EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1
EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania statystyki matematycznej do opisu i analizy zjawisk ekonomicznych; głównym celem ekonometrii jest analiza zjawisk w aspekcie teoretycznym oraz empirycznym 2
EKONOMETRIA wybrane definicje (Maddala) Ekonometria zastosowanie metod statystycznych i matematycznych do analizy danych ekonomicznych w celu nadania teoriom ekonomicznym kontekstu empirycznego oraz ich potwierdzenia bądź odrzucenia 3
Podział ze względu na aspekt wykorzystywanych metod teoria ekonometrii (metody dostosowane do potrzeb badań ilościowych w ekonomii) ekonometria stosowana (zastosowania do konkretnych badaniach na podstawie danych statystycznych ) 4
Podział ze względu na charakter wykorzystywanych danych ekonometria danych przekrojowych (obserwacje dotyczące wielu jednostek w jednym okresie czasowym) ekonometria dynamiczna (dane szeregów czasowych, zależności w czasie opisane najczęściej za pomocą układów równań różnicowych) ekonometria panelowa (powtarzane w czasie obserwacje tych samych jednostek) ekonometria przestrzenna (wykorzystanie informacji przestrzennej dotyczącej położenia obiektu) 5
Podział ze względu na obszar zastosowań mikroekonometria makroekonometria ekonometria finansowa badania operacyjne (dziedzina pokrewna) 6
Podział ze względu na procedurę wnioskowania wnioskowanie klasyczne (częstościowe frequentist approach) wnioskowanie bayesowskie (Bayesian Econometrics) 7
EKONOMETRIA PRZESTRZENNA Modele przestrzenne są rozszerzeniem klasycznych modeli ekonometrycznych. Wykorzystują one dane GIS (Geographic Information System) dotyczące geograficznego położenia jednostki. W modelach uwzględniane są efekty przestrzenne: przestrzenna zależność i przestrzenna heterogeniczność. 8
Przykłady analiz przestrzennych przestrzenna analiza rozwoju społeczno-gospodatczego jednostek terytorialnych (np. poziomu bezrobocia, wydatków itd.) przestrzenna analiza cen (np. nieruchomości), przestrzenna analiza wyników matur Przykładowe narzędzia (modele ekonometryczne) wykorzystywane w analizach przestrzennych: model autoregresji przestrzennej (SAR - Spatial autoregressive model) model VAR (vector autoregressive model) oraz VECM (vector error correction model) metody analizy skupień (taksonometrii) 9
KLASYCZNY MODEL REGRESJI LINIOWEJ 10
Klasyczny model regresji liniowej (KMRL) KMRL opisuje dla rozważanej populacji liniową zależność zmiennej zależnej (objaśnianej) Y od: 1) jednej zmiennej niezależnej (objaśniającej, regresora) X w przypadku prostej regresji liniowej: Y 0 1 X 11
Klasyczny model regresji liniowej przy czym (KMRL) 0 jest wyrazem wolnym modelu 1 jest parametrem kierunkowym modelu jest składnikiem losowym modelu (o rozkładzie normalnym KMNRL) 12
Klasyczny model regresji liniowej (KMRL) 2) wielu zmiennych niezależnych X j (j=1,2,,k) - w przypadku wielorakiej regresji liniowej: Y X... przy czym 0 jest wyrazem wolnym modelu 1,..., k są parametrami kierunkowymi odpowiadającymi poszczególnym regresorom modelu jest składnikiem losowym modelu 0 1 1 k X k 13
Regresja wieloraka zapis skalarny rozważmy zbiór obiektów i=1,2,,n (np. przedsiębiorstw, powiatów itd.), zależność liniową warunkowego rozkładu zmiennej zależnej Y i dla i-tego obiektu, opisanego przez wartości X ij (j=1,2,,k) zmiennych niezależnych można zapisać: Y i X... X 0 1 i1 k ik i i 1,2,..., n 14
Regresja wieloraka zapis macierzowy 15 ξ Xβ y 1 2 1 n y n y y y 1 1 2 21 1 11 1 1 1 k n nk n k k x x x x x x X 1 1 1 0 k k β 1 2 1 n n ξ
Regresja wieloraka zapis macierzowy gdzie y wektor (nx1) zmiennej zależnej X macierz (nx(k+1)) zmiennych objaśniających β wektor ((k+1)x1) parametrów modelu ξ wektor (nx1) składników losowych (w skrócie wektor losowy) 16
Warunkowa wartość oczekiwana przy założeniu, że E zmiennej zależnej E i 0 Y i EY X i1 xi 1,..., X ik xik 0 1xi 1... k xik (i=1,2,,n), mamy (i=1,2,,n), warunkowa wartość oczekiwana (wartość przeciętna) zmiennej objaśnianej E(Y i ) zależy liniowo od wartości przyjmowanych przez zmienne objaśniające dla i-tego obiektu, tzn. x i1,,x ik 17
Twierdzenie Gaussa-Markowa o KMRL Założenia (w skrócie): 1) niezmienniczość modelu Y i =f i (X i1,,x ik ) ze względu na kolejne obserwacje i=1,2,,n, tzn. f 1 =f 2 = =f n =f, 2) model jest liniowy względem parametrów: Yi 0 1X i1... k Xik i i 1,2,..., n lub w zapisie macierzowym: y Xβ ξ 3) zmienne objaśniające X j (j=1,,k) są nielosowe, w związku z czym są niekorelowane ze T T składnikiem losowym: EX ξ X Eξ 0 18
Twierdzenie Gaussa-Markowa o KMRL Założenia c.d. 4) macierz zmiennych objaśniających ma pełny rząd kolumnowy rz(x)=k+1 5) wektor losowy jest sferyczny, tzn. charakteryzuje się 2 wielowymiarowym rozkładem normalnym ξ ~ N0, I n gdzie I n macierzą jednostkową n-tego stopnia, co jest równoznaczne z istnieniem heteroskedastyczności składników losowych oraz brakiem ich autokorelacji 6) informacje zawarte w próbie są jedynymi informacjami, będącymi jedyną podstawą estymacji modelu 19
Teza twierdzenia Gaussa-Markowa o KMRL Jeżeli spełnione są założenia schematu Gaussa-Markowa, to Teza Estymator KMNK T 1 βˆ T X X X y jest najlepszym nieobciążonym estymatorem liniowym (BLUE best linear unbiased estimator) parametrów modelu β 20
Założenia KMRL ujęcie graficzne 21
Estymator Klasycznej Metody Najmniejszych Kwadratów (KMNK) Wartość estymatora odpowiada wartości minimalizującej błąd średniokwadratowy (funkcję celu S): βˆ T arg min Sβ y Xβ y Xβ β WK istnienia minimum lokalnego funkcji S (zerowanie się gradientu funkcji celu): T 1 T S βˆ 0 βˆ X X X y WW istnienia minimum lokalnego (dodatnia określoność hesjanu w punkcie stacjonarnym): T Hβ 2X X jest dodatnio określony w całej dziedzinie, więc w βˆ istnieje globalne minimum funkcji celu S 22
Idea KMNK - minimalizacja sumy kwadratów odchyleń: n n 2 y yˆ y x 2 i i i 0 1 i i1 i1 23
Wykres rozrzutu danych empirycznych w przypadku istnienia zależności liniowej 24
Weryfikacja założeń po oszacowaniu modelu Spełnienie założeń schematu Gaussa-Markowa weryfikuje się po oszacowaniu modelu Brak ich spełnienia skłania do respecyfikacji modelu (bądź też w szczególnych przypadkach do zachowania bieżącego modelu i zastosowania estymatorów odpornych macierzy kowariancji w celach wnioskowania na temat wielkości parametrów w populacji) 25
Procedura budowy KMRL 1) dobór zmiennych objaśniających modelu (m.in. metoda optymalizacji kryterium informacyjnego AIC lub BIC, metody krokowe postępująca lub wsteczna) 2) weryfikacja założeń modelu KMRL (przy braku ich spełnienia ewentualna jego respecyfikacja) 3) badanie istotności wpływu regresorów oraz ocena stopnia dopasowania oszacowanego modelu do danych empirycznych 4) analiza merytoryczna wartości oszacowań parametrów modelu 26
Wykorzystanie zbudowanego KMRL Opis zależności warunkowej wartości zmiennej objaśnianej w zależności od wartości cech objaśniających zaobserwowanych dla obiektów należących do zbioru służącego za podstawę estymacji modelu Prognozowanie na podstawie modelu (liniowa ekstrapolacja zależności dla innych obiektów nie wchodzących w skład próby użytej przy estymacji) 27
Oprogramowanie ekonometryczne gretl STATISTICA R język i środowisko programowania dla obliczeń statystycznych Eviews MATLAB GAUSS MS Excel + dodatki + VBA 28
Przykład analiza regresji stopy bezrobocia w powiatach Obiektami analizy są powiaty województwa małopolskiego oraz śląskiego (tworzących region południowy w ramach klasyfikacji NUTS). Dane dla roku 2010 zaczerpnięto z Banku Danych Lokalnych GUS. n=58 liczba obiektów (powiatów) Zmienna zależna: Y - stopa bezrobocia (w %) 29
Przykład analiza regresji stopy bezrobocia w powiatach Potencjalne regresory modelu: X 1 województwo (zmienna zero-jedynkowa: 1 małopolskie, 0 śląskie) X 2 przeciętne wynagrodzenie (w PLN) X 3 udział osób zatrudnionych w rolnictwie (w %) X 4 liczba jednostek gospodarczych przypadających na 10 tys. mieszkańców X 5 inwestycje jednostek gospodarczych przypadające na 1 mieszkańca (w PLN) 30
Analiza w STATISTICA Wykorzystujemy moduł Regresja wieloraka z menu Statystyka 31
Analiza w STATISTICA W tym celu można również wykorzystać moduł Ogólne modele regresji z menu Statystyka podmenu Zaawansowane modele liniowe i nieliniowe 32
Analiza w STATISTICA Przydatny w wizualizacji wyników analiz przestrzennych pomocny może być dodatek STATISTICA Mapy 33
Analiza w gretl Wykorzystujemy funkcję Klasyczna metoda najmniejszych kwadratów z menu Model 34
Wykorzystanie danych GIS Rozszerzenie analizy bezrobocia z wykorzystaniem danych przestrzennych (dane GIS w układzie xy): Artykuł: Müller-Frączek I., Pietrzak M.B., Analiza stopy bezrobocia w Polsce z wykorzystaniem przestrzennego modelu MESS Dane GIS: geoportal 35
Literatura podstawy ekonometrii (m.in. KMRL) Literatura podstawowa: Kukuła K. (red.), Wprowadzenie do ekonometrii Welfe A., Ekonometria. Metody i ich zastosowanie (KMRL rozdział 1 i 2) Górecki B., Podstawowy kurs nowoczesnej ekonometrii Literatura dodatkowa: Goldberger G.A., Teoria ekonometrii Greene W.H., Econometric analysis, (wydanie szóste lub nowsze) (rozdziały 1-7 w wydaniu szóstym) 36
Literatura podstawy ekonometrii (m.in. KMRL) Analizy ekonometryczne z wykorzystaniem oprogramowania gretl: Osińska M. (red.), Ekonometria współczesna Kufel T., Rozwiązywanie problemów z wykorzystaniem programu GRETL Analizy ekonometryczne z wykorzystaniem programu STATISTICA: Kot S.M., Jakubowski J., Sokołowski A., Statystyka 37
Literatura ekonometria Literatura podstawowa: przestrzenna Suchecki B., Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych Literatura dodatkowa: LeSage J.P., Spatial Econometrics LeSage J.P., The Theory and Practice of Spatial Econometrics Suchecki B., Ekonometria przestrzenna II. Modele zaawansowane 38
Literatura ekonometria przestrzenna Analizy przestrzenne z wykorzystaniem programu statystycznego R: Kopczewska K., Ekonometria i statystyka przestrzenna z wykorzystaniem programu R CRAN Task Views: Spatial analysis 39
DZIĘKUJĘ ZA UWAGĘ 40