ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU ZE SPRĘŻYNĄ MAGNETYCZNĄ PRZY WYMUSZENIU KINEMATYCZNYM



Podobne dokumenty
FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING

WYNIKI BADAŃ SYMULACYJNYCH UKŁADU STEROWANIA NAPIĘCIEM ZASILANIA SPRĘŻYNY MAGNETYCZNEJ

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS

ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO

REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING

INSTRUKCJA DO ĆWICZENIA NR 5

Sposoby modelowania układów dynamicznych. Pytania

INSTRUKCJA DO ĆWICZENIA NR 7

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Wyniki badań doświadczalnego generatora dla tłumika magnetoreologicznego o ruchu liniowym

BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

3 Podstawy teorii drgań układów o skupionych masach

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

Dwa w jednym teście. Badane parametry

Laboratorium Mechaniki Technicznej

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO

DRGANIA ELEMENTÓW KONSTRUKCJI

XLIV SESJA STUDENCKICH KÓŁ NAUKOWYCH KOŁO NAUKOWE MAGNESIK

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

BADANIA GRUNTU W APARACIE RC/TS.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

ANALIZA KINEMATYCZNA PALCÓW RĘKI

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 17/09

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

Rys 1 Schemat modelu masa- sprężyna- tłumik

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Zadanie nr II-22: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych tłumieniu i izolacyjności

PRACA DYPLOMOWA Magisterska

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Drgania wymuszone - wahadło Pohla

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Badania doświadczalne drgań własnych nietłumionych i tłumionych

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

Laboratorium z automatyki

ANALIZA ROZPRASZANIA ENERGII DRGAŃ W AKTYWNYCH ZAWIESZENIACH POJAZDU DLA WYBRANYCH ALGORYTMÓW STEROWANIA

Drgania układu o wielu stopniach swobody

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2

CHARAKTERYSTYKI TŁUMIKA MAGNETOREOLOGICZNEGO RD ZASILANEGO Z GENERATORA ELEKTROMAGNETYCZNEGO

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

TEORIA DRGAŃ Program wykładu 2016

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

MODELOWANIE BELKI Z CIECZĄ MAGNETOREOLOGICZNĄ METODĄ ELEMENTÓW SKOŃCZONYCH

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

MODEL CIEPLNY ELEKTROWRZECIONA

INSTRUKCJA DO ĆWICZENIA NR 4

ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

Laboratorium. Hydrostatyczne Układy Napędowe

Tematy prac dyplomowych magisterskich, realizacja semestr: letni 2019 kierunek AiR

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Urządzenia nastawcze

Sterowanie Napędów Maszyn i Robotów

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Badanie rozkładu pola magnetycznego przewodników z prądem

Eliminacja drgań przy wykorzystaniu dynamicznego tłumika drgań z inerterem o zmiennej inertancji

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

SYMULACJA I PROJEKT UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO DO ZASILANIA TŁUMIKA MAGNETOREOLOGICZNEGO

KOOF Szczecin:

SYSTEMY MES W MECHANICE

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

Sterowanie Napędów Maszyn i Robotów

WPŁYW EKSCENTRYCZNOŚCI STATYCZNEJ WIRNIKA I NIEJEDNAKOWEGO NAMAGNESOWANIA MAGNESÓW NA POSTAĆ DEFORMACJI STOJANA W SILNIKU BLDC

Polowe wyznaczanie parametrów łożyska magnetycznego w przypadku różnych uzwojeń stojana

Zwój nad przewodzącą płytą

BADANIE SILNIKA SKOKOWEGO

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Fizyka 11. Janusz Andrzejewski

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Teoria maszyn mechanizmów

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

4.2 Analiza fourierowska(f1)

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

Procedura modelowania matematycznego

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

Wykład 2 Silniki indukcyjne asynchroniczne

Wibroizolacja i redukcja drgań

Katedra Elektrotechniki Teoretycznej i Informatyki

Transkrypt:

MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 6-7, Gliwice 11 ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU ZE SPRĘŻYNĄ MAGNETYCZNĄ PRZY WYMUSZENIU KINEMATYCZNYM JACEK SNAMINA, PIOTR HABEL Katedra Automatyzacji Procesów, Akademia Górniczo-Hutnicza w Krakowie e-mail: snamina@agh.edu.pl, habel@agh.edu.pl Streszczenie. Praca zawiera analizę częstotliwościową drgań obiektu z układem wibroizolacji, w którym wykorzystano sterowaną sprężynę magnetyczną. Sprężyna magnetyczna składa się z magnesów neodymowych oraz cewek kształtujących pole magnetyczne. Zmiana natężeń prądów płynących w cewkach daje możliwość sterowania polem magnetycznym, co umożliwia wytworzenie odpowiedniej siły oddziaływania sprężyny magnetycznej na obiekt chroniony. 1. WSTĘP Zagadnienia aktywnej wibroizolacji są przedmiotem prac koncepcyjnych i aplikacyjnych w wielu ośrodkach badawczych. Do układów wibroizolacji wprowadzane są nowe elementy oraz elementy dotychczas stosowane, lecz o udoskonalonej konstrukcji. Należą do nich sprężyny magnetyczne, będące elementami tak układów pasywnych, jak i układów aktywnych. Pasywny układ wibroizolacji płyty wykorzystujący sprężynę magnetyczną został przedstawiony w pracy [1. Układ wykorzystujący siłę odpychania magnesów wraz z równolegle zamontowaną sprężyną został opisany w [. Autorzy opracowali model teoretyczny oraz numeryczny, a następnie potwierdzali jego prawidłowość badaniami eksperymentalnymi. Patent [ przedstawia możliwość zmiany siły oddziaływania pomiędzy magnesami w wyniku obrotu magnesu sześciennego. Wadą tego urządzenia są duże rozmiary oraz liczne elementy. Zaproponowana w niniejszej pracy prototypowa konstrukcja sprężyny magnetycznej posiada znacznie mniej skomplikowaną budowę oraz mniejszą liczbę elementów. Układ wibroizolacji wykorzystujący sprężynę magnetyczną ma cechy układu nieliniowego, będące konsekwencją nieliniowej charakterystyki sprężyny. Projektowanie takich układów w sposób szczególny wymaga indywidualnego podejścia oraz właściwego doboru parametrów konstrukcyjnych. Aktywny układ wibroizolacji zastosowany do redukcji drgań obiektu o jednym stopniu swobody wykorzystujący sprężynę magnetyczną z wymuszeniem dynamicznym przedstawiono w [4. Charakterystyki częstotliwościowe układów nieliniowych zostały omówione w pracach [5, 6, 7. Przedstawiono w nich również najczęściej stosowane metody analizy częstotliwościowej wykorzystujące metodę bilansu harmonicznych, metodę Galerkina, metodę iteracyjną oraz metodę małego parametru.

64 J. SNAMINA, P.HABEL. BUDOWA I CHARAKTERYSTYKI SPRĘŻYNY MAGNETYCZNEJ Sprężyna magnetyczna została skonstruowana jako urządzenie, które będzie wykorzystane przede wszystkim w aktywnych układach wibroizolacji. Zmieniając natężenie prądu płynącego w cewkach, można sterować siłą wytwarzaną przez sprężynę. Cewki będące elementem układu magnetycznego sprężyny są zasilane z zewnętrznego, sterowanego źródła prądu..1. Zasada działania Schemat sprężyny magnetycznej przedstawiono na rys. 1. Dwa neodymowe magnesy górne (1) zamocowane są do końca trzpienia prowadzącego (7), a kolejne dwa () do obudowy w punkcie leżącym w osi sprężyny. Magnesy zostały zamocowane w taki sposób, aby siły oddziaływania pomiędzy nimi były siłami odpychającymi. Trzpień prowadzący (7) umożliwia ruch magnesów górnych (1) w osi sprężyny dzięki umieszczeniu go w łożysku liniowym (8). Obwód magnetyczny składa się z czterech rozgałęzień bocznych (), na których znajdują się cewki (6), części górnej (4) oraz części dolnej (5), do której przymocowane są magnesy dolne (). Odpowiednie ułożenie wszystkich elementów zapewnia obudowa górna (9) oraz dolna (1) połączone ze sobą za pomocą czterech prętów stabilizujących konstrukcję (11). Umieszczone w obwodzie magnetycznym cztery cewki (6) wpływają na rozkład pola magnetycznego w przestrzeni pomiędzy magnesami. Dzięki zmianie natężenia prądów płynących w cewkach istnieje możliwość sterowania polem magnetycznym, a w efekcie siłą sprężyny. 7 8 4 6 5 1 9 11 1 Rys. 1. Schemat sprężyny magnetycznej.. Badania laboratoryjne Zdjęcie stanowiska laboratoryjnego przedstawiono na rys.. Układ napędowy wzbudnika drgań wyposażono w siłownik hydrauliczny (H) dwustronnego działania z jednostronnym tłoczyskiem posiadającym wbudowany czujnik położenia BALLUFF BTL5. Siłownik hydrauliczny (H) jest sterowany za pomocą serwozaworu (S) MOOG model D761-14 typ S6FOFMAVPL oraz zasilany przez agregat hydrauliczny (A). Zadane wymuszenie kinematyczne platformy dolnej (PD) do której jest przymocowana obudowa sprężyny magnetycznej (O) jest realizowane za pomocą siłownika hydraulicznego (H). Czujnik siły

ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU ZE SPRĘŻYNĄ MAGNETYCZNĄ 65 (F) ZEPWN Typ CL 16 Nr 474 jest zainstalowany w osi sprężyny pomiędzy trzpieniem prowadzącym (W) a platformą górną (PG). Siła oddziaływania sprężyny magnetycznej w badanym układzie to siła działająca między obudową sprężyny (O) a trzpieniem prowadzącym sprężyny (W) oraz jednocześnie między platformą dolną (PD) a platformą górną (PG). Platforma górna (PG) została utwierdzona. Wraz ze zmianą położenia platformy dolnej (PD) następuje zmiana siły oddziaływania pomiędzy magnesami. Cewki (C) zainstalowane na specjalnie skonstruowanym magnetowodzie są zasilane z zasilaczy stałoprądowych (Z) MeanWell SP--4. Wyniki przeprowadzonych badań laboratoryjnych są zgodne z wynikami obliczeń wykonanych metodą elementów skończonych potwierdzają obliczenia symulacyjne wykonane MES przy użyciu programu ANSYS. Błąd względny wyników obliczeń siły oddziaływania sprężyny nie przekracza 1%, co jest wynikiem zadowalającym przy przyjętych uproszczeniach. PG Z F W C A H O S PD Rys.. Stanowisko laboratoryjne. RÓWNANIE RUCHU BADANEGO UKŁADU Rozważany układ przedstawiono schematycznie na rys.. Układ ten jest układem o jednym stopniu swobody, w którym ruch ciała o masie m jest wymuszany ruchem podłoża. Do wibroizolacji ciała wykorzystano sprężynę magnetyczną, której budowa i własności zostały przedstawione w poprzednim rozdziale. Na rys.. zaznaczono również blok oznaczający jednostkę sterującą, która na podstawie sygnałów związanych z ruchem układu wyznacza sygnał sterujący sprężyną magnetyczną. Współrzędna x opisuje położenie ciała o masie m względem położenia równowagi statycznej. Równanie drgań wymuszonych rozważanego układu ma postać: ( stat ) mx && = Fmag + Fmag mg (1) (stat) Gdzie F mag oznacza składową siły sprężyny magnetycznej przy braku zasilania cewek (składowa stała sprężyny). F mag oznacza składową zmienną siły w sprężynie związaną z przepływem prądu przez cewki. Siła F (stat) mag równoważy siłę ciężkości mg. Ze względu na równowagę siły ciężkości oraz składowej stałej siły w sprężynie, masa ciała oraz magnesy stałe muszą być odpowiednio dobrane. Zbudowany prototyp sprężyny został zaprojektowany dla masy m= [kg.

66 J. SNAMINA, P.HABEL x,x& jednostka sterująca m x sprężyna magnetyczna y,y& sygnał sterujący DC + - y Rys.. Schemat układu 4. ALGORYTM STEROWANIA Sterowanie siłą oddziaływania sprężyny magnetycznej jest realizowane przez odpowiednie zasilanie cewek. Przyjęto prosty w realizacji algorytm sterowania, w którym natężenie prądu jest proporcjonalne do prędkości ciała względem ruchomego podłoża. Taki algorytm sterowania prądem prowadzi do nieliniowej zależności siły F mag od prędkości względnej w związku z nieliniową charakterystyką sprężyny, która opisuje siłę w funkcji względnego położenia magnesów oraz prądu zasilającego cewki. Symbolem ξ oznaczono przemieszczenie względne magnesów, a symbolem i natężenie prądu zasilającego cewki. Na rys. 4 przedstawiono wykres siły Fmag ( ξ, i) otrzymany na podstawie pomiarów laboratoryjnych. Wykorzystano charakterystyki statyczne sprężyny dla natężenia prądu i = { 7,,7} [A przepływającego przez wszystkie cewki. Ujemna wartość natężenia prądu oznacza taki kierunek przepływu prądu przez cewki, przy którym następuje osłabienie pola magnetycznego między magnesami. Dla prędkości ξ & = [m/s cewki są nieaktywne, gdyż zgodnie z przyjętym algorytmem i=, wtedy wartość siły F mag została aproksymowana wielomianem F ( mag ξ,) = a ξ + a1 ξ + a. W przypadku zasilania cewek prądem o natężeniu i=7 [A wielomian aproksymujący ma inne współczynniki F ( mag ξ,7) = b ξ + b1 ξ + b. Dla prądu o natężeniu i=-7 [A wielomian aproksymujący ma postać F ( mag ξ, 7) = c ξ + c1 ξ + c. Jednostka sterująca przelicza natężenie prądu i w zależności od aktualnej wartości prędkości względnej ξ &. Prąd o natężeniu i =7 [A jest sygnałem sterującym w przypadku ξ & = ξ & max, natomiast prąd o natężeniu i=-7 [A jest sygnałem sterującym w przypadku ξ& = ξ&. max

ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU ZE SPRĘŻYNĄ MAGNETYCZNĄ 67 4 4 Fmag ( ξ, i= 7) [N g F ma - 7 5 Fmag 1-1 i [A ( ξ, i= ) Fmag - ( ξ, i= 7) -5-7 -8-6 -4 - ξ [m 4 6 x 1-8 1-1 - - Rys. 4. Składowa zmienna siły wytwarzanej przez sprężynę magnetyczną w funkcji współrzędnej ξ oraz natężenia prądu i 5. ANALIZA CZĘSTOTLIWOŚCIOWA Analizę częstotliwościową układu wykonano metodą bilansu harmonicznych. Obliczenia symulacyjne przeprowadzono z zastosowaniem programu MATLAB R9b. Na podstawie równania (1), po uwzględnieniu równowagi siły ciężkości i składowej stałej w sprężynie, równanie drgań ciała o masie m przyjmuje postać: mx && = Fmag ( ξ, i) () Wprowadzając przemieszczenie względne ξ = y x równanie ruchu może zostać zapisane w formie: m&& ξ + F% ( ξ, ξ& ) = my && () Gdzie %F ( ξξ, &) oznacza składową zmienną siły w sprężynie, po uwzględnieniu proporcjonalności natężenia prądu i do prędkości względnej ξ &, według założonego algorytmu sterowania. Zgodnie z założeniem metody bilansu harmonicznych przyjmujemy: sinusoidalnie zmienne wymuszenie y = y sin( ωt ϕ) +, podstawową harmoniczną przemieszczenia bezwzględnego w postaci x = x sin( ωt ψ) + oraz podstawową harmoniczną przemieszczenia względnego ξ = ξ sin( ωt). We wzorach uwzględniono przesunięcie fazowe ϕ oraz ψ. W wyniku zastosowania algorytmu obliczeń metodą bilansu harmonicznych uzyskano następujące równanie krzywej rezonansowej: 4 ω d ξ ω d ξ 1 ω e 4 ξ ξ 1 4 16& max 8& ξ ω ξ ξmax 4ξ& max mω + a + a + + + = m y (4)

68 J. SNAMINA, P.HABEL Współczynniki d k i e k zostały wprowadzone jako pomocnicze według następującej zależności: d k =b k +c k -a k oraz e k =b k -c k dla k=,1,. Maksymalną prędkość ξ & max wyznaczono na podstawie obliczeń symulacyjnych. Przykładowy wynik obliczeń przedstawiono w postaci trajektorii fazowej na rys. 5. Maksymalna prędkość podczas ruchu ustalonego ma wartość ξ & max =.16 [m/s. Krzywa szkieletowa przedstawia zależność częstości rezonansowej od amplitudy, przy braku wymuszenia. Ma ona następującą postać: ω a1 a = + ξ (5) m 4 m Dla amplitudy ξ = częstość drgań własnych wynosi ω =,8 [rad/s i wzrasta wraz ze wzrostem amplitudy ξ. Wykres zależności (5) przedstawiono na rys.6..15 s t [m/ d ξ/ d.4. -. -.4 i <-7;7> [A i = [A -.15 -.1 -.5.5.1 ξ [m Rys. 5. Trajektoria fazowa ruchu: y =. [m, ω= [rad/s [m ξ.1.5 5 1 15 5 5 4 45 5 ω [rad/s Rys. 6. Krzywa szkieletowa Zależność amplitudy drgań od częstości wymuszenia można przedstawić graficznie w postaci krzywych rezonansowych rys. 7 oraz 8. Krzywe rezonansowe wykreślono dla dwóch wartości amplitudy wymuszenia kinematycznego y =. oraz y =.4 [m. Rozważany nieliniowy układ porównano do analogicznego liniowego układu o parametrach: m= [kg, c=45 [N s/m oraz k=75 [N/m. Analiza częstotliwościowa przemieszczenia względnego ξ w zakresie częstości ω <1:1> [rad/s została przedstawiona na rys. 7a. Zastosowanie proponowanego układu wykorzystującego sprężynę magnetyczną dla przyjętego wymuszenia powoduje zwiększenie amplitudy ξ w zakresie częstości okołorezonansowych względem liniowego układu. Wzrost wartości amplitudy y powoduje przesunięcie częstotliwości rezonansowych w kierunku większych częstości. Zależność kąta Θ= ϕ, opisującego przesunięcie fazowe sygnału ξ(t) względem y(t), przedstawiono w postaci charakterystyki fazowo-częstotliwościowej na rys. 7b. Zastosowanie układu nieliniowego ze sprężyną magnetyczną wpływa na zmianę przesunięcia fazowego Θ w obszarze częstości okołorezonansowych. Wzrost amplitudy y powoduje zwiększenie przesunięcia fazowego Θ.

ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU ZE SPRĘŻYNĄ MAGNETYCZNĄ 69 (a) [- y / ξ 1 1 1 1 1 1 ω [rad/s (b) [ Θ 15 1 5 1 1 1 1 1 ω [rad/s Rys.7. Charakterystyka amplitudowo-częstotliwościowa oraz fazowo-częstotliwościowa przemieszczenia względnego ξ ( model liniowy, model nieliniowy y =. [m, model nieliniowy y =.4[m) Analiza częstotliwościowa przemieszczenia bezwzględnego x w zakresie częstości ω <1:1> [rad/s została przedstawiona na rys. 8a. Zwiększanie wartości amplitudy y powoduje przesunięcie częstości rezonansowych w kierunku większych wartości. Charakterystyka fazowo-częstotliwościowa pokazana na rs. 8b. przedstawia zależność kąta Γ=ψ ϕ opisującego przesunięcie fazowe sygnału x(t) względem y(t) od częstości ω. Zastosowanie układu ze sprężyną magnetyczną powoduje zmianę przesunięcia fazowego Γ względem układu liniowego. Zwiększanie amplitudy y wpływa na zmianę Γ tylko w obszarze częstości okołorezonansowych. (a) [- y / x 1 (b) 1 1 1 1 1 ω [rad/s [ Γ -5-1 1 1 1 1 1 ω [rad/s Rys.8 Charakterystyka amplitudowo-częstotliwościowa oraz fazowo-częstotliwościowa przemieszczenia bezwzględnego x ( model liniowy, model nieliniowy y =. [m, model nieliniowy y =.4[m)

7 J. SNAMINA, P.HABEL 6. WNIOSKI Uzyskane wyniki pozwalają na analizę zachowania się rozważanego układu wibroizolacji w zakresie częstości do 1 [rad/s. Analiza została przeprowadzona dla zakresu sterowania prądem o natężeniu w zakresie <, 7> [A, uwzględniając przy tym przepływ prądu w obu kierunkach. Zastosowanie układu ze sprężyną magnetyczną stwarza możliwość sterowania sztywnością i tłumieniem układu. Opcja sterowania układem tylko w wybranym zakresie częstości (np. dla częstości okołorezonansowych) jest możliwa do zastosowania w rozważanym układzie. Takiej możliwości nie ma w konwencjonalnym układzie ze sprężyną i tłumikiem wiskotycznym. Możliwość zastosowania większej wartości maksymalnej prądu pozwoliłaby na zwiększenie efektywności wibroizolacji. Ograniczenie to wynika z warunków konstrukcyjnych cewek, dla których wykonywano badania laboratoryjne. Proponowana sprężyna magnetyczna może zostać zastosowana w wibroizolacji maszyn roboczych oraz siedzisk operatorów maszyn. Pracę wykonano w ramach projektu badawczego nr N N51 894. LITERATURA 1. Puppin E., Fratello V.: Vibration isolation with magnet spring. Review of Scientific Instruments,.. Bonisoli E., Vigliani A.: Passive elasto-magnetic suspensions: nonlinear models and experimental outcomes. Mechanics Research Communications p. 85 94, 7.. Patent USA nr 6849: Vibration mechanism having a magnetic spring. 4. Snamina J., Habel P.: Analiza częstotliwościowa układu wibroizolacji ze sprężyną magnetyczną. Kraków: Wydawnictwo PK, 1. 5. Meirovitch L.: Elements of vibration analysis. McGraw-Hill Publishing Company, 1986. 6. Łuczko J.: Drgania regularne i chaotyczne w nieliniowych układach mechanicznych, Kraków: Wyd. PK, 18. 7. Polina S. Landa: Regular and chaotic oscillations. Springer, 1. FREQUENCY ANALYSIS OF A SYSTEM WITH MAGNETIC SPRING BY KINEMATIC EXCITATION Summary. The paper presents the frequency analysis of a one degree of freedom system with kinematic excitation. The system consists of a rigid body and a magnetic spring. The motion is excited by the basis displacement. The main parts of the magnetic spring are neodymium magnets and coils forming magnetic field. The force exerted by the spring can be controlled by changing the current in coils. The system is nonlinear because characteristics of the spring are nonlinear. The harmonic balance method was used to carried out the frequency analysis of considering system.