kt 2 O 2 t gdzie: c 0 stężenie początkowe wody utlenionej, c t stężenie po czasie t, Szybkość przebiegu reakcji (zarówno bez katalizatora jak i z katolizatorem), można śledzić oznaczając stężenie H 2 O 2 w roztworze, po upływie różnych odstępów czasu. Oznaczenie stężenia wody utlenionej w roztworze, po upływie czasu, należy przeprowadzić poprzez miareczkowanie roztworu wody utlenionej, roztworem KMnO 4 w środowisku kwaśnym. Reakcja, w czasie miareczkowania, przebiega według równania: 4

5H 2 O 2 + 2KMnO 4 + 16H + Mn 2+ + 8H 2 O + 5O 2 2O O 2 +2e / 5 Mn 7+ +5e Mn 2+ / 2 na podstawie którego obliczamy stężenie wody utlenionej c A, w chwili t. Pamiętając, że stężenie wody utlenionej w chwili t jest wprost proporcjonalne do zużytej objętości KMnO 4, można również równanie kinetyczne zapisać za pomocą objętości zużytego nadmanganianu, v: ln v = ln v0 t kt Wykres zależności ln v t = f (t), podobnie jak log c A =f (t), jest linią prostą, której współczynnik kierunkowy jest równy k. Rys.2. Wykres zależności ln c = f(t). 5.1. Wykonanie ćwiczenia 1. Przygotować 50cm 3 rozworu H 2 O 2 przez pięciokrotne rozcieńczenie perhydrolu (10cm 3 perhydrolu + 40cm 3 wody). 2. Do czterech erlenmayerek wlać po 150cm 3 wody destylowanej, po 50 cm 3 roztworu buforu boranowego oraz po 5cm 3 wcześniej przygotowanego roztworu wody utlenionej. 3. Do trzech erlenmayerek dodać kolejno 1, 3 i 5 cm 3 0,02M KMnO 4 (aby powstał katalizator) i dokładnie wymieszać. 4. Po upływie 3 5 minut od momentu dodania katalizatora pobrać z każdej kolbki 5cm 3 roztworu, dodać 5cm 3 2M H 2 SO 4 (w tym momencie odczytać czas) i miareczkować 0,02M KMnO 2 do uzyskania słabo różowego zabarwienia. 5. Próbki pobierać do miareczkowania w następujący sposób: roztwór bez katalizatora co 30 min przez 2 godziny, 5

roztwór z dodatkiem 1cm 3 KMnO 4 co 10 minut przez 1 godzinę, roztwór z dodatkiem 3cm 3 KMnO 4 co 5 minut przez 40 minut, roztwór z dodatkiem 5cm 3 KMnO 4 co 5 minut przez 30 minut Wyniki zebrać w tabeli 1. Sprawozdanie przygotować wg załączonego poniżej wzoru 6

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Nazwisko: Imię: Wydział: Grupa: Zespół: Data: Ocena: Wyniki pomiarów: Tabela 1. Wyniki pomiarów V KMnO 4 (katalizatora) 0 czas [s] 0 1800 3600 5400 7200 v t KMnO 4 c H 2 O ln 2 H 2 O 2 Podpis prowadzącego: V KMnO c 4 3 czas [s] 0 300 600 900 1200 1500 1800 2100 2400 v t KMnO 4 c H 2 O lnc 2 H 2 O 2 0 0 600 300 1200 600 1800 900 1 5 2400 1200 3000 1500 3600 1800 2100 Opracowanie wyników: 1. Dla każdej objętości katalizatora sporządzić wykres zależności f(t) = ln c H 2 O 2 i z nachylenia wykresów wyznaczyć stałe szybkości reakcji. Wyniki zebrać w tabeli 2. 2. Sporządzić wykres zależności k = f( v katalizatora Ostwalda). ) i sprawdzić, czy jest linią prostą (spełnia równanie 7

Tabela 2. Obliczone wartości stałej szybkości reakcji v KMnO 4 (katalizatora) 0 1 3 5 k Analiza wyników Najważniejsze zagadnienia (pytania) 1. Szybkość reakcji chemicznej, definicja, czynniki wpływające na szybkość, stała szybkości, rząd reakcji. 2. Równanie kinetyczne reakcji I rzędu 3. Kataliza i jej rodzaje (jedno, wielofazowa, mikroheterogeniczna, ujemna). 4. Zastosowanie katalizy w przemyśle. Literatura P.W. Atkins, Podstawy chemii fizycznej, PWN, Warszawa 2001, K. Pigoń, Z Ruziewicz, Chemia fizyczna, PWN, Warszawa 1980, M. Holtzer, A. Staronka, Chemia fizyczna wprowadzenie, wyd. AGH, Kraków 2000. Wykonano w ramach pracy własnej nr 10.10.170.245 8